
MOLECULAR MEDICINE REPORTS  5:  299-304,  2012

Abstract. Selenium is an essential biological trace element. 
Adult daily intake of selenium should be approximately 100 µg 
per day. This compound has a two-sided effect depending on 
its concentration. A selenium-deficient diet is associated with 
various endemic diseases, including cardiomuscular malfunc-
tions, osteoarthritis, cancer and viral infections that lead to 
premature death. These defects are prevented when dietary 
intake of selenium is adequate. The preventive biological effect 
of selenium is considered to be due to the antioxidant func-
tion of selenoproteins with a selenocysteine in the active site of 
the catalytic domain. Antioxidant selenoproteins maintain the 
intracellular redox status and, as a result, normal physiological 
processes in the cell. Conversely, an overdose of selenium 
generates oxygen radicals and leads to apoptotic cell death by 
inducing oxidation and cross-linking of protein thiol groups 
essential for cell survival. A lower redox state caused by sele-
nium may be implicated in toxic diseases, such as alkali disease 
and blind staggers. Collectively, selenium seems to have both 
harmful and beneficial attributes. The aim of this review is to 
summarize the various biological functions of selenium and to 
illustrate its opposite roles as a pro-oxidant and an antioxidant.
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1. Introduction

Most essential micronutrients appear to play opposing roles in 
biological processes depending on their concentrations. While 
adequate dietary micronutrient intake is beneficial, deficient or 
excessive intake often leads to biological malfunctions resulting 
in the development of a wide diversity of diseases. Selenium, 
an essential micronutrient, recycles through the food chain and 
its concentration at each stage is basically determined by the 
amount remaining in the soil (1). The geographic distribution of 
selenium varies widely from selenium-deficient to selenium-rich 
regions (2,3). As with most essential micronutrients, selenium 
exhibits various biological functions according to its intake 
concentrations. At adequate concentrations, selenium exists 
as selenocysteine in the catalytic site of antioxidant proteins, 
including glutathione peroxidase and thioredoxin reductase, 
and is involved in the regulation of cellular redox status (4,5). 
However, a deficiency in selenium has been linked to many 
clinical symptoms including Kashin-Beck disease, which is 
characterized by bone and joint degeneration in children (6), 
and Keshan's disease that is known to cause cardiomyopathy 
in humans (1,7). Moreover, it is well known that an excessive 
intake of selenium results in toxic symptoms including alka-
line disease and blind staggers in livestock (8,9). Selenium 
poisoning is thought to result from the generation of oxygen 
radicals that can lead to DNA damage, lipid peroxidation, and 
premature protein degradation inside the cell (10-12). Selenium 
concentrations that prevent deficiency symptoms and are suffi-
cient for exerting beneficial effects are close to those that lead 
to toxicity. Additionally, the safety margin of selenium dosage 
depends on various factors including age, gender, the chemical 
form present in the diet, transport capacity through cellular 
cytoplasmic membranes, efficiency of bioconversion from 
the inorganic to organic forms as well as exposure duration, 
frequency, and route. For these reasons, it is difficult to deter-
mine the exact safety levels of dietary selenium. Collectively, 
selenium seems to have bimodal roles in various biological 
processes. Several questions have been raised about how 
selenium simultaneously exerts beneficial and harmful effects 
under different circumstances. This article briefly discusses 
the diverse dose-dependent biological events associated with 
selenium and summarizes the biochemical roles of selenium 
in the regulation of cellular redox status focusing on the dual 
characteristics of selenium as an antioxidant and a pro-oxidant.
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2. Selenium status and its biological actions

The difference in selenium concentrations in food sources 
depends on its contents in soil. The geographical distribution 
of selenium ranges from selenium-deficient regions in China, 
including areas from the northeast to southwest and southeast 
Siberia (2,3,13,14), to selenium-rich regions in Ireland, Israel, 
northern Australia and the western US (15). Differences in 
selenium dietary intake become serious at the top of the ground 
food chain. The various biological characteristics of selenium 
depending on concentration are shown in Fig. 1.

Selenium dietary intake less than 10 µg/day results in 
white muscle disease (WMD) in lambs and calves, which is 
characterized by white-colored tissues due to calcified skeletal 
and cardiac muscle, and leads to premature death by cardio-
muscular dysfunction (16,17). In humans, a cardiomyopathy 
analogous to WMD, Keshan's diseases, has been reported 
(18,19). This is an endemic disease among people living in the 
volcanic regions of China with selenium-deficient soil, and is 
associated with clinical symptoms, such as heart hyperplasia 
and failure, in children and women of childbearing age. 
Additionally, Kashin-Beck disease manifests as osteoar-
thropathy from epiphyseal degeneration of the arm and leg 
joints with subsequent growth retardation, and occurs in areas 
of China, Tibet, and southern Siberia where selenium intake 
is low among the population (6). Clinical studies have also 
revealed that selenium deficiency is linked to viral diseases 
caused by coxsackie B along with hepatitis B and C, progres-
sion of human immunodeficiency virus (HIV) infection, male 
subfertility, and high risks of developing cancer, depression, 
and cretinism (1,20-24).

Adequate selenium intake, approximately 100 µg daily in 
adult humans (20) which does not exceed 1 mg, greatly reduces 
the rates of death from viruses such as coxsackie, hepatitis, 
and HIV. Moreover, adequate selenium intake reduces the 
incidence of cancer and is important for male reproduction 
(22-24). These preventive and protective effects supposedly 
represent the antioxidant function of selenium-containing 
selenoproteins. Most of the selenoproteins, such as glutathione 
peroxidase (GPx), thioredoxin reductase (TR), and methio-
nine-R-sulfoxide reductase 1 (MsrB1), serve as antioxidants 
(4,5,25). Furthermore, selenium can be used for protection 
against allergen-induced asthmatic inflammation (26) and 
cancer therapy (27). This chemopreventive effect is thought 
to result from the combined actions of the antioxidant func-
tions of selenoproteins and the thiol modification of targeted 
proteins essential for allergen-mediated signaling pathways 
and cancer processing. An additional possible mechanism for 
the anti-carcinogenic effects of selenium is thought to be its 
cytotoxicity and anti-proliferative effects in malignant cells, 
due to oxidative stress resulting from thiol oxidation of cellular 
reductant molecules and oxygen radical production.

Chronic exposure to high doses of dietary selenium in the 
range of milligrams per kilogram causes alkali diseases and 
blinder staggers in livestock that graze in pastures with sele-
nium-rich soil (8,9). Since plants absorb selenium more easily 
when grown in alkali soil, alkali disease frequently occurs in 
livestock that feed on selenium-tolerant plants with high sele-
nium levels ranging from 5 to 50 milligram per kilogram of 
mass. Animals with this disease present abnormal symptoms, 
including hoof malformation, lameness, anemia, and stiff-
ness. Blind staggers is an acute selenium poisoning disease 

Figure 1. Various biological functions of selenium depending on its intake concentrations. Several clinical symptoms caused by selenium deficiency include 
white muscle disease, Keshan's disease (cardiomyopathy), Kashin-Beck disease (osteoarthritis), depression, and cretinism. Selenium at physiological levels 
plays an important role in the cellular redox regulation, existing as selenocysteine at the catalytic site of antioxidant enzymes and inducing intracellular redox 
potential and thiol modification of the targeted proteins such as NF-κB. High levels of selenium often cause selenium toxicity (termed apoptosis), which results 
from the generation of oxygen radicals, mitochondrial dysfunction and DNA damage. Se, selenium; GPx, glutathione peroxidase; TR, thioredoxin reductase; 
GSH, reduced glutathione; Cyt C, cytochrome c. 
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appearing in cows and sheep, and is characterized by altered 
behavior, impaired vision, weight loss, ataxia, and respiratory 
failure. Symptoms of human selenium poisoning include loss 
of hair and nails, tooth decay, dermatitis, and gastroenteritis 
(28-30). Selenium toxicity develops in mammals with a daily 
intake of one milligram of selenium per kilogram of body 
weight, and in cultured cells exposed to micromolar concen-
trations of selenium (31-33). Selenium toxicity is believed to 
be a result of low cellular redox status due to the oxidization 
of protein thiol groups and glutathione, and the generation of 
oxygen radicals. The toxic mechanism underlying oxidative 
damage by selenium is discussed in detail in the following 
section.

3. Selenium-induced thiol oxidation and ROS generation

Selenium is capable of negatively affecting cellular redox status 
by directly oxidizing thiols and indirectly generating reactive 
oxygen species (ROS), leading to a decreased reduction status in 
cells and cellular damage. Selenium reacts with essential thiol 
groups of proteins and cysteine residues of reduced glutathione 
(GSH) to form an intramolecular disulfide bond, a selenitrisul-
fide bond (S-Se-S), and a selenenylsulfide bond (S-Se) (34). This 
can inactivate signaling molecules by oxidizing redox-sensitive 
cysteine residues present within the enzymatic active site of 
the catalytic domain. Selenium-induced oxidation of cysteine 
residues in transcription factors such as NF-κB and AP-1 leads 
to reduced binding affinity of these factors to their target DNA 
sites (26,35,36). Furthermore, other redox-sensitive enzymes 
shown to be targeted for thiol oxidation by selenium include 
caspase-3, Cdk2, protein kinase C, JNK, Na+-K+-dependent 
ATPase, glucocorticoid receptors, prostaglandin D synthase, 
human squalene monooxygenase, and mitochondrial proteins. 

Among these proteins, NF- κB, AP-1, caspase-3, Cdk2, protein 
kinase C and JNK are known to act as redox-dependent signal 
molecules (35,37-46). Therefore, deregulation of target mole-
cules by selenium-induced thiol modification may be involved 
in disrupting various signal transduction pathways that control 
cell survival and apoptosis.

ROS, which are chemically reactive molecules, including 
superoxide anions, hydrogen peroxides, hydroxyl radicals, and 
nitric oxide derivatives, are generated in all aerobic organisms 
through several pathways as summarized in Fig. 2. The super-
oxide anion (O2

•-) is produced intracellularly by transferring 
electrons leaked from the electron transport chain in mito-
chondria and from NADPH cytochrome P450 reductase in the 
endoplasmic reticulum to oxygen, as well as by the action of 
several enzymes including NADPH oxidase, lipooxygenase, 
cyclooxygenase, flavoenzymes (e.g., xanthine oxidase), and 
uncoupled nitric oxide synthase (47). In particular, the super-
oxide anion is also formed endogenously by the reaction of 
selenium compounds such as selenite, selenium dioxide, disel-
enides, and selenocysteine, and with thiols such as reduced 
GSH or L-cysteine (3,11,48). The generation of superoxide 
anions by selenium has been confirmed by treating cells 
with exogenous GSH or selenite; this has also been observed 
by adding isolated mitochondria to selenium-containing 
compounds, including selenite, selenocysteine, selenocysta-
mine, and selenodioxide, to GSH, or to both (10,49,50). The 
superoxide anion is rapidly converted to hydrogen peroxide 
(H2O2) via superoxide dismutase (SOD) followed by the 
conversion of hydrogen peroxide to a highly reactive hydroxyl 
radical (HO•) in the presence of Fe2+ through the Fenton 
reaction. Subsequently, the hydroxyl radical reacts with NO• 
to yield the more reactive species NO2

• and HO• through an 
ONOO- intermediate.

Figure 2. Generation of intracellular oxygen radicals and oxidant scavenging processes. Superoxide anions are produced by many oxidant-generating proteins 
and mitochondria, and by the reaction of selenium with reduced glutathione (GSH). These are converted into less toxic or non-toxic molecules through the 
enzymatic activities of antioxidant proteins. A detailed description of these processes is provided in the main text. *Selenium-containing selenoprotein. GPx, 
glutathione peroxidase; TR, thioredoxin reductase; Trx, thioredoxin; SOD, superoxide dismutases; CAT, catalase; GSSG, oxidized glutathione. 
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Collectively, selenium induces a redox shift toward more 
oxidizing environments as follows: (i) selenium directly 
reacts with essential thiols, resulting in thiol oxidation, 
(ii) serial reductive reactions of selenium with GSH produce 
superoxide anions after which the superoxide anions 
generate additional reactive molecules (H2O2, HO•, HO-, 
ONOO-, NO2

•, and HO•) via subsequent reactions, such as 
dismutation and Fenton reaction, and (iii) subsequent reac-
tion of selenium with GSH results in GSH depletion from the 
export of cellular oxidized GSSG via a transporter. A more 
oxidizing environment produced by selenium can damage 
most biomolecules, DNA, proteins, and lipids, thus inducing 
cellular cytotoxicity.

4. Selenium-induced apoptosis

Numerous studies have suggested that selenium might be a 
preventive and effective anticancer agent for several human 
cancer cells including those of the prostate, colon, mammary, 
bladder, lung, liver, ovarian, oral, and blood or bone marrow 
(51-53). Selenium induces both ROS generation and oxida-
tion, and cross-linking of protein cysteine residues, resulting 
in impaired protein function and apoptotic cell death. This 
element also inhibits cancer cell growth and induces cancer cell 
apoptosis in vitro at molar concentrations known to be toxic. 
Programmed cell death is marked by cellular morphological 
changes, including membrane blebbing, nuclear breakdown, 
chromatin condensation, and formation of apoptotic bodies 
that are readily eliminated by phagocytosis. This process also 
initiates activation of caspases, a cystinyl aspartate-specific 
protease that is stimulated in the process of mitochondrial-
dependent or -independent apoptosis, and internucleosomal 
DNA fragmentation (54). 

In most cases, apoptosis induced by selenium is associated 
with typical features commonly observed in cells undergoing 
this process. Selenium-induced apoptosis in vascular endo-
thelial cells, leukemia HL-60 cells, prostate DU-145 cancer 
cells, and murine monocytic RAW264.7 cells activates 
caspase enzymes (53,55-57). DNA fragmentation during the 
selenium-induced apoptotic process has been reported in 
various human cancer cell lines including HT29 and SW480 
(colonic carcinoma), HepG2 (hepatic carcinoma), A172 and 
T98G (glioma), and HL-60 (leukemia), as well as the murine 
monocytic RAW264.7 cell line (57-61). Cells undergoing 
apoptosis due to selenium occasionally show characteristics 
of the mitochondrial-mediated apoptotic pathway, such as 
oxidative damage of mitochondrial protein thiol groups, 
a decrease in mitochondrial membrane potential, and 
mitochondrial release of cytochrome c, that can stimulate 
caspases (49,50). Cyclosporine A, an immunosuppressive 
mitochondrial membrane permeability transition inhibitor, 
blocks mitochondrial swelling, and dithiothreitol restored 
the aggregation between intra- and inter-proteins by cross-
linking mitochondrial protein thiol groups and mitochondrial 
swelling, implying that selenium-induced oxidative stress is 
involved in mitochondrial dysfunction (62). In summary, sele-
nium-induced apoptosis is accompanied by ROS generation, 
oxidation of thiol groups in mitochondrial proteins, changes 
in mitochondrial membrane potential, cytochrome c release, 
caspase activation, and DNA fragmentation.

5. Biological functions of selenium-containing antioxidant 
proteins

Normal cellular oxygen metabolism in aerobic organisms 
leads to the generation of ROS. The disruption of intracellular 
redox equilibrium results in a state of oxidative stress that 
can easily damage biologically significant macromolecules. 
In order to scavenge harmful ROS, aerobic organisms have 
a wide variety of antioxidant enzymes to protect cells from 
oxidative stress. Among these, selenoproteins are primarily 
implicated in maintaining redox homeostasis and reversing 
apoptotic cell death induced by oxidative stressors, indicating 
that selenoproteins may act as a safeguard against oxidant-
induced toxicity in cells.

Based on bioinformatic data, it has recently been reported 
that there are 25 selenoproteins in humans and 24 in rodents 
(63). Selenium is incorporated into these proteins as the 
21st amino acid selenocysteine encoded by a UGA codon 
normally recognized as a stop codon within the mRNA open 
reading frame. Selenoproteins with known functions include 
the antioxidants glutathione peroxidase (GPx), thioredoxin 
reductase (TR), and methionine-R-sulfoxide reductase 1 
(MsrB1). These antioxidant selenoproteins serve as central 
components for the regulation of cellular redox status by 
maintaining cysteine residues of redox-sensitive proteins in 
the reduced state and promoting normal cellular functions. 
GPx catalyzes the reduction of hydrogen peroxide to water 
by glutathione (4). TR, with a selenocysteine residue in the 
conserved C-terminal sequence glycine-cysteine-seleno-
cysteine-glycine, is known to reduce thioredoxin by using 
NADPH and as a result maintains the reduced state of intra 
cellular proteins (5,64).

MsrB1, in which the active site contains a selenocysteine, 
contributes to the reduction of methionine sulfoxides in many 
proteins (25). Together, these enzymes help rescue oxidatively-
damaged proteins and perform housekeeping redox functions 
that allow cells to maintain a favorable intracellular redox 
status.

6. Conclusions

Although it is difficult to determine the difference between 
beneficial and toxic selenium levels, the current recommended 
daily intake of selenium to maintain normal cellular functions 
in adult humans is approximately 100 µg. Selenium can induce 
both beneficial and harmful cellular responses, and serves as 
both an oxidant and antioxidant. A severely selenium-deficient 
diet leads to oxidative stress due to decreased levels of anti-
oxidant selenoproteins such as GPx, TR, and MsrB1. On the 
other hand, excessive dietary intake of selenium induces a 
redox shift towards a more oxidizing cellular environment by 
directly oxidizing and cross-linking protein thiol groups and 
indirectly generating oxygen radicals, resulting in apoptotic 
cell death.

Selenium cytotoxicity is now believed to be caused by 
oxidative stress. The dual functions of selenium essential for 
its beneficial antioxidant and toxic pro-oxidant properties 
make this element useful for decreasing the incidences of 
selenium-deficiency disorders as well as therapies for treating 
and preventing cancer.
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