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Abstract. Chronic mountain sickness (CMS) is a condition in 
which the hematocrit is increased above the normal level in 
residents at high altitude. High altitude polycythemia (HAPC) 
is the most characteristic sign of CMS. However, the patho-
genesis of HAPC is poorly understood. The present study 
aimed to investigate the gene expression profile of HAPC in 
Han Chinese migrating to the Qinghai-Tibetan Plateau and to 
identify the pathogenetic mechanisms. A total of 9 differen-
tially expressed genes were identified in HAPC patients using 
microarrays: 5 were up-regulated and 4 were down-regulated. 
Functional analysis of the array data revealed that cell division 
cycle 42 (CDC42) and the human immune response may be 
key features underlying the mechanism and development of 
HAPC.

Introduction

Immigration from the plain to the plateau results in a compen-
satory increase in the number of red blood cells (RBC), 
which facilitates acclimatization to hypobaric hypoxia (1-4). 

Increasing the number of RBCs enables the lungs to obtain 
more atmospheric oxygen (3). The increased number of RBCs 
stabilizes at a certain level during long term-exposure to high 
altitudes in the majority of individuals; however, in others 
the number of RBCs continues to increase, causing serious 
clinical symptoms and signs, known as high altitude polycy-
themia (HAPC).

International diagnostic guidelines for HAPC were 
adopted by the 6th International Conference on High Altitude 
Medicine in 2004  (5). HAPC is characterized by excessive 
erythrocytosis (females, Hb ≥19 g/dl; males, Hb ≥21 g/dl) and 
occurs in natives or long-term residents above 2,500  m (5). 
Excessive erythrocytosis can increase blood viscosity, reduce 
blood flow velocity and aggravate hypoxemia (4). On the 
plateau (3,000‑4,700 m), the incidence of HAPC is 2.43-37.5% 
and increases with elevation (6). Furthermore, the incidence 
of HAPC is significantly higher in migrants to a plateau than 
in the native population. The incidence of HAPC in males is 
also markedly higher than in females and is associated with 
work intensity (6-10).

High altitude hypobaric hypoxia is the primary cause of 
HAPC, but the pathogenesis is unknown. Upon exposure to 
high altitude, hypoxia inducible factor  1  (HIF-1) increases 
erythropoietin (EPO) mRNA levels by binding the EPO 
promoter, resulting in increased EPO secretion (11). Erythroid 
progenitor cells are the main targets of EPO and are very 
sensitive to this molecule (12). An in vitro study showed that 
erythroid progenitor cells from HAPC patients were more 
sensitive to EPO than those from healthy migrants (13). 
However, our previous investigation showed that the increase 
in RBCs did not always correlate with serum EPO levels 
(14). Under conditions of hypobaric hypoxia, the number of 
RBCs can increase at the same time as serum EPO levels are 
decreasing (14). Therefore, we speculated that the EPO-EPOR 
system may be associated with erythroid progenitor cell prolif-
eration and differentiation soon after exposure to a plateau. 
Subsequently, other factors may also be involved in the regula-
tion of erythropoiesis in the bone marrow, and multiple factors 
working together contribute to excessive RBC proliferation 
during long term-exposure to high altitudes. Therefore, we 
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compared the global gene expression profiles of leukocytes 
from HAPC patients with those from matched controls to 
identify disease-specific molecular signatures and candidate 
molecules involved in the pathophysiology of HAPC.

Materials and methods

Ethical approval. The investigation followed the principles 
outlined in the Declaration of Helsinki for the use of human 
blood and was approved by the Ethics Committee of the Third 
Military Medical University. Informed consent was obtained 
from all subjects. Each subject was assigned a unique patient 
number, which was used thereafter for the protection of 
privacy.

Subjects. Subjects were divided into two groups: 5  male 
Han Chinese patients with HAPC (diagnosed according to the 
International Consensus Statement on HAPC) and 5 matched 
controls. The subjects were migrants to the TuoTuo River 
area (Qinghai-Tibetan Plateau, 4,550  m) (5). Living habits 
and clinical data were collected and deposited into a data-
base (Table I). Each of the 5 HAPC patients was matched to 
a control according to gender, nationality, birthplace, length 
of time on the plateau, height of location and work intensity. 
Anti-coagulated peripheral blood samples were obtained 
from subjects at 4,550 m. The hemoglobin concentration was 
measured three times using the HiCN method and a spec-
trophotometer (Ehaihuicheng Inc., Shanghai, China). After 
centrifuging at 1,000 rpm for 10 minutes, the leukocytes were 
collected and mixed with three volumes of RNA-preservation 
fluid (Bioteke Inc, Beijing, China) and stored in liquid 
nitrogen ready for RNA extraction. The gene expression 
profiles of the RNAs were then analyzed using a Human 
Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA, 
USA). Peripheral blood and plasma samples were obtained 
from a second batch of subjects (13  HAPC patients and 
13  matched controls) from the NaQu area (Qinghai-Tibetan 
Plateau, 4,610  m). Peripheral blood samples were treated as 
described above and the gene expression data were confirmed 
using qRT-PCR.

RNA extraction. RNA extraction and microarray analysis for 
the first-batch subjects were performed as previously described 
(15). Total RNA was extracted using the Trizol reagent 
(Invitrogen, Shanghai, China) and purified using the RNeasy 
MinElute Cleanup Kit (Qiagen, Beijing, China) according to 
the manufacturer’s instructions. Total RNA from the second 
batch of subjects was extracted using the TRIpure LS Reagent 
(BioTeke, Beijing, China) for qRT-PCR. Only RNA with a 
28S/18S ribosomal RNA ratio between 1.0 and 1.5 was used in 
the microarray assay and qRT-PCR experiments.

Microarray analysis. As previously described (15), an 
aliquot (2 µg) of total leukocyte RNA was used to synthesize 
double-stranded cDNA, which was subsequently transcribed 
into biotin-tagged cRNA using the MessageAmp aRNA 
Amplification Kit (Ambion, TX, USA). The cRNA was 
then fragmented to produce strands of 35-200  bases in 
length according to the Affymetrix protocol. The frag-
mented cRNA was then hybridized to the Human Genome 
U133  Plus  2.0  Array. Microarray hybridization was 
performed at 45˚C for 16 hours in an Affymetrix GeneChip 
Hybridization Oven. The arrays were then washed and stained 
with streptavidin‑phycoerythrin in an Affymetrix Fluidics 
Station 450  and scanned with an Affymetrix GeneChip 
Scanner 3000 to analyze the hybridization data. The scanned 
images were assessed by visual inspection and then analyzed 
with Affymetrix GeneChip Operating Software (version 1.4). 
dChip software was used in a global scaling procedure to 
normalize the different arrays. A two-class unpaired method 
from the Significance Analysis of Microarrays software (SAM 
version 3.02, Stanford University) was used to compare differ-
entially expressed genes in the HAPC and control groups.

qRT-PCR. qRT-PCR was performed on three genes differen-
tially expressed in the microarray and two c-Jun-NH2-terminal 
kinases (JNK). The latter (not included in the microarray) may 
be involved in apoptosis of hemopoietic stem cells (HSCs). 
Total RNA extracted from the second batch of peripheral 
blood samples was used to confirm the microarray data 
by qRT-PCR. After priming with random primers at 65˚C 

Table I. Living habits and clinical data for subjects whose RNA was used for microarray analysis.

Cases	 Age	 Birthplace	 Occupation	 Time on plateau	 Qinghai	 Oxygen	 Hemoglobin
	 (years)	 (province)		  (months)	 CMS scores	 saturation (%)	 (g/dl)

HAPC1	 22	 Hubei	 Cook	 24	 6	 92	 22.5
Control1	 29	 Hubei	 Cook	 24	 4	 92	 18.8
HAPC2	 25	 Sichuan	 Operator	 30	 8	 86	 21.7
Control2	 31	 Sichuan	 Operator	 30	 5	 92	 18.9
HAPC3	 24	 Jilin	 Operator	 12	 9	 90	 22.0
Control3	 20	 Jilin	 Operator	 12	 5	 89	 18.6
HAPC4	 23	 Gansu	 Maintenance worker	 8	 11	 86	 23.9
Control4	 19	 Gansu	 Maintenance worker	 8	 0	 90	 18.1
HAPC5	 27	 Shanxi	 Cook	 12	 6	 84	 21.8
Control5	 32	 Shanxi	 Cook	 12	 5	 92	 18.7
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for 5 min followed by a 1-min incubation on ice, cDNA was 
synthesized from 500  ng total RNA using M-MLV reverse 
transcriptase (ReverTra Ace, Toyobo, Japan), RNase inhibitors 
and a cocktail of dNTPs in a 20 µl reaction volume at 30˚C for 
10 min, followed by incubation at 42˚C for 20 min and 99˚C for 
5 min. The resulting cDNA was amplified by qRT-PCR using 
the Opticon Monitor 3 system according to the manufacturer's 
instructions (MJ Research, USA). Reactions were performed 
in a 25-µl volume with 1 µl of primers and 12.5 µl hot start 
reaction mix SYBR Green (Takara, Dalin, China). The reac-
tions were repeated three times. The PCR conditions were: 
2 min at 95˚C followed by 40 cycles of 15 sec at 95˚C, 15 sec 
at the annealing temperature and 15  sec at 72˚C. The PCR 
primer sequences and the annealing temperatures are listed in 
Table II. Amplification specificity was checked using melting 
curve analysis. Gene expression was normalized against that of 
β-actin.

Detection of Hb, ROS, CLC and EPO. The hemoglobin 
concentration in the blood from the second-batch subjects 
was assessed as described above. The levels of plasma 
Charcot-Leyden crystal protein (CLC), reactive oxygen 
species (ROS) and EPO in the blood of the second 
batch subjects were measured twice using an ELISA 
(Uscn Life Science Inc., Wuhan, China), fluorescence labeling 
(GenMed  Scientifics  Inc., Shanghai, China) and a radioim-
munoassay kit (PuerWeiye Inc., Beijing, China), respectively, 
according to the manufacturer's instructions.

Statistical analysis. Data were expressed as the mean ± SD. 
Student’s t-test was used to calculate the statistical significance 
of unpaired data where appropriate. Statistical significance 
was defined as p<0.05.

Results

Microarray data. After SAM analysis of the microarray data 
obtained from the 5 HAPC patients and 5 matched controls, 9 

differentially expressed genes were identified with a threshold-
fold change >2.0. These genes were used for unsupervised 
hierarchical clustering and the results were analyzed and 
visualized using the TreeView program (Fig. 1). The functions 
of the differentially expressed genes were analyzed using a 
Web-based program, Molecular Annotation System 3.0 (www.
capitalbio.com) and three separate open source pathway 
resources: KEGG, BioCarta and GenMAPP. Table III lists the 
significant pathways associated with hematopoiesis.

Verification of differential expression by qRT-PCR. The 
mRNA expression levels of 3/9 differentially expressed genes 
were assayed. The expression levels of the genes (as detected 
by real-time reverse transcriptase PCR) were consistent with 
the results obtained from the microarrays, although there 
were minor discrepancies (Table IV). Moreover, the expres-
sion level of JNK1 and JNK2 mRNA in HAPC patients was 
significantly lower than that in the controls.

Hb, ROS, CLC and EPO concentrations. As shown in Fig. 2, 
the concentration of hemoglobin in HAPC patients was signif-
icantly higher than that in the matched controls; however, the 
concentration of CLC was markedly lower than that in the 
controls. There was no significant difference in plasma ROS 
and EPO levels between the two groups (Fig. 2).

Discussion

The Affymetrix Human Genome U133  Plus 2.0  microarray 
contains 47,000 transcripts and covers the majority of known 
human genes. In this study, we used whole genome microarray 
analysis to gain a comprehensive understanding of the patho-
genesis of HAPC. This is the first report analyzing global 
gene expression in HAPC patients; 9 differentially expressed 
genes were identified.

CDC42, a Rho GTPase, is associated with HSC 
morphology, adhesion, migration, mobilization and erythro-
poiesis in the bone marrow (16-20). Yang et al observed that 

Table II. Primer sequences and annealing temperatures used for qRT-PCR.

Gene		  Sequence (5'-3')	 Annealing temperature	 Amplicon size
			   (˚C)	 (bp)

Major histocompatibility complex, 	 F	 GCCCTCAACCACCACAACCT	 64	 173
class II, DQ β 1(HLA-DQB1)	 R	 GGAGTCATTTCCAGCATCACCAG		
Farnesyltransferase, CAAX box, 	 F	 AAGAGGCCTTCGACAACTGA	 60	 117
β (FNTB)	 R	 ACTATCTGGGGGATGGGTTC		
Cell division cycle 42 (CDC42)	 F	 ACGACCGCTGAGTTATCCAC	 60	 142
	 R	 CCCAACAAGCAAGAAAGGAG		
JNK1	 F	 TAGGCTCAGGAGCTCAAGGA	 60	 91
	 R	 TGAAATGGTCGGCTTAGCTT		
JNK2	 F	 AGGCGAGGGATCTGAAACTT	 60	 150
	 R	 AATTGGTTTCAGCTGCTGGT		
β-actin	 F	 GACTTAGTTGCGTTACACCCTTTCT	 62 	 159
	 R	 GCTGTCACCTTCACCGTTCC		
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CDC42-/- HSCs enter the active cell cycle, resulting in signifi-
cantly increased numbers of stem/progenitor cells in the bone 
marrow (16). They also found that increased CDC42 activity 
caused a significant reduction in the number of HSCs and 
reduced erythroid blast-forming unit (BFU-E) and erythroid 
colony-forming unit (CFU-E) activity, which are mediated 
by the JNK pathway and induce apoptosis of HSCs (16). 
They therefore hypothesized that CDC42  activity is crucial 
for erythropoiesis and numerous HSC functions. In the 
present study, CDC42, JNK1  and JNK2  mRNA expression 
was significantly lower in HAPC patients than in controls. 
It is therefore possible that a reduction in CDC42 activity in 
HAPC patients may result in an increase in the number of 
BFU-E/‌CFU-E and reduced apoptosis of HSCs. The micro-
array and qRT-PCR data revealed that the expression levels 
of FNTB mRNA in HAPC patients were significantly lower 
than those in controls. CDC42  undergoes post-translational 
modification by FNTB to yield a carboxyl-terminal CAAX 
(where C represents cysteine, A is an aliphatic amino acid 
and X is any amino acid) signaling motif, which promotes 
proper localization to the plasma membrane and is required 
for biological activity (21). Failure of the CAAX modification 
renders CDC42 inactive due to mislocalization (22). Reduced 
FNTB expression in HAPC patients may therefore inactivate 
CDC42, leading to increased erythropoiesis. This indicates 
that decreased expression of CDC42 and defects in carboxyl-
terminal CAAX modifications (mediated by down-regulation 
of FNTB) reduce CDC42  activity, which in turn promotes 
excess erythropoiesis in the bone marrow by affecting HSC 
adhesion, migration, mobilization and (possibly) apoptosis 
mediated by JNK1 and JNK2.

Of the 9 differentially expressed genes identified on the 
microarray, ERAP2, CLC, HLA-DQB1, HLA-DQA1 and 
HLA-DRB4  are involved in immune responses. ERAP2  is 
involved in the formation of HLA class I binding peptides 
(23-26). Suppression of ERAP2 by siRNA reduces the surface 
expression of HLA class I molecules and affects T cell 
presentation of antigenic epitopes (23). Increased expression 
of ERAP2 mRNA in HAPC patients may promote the expres-
sion of HLA class I molecules, which stimulate CD8+ T cells 
to evoke an immune response. Ackerman et al revealed that 
CLC protein interacts with eosinophil lysophospholipase and 
inhibits its lipolytic activity (27). Furthermore, CLC is essen-
tial for the functional of CD25+ Treg cells (28). Lower levels 
of CLC mRNA and protein in HAPC patients indicate an 

altered immune response. Changes in HLA class II molecule 
(HLA-DQB1, HLA-DQA1 and HLA-DRB4) mRNA expres-
sion in HAPC patients indicate that CD4+ T cells are also 
involved in altered immune responses. However, it is unclear 
whether these altered immune responses are the cause or the 
result of HAPC.

Hypoxia is an environmental stressor that affects the auto-
nomic nervous system and endocrine function (29). Several 
studies have shown that the plasma IL-1, IL-6 and IL-8 levels 
are elevated under conditions of hypoxia or exposure to high 
altitudes (30-32), indicating changes in immune function. 
However, Monterio et al showed that intravenous injection of 
CD4+ T cells increased the number of activated CD4+ T cells 
and their secreted hematopoietic regulatory factors in the 
bone marrow of athymic nude mice, improving their anemia 
(33). Alexander et al also showed that T cell-derived cytokines 
have marked effects on hematopoiesis (34).

CYP1B1, a member of the cytochrome P450 superfamily, 
shares activity with monooxygenase, which metabolizes 
various polycyclic aromatic hydrocarbons, aryl amines and 
retinoic acid and steroid hormones (35-37). A study of the 
association between CYP1B1  and peripheral blood lipid 
levels showed that high density lipoprotein (HDL) levels 
were significantly lower in patients expressing high levels 
of CYP1B1  than in those expressing low or medium levels 
(38). Similarly, high CYP1B1 expression in HAPC patients 
correlates with low HDL levels. HDL cholesterol levels are 
a significant factor for determining the lifespan of erythro-

Table IV. mRNA expression in HAPC patients compared with 
that in controls as assessed by microarray analysis and qRT‑PCR.

Gene	 Probe set ID	 Fold change
		  --------------------------------------------------------------
		  Microarray	 qRT-PCR

HLA-DQB1	 209480_at	 5.30	 4.50
FNTB	 225851_at	 0.49	 0.56
CDC42	 208727_s_at	 0.50	 0.70
JNK1	 -	 -	 0.58
JNK2	 -	 -	 0.67

Figure. 1. Clustering display of differentially expressed genes in HAPC 
patients. Comparison of the nine differentially expressed genes was performed 
using SAM software and visualized with TreeView following hierarchical 
clustering. Gene symbols are shown on the right. Expression levels are rep-
resented by a color tag, with red representing the highest levels of expression 
and green the lowest.



JIANG et al:  GENE EXPRESSION PROFILING OF HIGH-ALTITUDE POLYCYTHEMIA292

cytes. High HDL levels cause anemia due to the decreased 
deformability, increased osmotic fragility and reduced 
lifespan of erythrocytes (39). Therefore, we propose that 
decreased CYP1B1 expression in HAPC patients may reduce 
plasma HDL levels which, in turn, results in increased eryth-
rocyte longevity.

Versican is expressed throughout the body and endows 
the extracellular matrix (ECM) with hygroscopic properties, 
creating the loose hydrated matrix necessary to support key 
events in development and disease (40). Numerous cellular 
processes including adhesion, proliferation, apoptosis and 
migration are regulated by versican (41-43). Several functional 
studies have shown that versican increases cell motility and 
proliferation (44-46). Up-regulation of versican expression in 
HAPC patients may increase the pericellular matrix around 
the cells and expansion of the ECM in the bone marrow, 
creating a highly malleable extracellular environment that 
supports HSC proliferation and migration.

The present study found no difference in the plasma levels 
of ROS and EPO between HAPC patients and controls. This 
may be due to the small sample size. A larger epidemiologic 
survey (246  HAPC patients and 716  controls) conducted by 
our research team showed that plasma ROS and EPO levels 
were significantly higher in HAPC patients than in controls 
(data not shown); therefore, we propose that EPO and ROS are 
involved in the pathogenesis of HAPC.

In summary, nine genes were identified as differentially 
expressed in HAPC patients, providing clues to the molecular 
pathogenesis of this condition. Analysis of our array data 

revealed that CDC42 may play a fundamental role in eryth-
ropoiesis in the bone marrow of HAPC patients. However, 
the exact role of CDC42 in HAPC remains unknown. These 
data also reveal a complex relationship between HAPC and 
the immune response, which requires further study.
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