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Abstract. Metabolic syndrome (MS) includes the presence 
of arterial hypertension, insulin resistance, dyslipidemia, 
cardiovascular disease (CVD) and abdominal obesity, which 
is associated with a chronic inflammatory response, charac-
terized by abnormal adipokine production, and the activation 
of certain pro-inflammatory signaling pathways. Furthermore, 
the changes presented by the adipose tissue in MS favors the 
secretion of several molecular mediators capable of activating 
or suppressing a number of transcription factors, such as the 
peroxisome proliferator-activated receptors (PPARs), whose 
main functions include storage regulation and fatty acid 
catabolization. When they are activated by their ligands (synt-
hetic or endogenous), they control several genes involved in 
intermediate metabolism, which make them, together with the 
PPAR gamma coactivator-1-α (PGC-1) and the silent informa-
tion regulator T1 (SIRT1), good targets for treating metabolic 
diseases and their cardiovascular complications.
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1. Introduction

The regulation of lipid and carbohydrate metabolism is of vital 
importance for homeostasis, involving the organization and 
appropriate response to environmental variables, such as food 
intake, stress, physical activities and temperature (1,2). In addi-
tion, to achieve this goal, there are several levels of metabolic 
controls, all of which require the involvement of numerous 
metabolic mediators, hormones, growth factors and ultimately 
transcription factors (3). Moreover, metabolic syndrome is a 
condition that consists of a large number of symptoms that 
affect the metabolism (4,5).

Metabolic syndrome apperars to have three potential 
etiological categories: obesity and disorders of adipose tissue, 
insulin resistance and a constellation of independent factors 
(molecules of hepatic, vascular and immunologic origin) that 
mediate specific components of the metabolic syndrome (6). 

With respect to disorders of adipose tissue, adipocytes 
are a critical component of metabolic control and endocrine 
organs that have both positive and negative effects (7). 

Obesity is associated with a chronic inflammatory 
response, characterized by abnormal adipokine production, 
and the activation of certain pro-inflammatory signalling 
pathways, resulting in the induction of several biological 
inflammation markers (8). The main physical consequence of 
obesity is atherosclerosis and CVD (9). Furthermore, obesity 
is accompanied by other medical complications; these include 
fatty liver, cholesterol gallstones, sleep apnea, osteoarthritis, 
and polycystic ovary disease (10).

Inflammation is receiving an increasing amount of attention 
for its potential role in the pathogenesis of a variety of disorders, 
from insulin resistance and type 2 diabetes mellitus (DM2) to 
fatty liver and CVD (11). The changes presented by adipose 
tissue in MS favor the secretion of several molecular mediators 
capable of activating, or suppressing, numerous transcription 
factors, such as peroxisome proliferator-activated receptors 
(PPARs) (12,13).

Expressed in three isoforms (α, δ and γ), PPARs are nuclear 
hormone receptors, structurally similar to steroid hormone 
receptors  (14,15). Upon activation by a ligand, including 
endogenous fatty acids and fatty acid derivatives, the receptor 
forms a heterodimer with members of the retinoid X receptor 
(RXR) family and may act as a transcription factor (16). The 
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activation of PPAR pathways has a favorable effect on lipid 
synthesis and oxidation, glucose uptake, inflammation and the 
expression of immunoregulatory genes (17,18).

This review presents the principal molecular aspects of 
the role of PPARs in adipose tissue inflammation in MS and 
future therapeutics based on novel molecular pathways.

2. Adipose tissue in metabolic syndrome

The MS is characterized by a multiplex risk factor that arises 
from insulin resistance accompanying abnormal adipose depo-
sition and function (19). Patients with MS present with high 
blood pressure, a large waist circumference and high levels of 
plasma triglycerides with an increased risk of developing DM2 
and CVD (20,21). Physiopathological changes encountered in 
MS are varied, including insulin resistance, dyslipemia and 
obesity  (22,23). Any metabolic changes related to obesity may 
be attributed to the increased intra-abdominal fat mass, and 
are independent of the total mass of the body (24).

Hypotheses have altered from the theory that adipose 
tissue is used solely as a storage site for energy, to the theory 
that adipose tissue has an active role in energy homeostasis 
and various other processes (25,26). The functional failure 
of adipose tissue occurs due to alterations in the delivery of 
systemic energy, the impaired consumption of glucose and the 
activation of self-regulatory mechanisms which extend their 
influence to the body's entire homeostasis system, with elevated 
levels of adipokine secretion and vascular effects (27,28). The 
progression of obesity is accompanied by chronic inflam-
mation which involves innate and acquired immunity (29). 
Inflammation is a key process which underlies a variety of 
metabolic diseases and is often found in obese patients (30). 
Studies have shown that when mice are provided with a high-
fat diet, their weight gain correlates with the induction of 
adipose tissue inflammatory pathways (31).

The production of proinflammatory molecules [interleukin 
(IL)-6, tumor necrosis factor-α (TNF-α), plasminogen acti-
vator inhibitor (PAI)-1, angiotensinogen, complement factor 3 
(C3), tissue factor and other inflammatory cytokines] in the 
adipose tissue during obesity contributes to a low degree of 
systemic inflammation, which is observed in a variety of 
chronic diseases associated with MS (Fig. 1) (31-33). Resistin 
and TNF-α, are adipokines associated with insulin resis-
tance in the skeletal muscle (34,35). Furthermore, increasing 
adiposity and insulin resistance may interact, thus raising the 
levels of C-reactive protein (36).

The association between insulin resistance, chronic 
inflammation, hypertension, endothelial dysfunction and 
dyslipidemia may be due to the activation of NF-κB (37). 
TNF-α is elevated in the adipose tissues of obese rodents 
and humans and is implicated in the induction of atherogenic 
adipokines, such as PAI-1 and IL-6, as well as the inhibition 
of the anti-atherogenic adipokine, adiponectin  (38). Even, 
obese individuals (with hyperinsulinemia) expresses 2.5-fold 
more TNF-α mRNA in fat tissue compared with normal 
controls (39). The transcription factor NF-κB and the TNF-α 
gene promoter have been activated by hypoxia in adipocytes 
and fibroblasts. In turn, NF-κB signaling represses E2F 
transcription factors, therefore inhibiting adipogenesis and 
maintaining a chronic inflammatory condition (40). 

3. Molecular interaction and gene expression in adipose 
tissue

In order to reduce the risk factors of obesity, patients are 
required to alter their lifestyle and food habits (41). Factors 
dependant upon transcription factors, which are able to 
change the levels of relevant gene expression by adapting to 
signals from the surrounding environment are used to regulate 
MS (42,43). Observations regarding alterations in gene expres-
sion found in adipose tissue have led to the theory that the 
modification of carbohydrates may affect the risk to the patient 
of CVD and DM2 (44). 

A series of transcription factors, the majority of which are 
PPARs, regulate the maturation of adipocytes and hundreds of 
other proteins that participate in the metabolism and storage of 
lipids (45). In adipose tissues, chronic inflammation is evident 
from the differential expression of genes involved in inflam-
matory responses and natural immunity (46).

PPARs are connected to the nuclear membrane, and their 
main function is storage regulation and the catabolization of 
fatty acids (47), when activated by their ligands (synthetic or 
endogenous), PPARs control several genes which are involved 
in intermediate metabolism (48). To date, three isoforms have 
been identified: PPAR-α, PPAR-β/δ and PPAR-γ (49). Each 
PPAR forms a heterodimer with RXR. This heterodimer joins 
the PPAR response elements (PPREs), which regulate target 
gene domains. The activation of PPARs by an appropriate 
ligand results in the recruitment of co-activators and the loss 
of co-repressors that remodel chromatin and activate tran-
scription (50).

A major target for PPAR-γ agonists are adipocytes (51). 
PPAR-γ is crucial in adipogenesis, as it acts as a regulator of 
the differentiation and function of adipocytes and the absorp-
tion of stored fatty acids (52-54). However, PPAR-γ is also a 
key regulator of inflammatory and immune responses (55).

The activation of PPAR-γ does not affect the expression of 
M1 or M2 markers in resting macrophages, which indicates that 
only native monocytes may be stimulated by PPAR-γ activators 
to a M2 phenotype (56). Furthermore, PPAR-γ transcriptional 
signaling is required for the maturation of the anti-inflammatory 
M2 phenotype, whereas PPAR-β/δ controls the expression of 
alternative phenotypes in the Kupffer cells of obese mice (57).

Figure 1. Inflammation as a link between adipose tissue and metabolic syn-
drome. TNF-α, tumor necrosis factor-α; IL, interleukin.
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Dominant mutations may cause a loss of function of 
PPAR-γ, which in turn leads to an increase in insulin resis-
tance and the early onset of severe hypertension (58,59). The 
loss of PPAR-γ function in immune cells reduces the ability of 
abscisic acid to increase insulin sensitivity by suppressing the 
expression of MCP-1 and the infiltration of macrophages into 
white adipose tissue (60).

Furthermore, PPAR-α belongs to a subfamily of nuclear 
receptors which control the expression of proteins and 
enzymes that participate in inflammation and metabolism (48). 
Therefore, the activation of PPAR-α prevents inflammation in 
adipose tissue and the dual activation of PPAR-α and PPAR-γ 
enhances the action of adiponectin by increasing the adipo-
nectin and adiponectin receptors, which may result in the 
amelioration of obesity-induced insulin resistance (61).

Contrary to PPAR-α and PPAR-γ, PPAR-β/δ is expressed 
ubiquitously, yet its pharmacology is understood less compared 
with other subtypes. PPAR-β/δ knockout mice demonstrate an 
obese phenotype when administered with a high-fat diet (62).

4. Future therapeutics based on novel molecular pathways

PPARs are potential targets for the treatment of metabolic 
diseases and their cardiovascular complications. PPARs 
regulate gene expression by binding with RXR as a heterodi-
meric partner to specific DNA sequences and modulating 
other transcription factor pathways in an independent 
manner (Fig. 2) (63,64).

Although, PPAR-γ is widely expressed in tissues, it is 
highly concentrated in adipose tissue. PPAR-γ is essen-
tial for the differentiation of adipocytes and promotes the 
accumulation of lipids in adipocytes  (65). Furthermore, 
adipocyte-specific knockout mice for PPAR-γ demonstrated 
adipocytic hypocellularity, developing only hepatic insulin 
resistance. Anti-diabetic thiazolidinediones (TZDs) suppress 
insulin resistance in adipose tissue, but also affect the liver and 
muscles, despite exhibiting low concentrations of PPAR-γ in 
these tissues. There are two well-identified PPAR-γ isoforms 
which are derived from the same gene due to the use of 
alternative promoters. PPAR-γ2 is expressed specifically in 
adipose tissue, and differs from PPAR-γ1 by the presence of 
30 additional amino acids in the N-terminal region. PPAR-γ 
is not only involved in the metabolism of lipids and carbohy-
drates, but also in inflammation (66,67) and is key in neoplasic 
growth (68,69). 

Studies regarding genetic expression have revealed that 
insulin sensibilizing TZDs alter the expression of genes 
involved in recapturing lipids, lipid metabolism and in the 
action of insulin in adipocytes (70). This leads to an increased 
accumulation of lipids in the adipose tissue and a decrease in 
the release of free fatty acids. The effect on lipid metabolism 
by TZDs is greater than that of adipokine secretion, thus, 
they reduce the secretion of inflammatory cytokines  (71) 
and chemokines which promote insulin resistance, such as 
TNF-α (72). This action occurs in adipocytes and associated 
macrophages. Other adipokines are over-regulated, particularly 
adiponectin (73), which is known to be a potential sensitizer of 
insulin for the liver and skeletal muscle. These insulin sensi-
bilizing effects on the skeletal muscle and liver are controlled 
by alterations in the gene expression of adipokines due to the 

activation of the PPAR-γ receptor. Furthermore, the activation 
of PPAR-γ increases the expression and translocation towards 
the cell surface of glucose transporters GLUT 1 and 4 (74). 
This also increases the capture of hepatic and muscular 
glucose, thereby lowering glucose plasma levels. PPAR-γ 
agonists restore sensibility to insulin, lowering the expression 
of TNF-α and increasing the expression of adiponectin (52). 

An ideal dual PPAR-α/γ agonist would provide glycemic 
control and enhance the lipid profile with well-tolerated thera-
peutic doses (75).

PPAR-α agonists have been proven to lower the produc-
tion of certain inflammatory cytokines (76), such as TNF-α, 
in a dependent mechanism, involving NF-κB and AP-1 (77). 
Furthermore, the PPAR-α WY14643 agonist may directly 
increase the expression of adiponectin expression and it may 
also exert anti-diabetic, anti-atherosclerotic and anti-inflam-
matory effects. PPAR-α is the molecular target for fibrate-type 
hypolipemiant agents, such as fenofibrate and gemfibrozil. 
PPAR-α is highly expressed in the liver and the activation 
results in an increase of hepatic recapture and oxidation (12). 
During fasting, PPAR-α knockout mice present with hypo-
glycemia, hypoketonemia, hypertriglyceridemia and hepatic 
steatosis (12,78,79).

The treatment of DM2 patients with metformin reduces the 
production of hepatic glucose, by lowering gluconeogenesis. It 
has been suggested that metformin exerts its action by using 
incretins, which raises the levels of glucagon-like peptide-1 
(GLP-1) (80) and those receptors for incretins in pancreatic 
β-cells by mechanisms that are both independent and depen-
dent upon PPAR-α (81).

PPAR-α activators are used for the treatment of dyslip-
idemia. They lower the plasma levels of triglycerides and 
increase the plasma levels of HDL-c. These effects take place 
due to an increase in the production of the major component of 
HDL-c, apolipoprotein AI (82) and AII (83).

Figure 2. Participation of transcription factors in metabolic syndrome. 
PPARs, peroxisome proliferator-activated receptors; SIRT1, silent infor-
mation regulator T1; PGC-1, peroxisome proliferator-activated receptor-γ 
coactivator-1-α; RXR, retinoic X receptor.
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Lipid peroxidation and its subsequent production of 
4-hydroxynonenal (4-HNE) in β-cells have been described 
as triggers of insulin secretion by a mechanism dependent 
on PPAR-β/δ as an antagonist of this nuclear factor, thereby 
blocking its effect  (84). Research has demonstrated that 
PPAR-β/δ has a protective function in metabolic diseases that 
presents with chronic inflammatory conditions (85). 

Treatment with PPAR-β/δ agonist, L-165041, decreases 
IL-1, IL-6 and TNF-α levels in mice with streptozotocin-
induced diabetes (86). It was also demonstrated that PPAR-β/δ 
agonists may prevent renal alterations for the same type of 
diabetes. As far as the latter aspect, the PPAR-β/δ agonist 
GW0742, reduces the excretion of albumin, the infiltration 
of macrophages and the accumulation of type VI collagen 
amongst other effects that help to heal renal alterations related 
to diabetes (87).

Animals that are administered a high-fat diet develop 
metabolic alterations, such as glycemia, muscle glucose 
storage, alterations in the enzymes involved in carbohydrate 
metabolism and fat accumulation in the liver. All these 
alterations are reversible by treatment with NNC61-5920, a 
PPAR-β/δ agonist (88). The same agonist, causes a differen-
tial response in the treatment of metabolic alterations related 
to MS and diabetes. This evidence demonstrates that PPAR 
agonists may have outstanding metabolic effects, yet this is 
not always optimal, as the response to treatment may be too 
dependent on the etiology of the base. In this sense, an associa-
tion has been made amongst brain-vascular accidents, weight 
gain and carcinogenesis along with other unwanted effects of 
the treatment with PPAR agonists (89).

5. Other targets

Peroxisome proliferator-activated receptor γ coactivator-1-α 
PGC-1. PPARs are important in regulating metabolism, 
there are molecules which may exert a co-stimulatory or 
co-repressor effect on the activity of these nuclear receptors, 
such as PGC-1α. This metabolic regulatory molecule was 
first described in 1998, as a key molecule in the regulation 
of the thermogenesis of brown adipose tissue (90,91). Various 
regulatory mechanisms have been described, which not only 
involves PPAR receptors, but also estrogen-related receptors 
(ERRs), thyroid hormone receptors, glucocorticoid receptors 
and non-nuclear receptors, such as myocyte enhancer factor-2 
(MEF-2), among others. By modulating all these nuclear 
and non-nuclear receptors, PGC-1 is capable of regulating 
energy metabolism (92). A number of mechanisms have been 
described in which PGC-1 participates and regulates, and acts 
as a therapeutic target for cancer (93), DM2 (94) and heart 
failure (95). It has been hypothesized that PGC-1 is capable of 
inhibiting proinflammatory cytokine production through the 
inhibition of NF-κB, by inhibiting the phosphorylation of the 
p65 subunit (96).

Silent information regulator T1 (SIRT1). SIRT1 was the first 
gene of the sirtuin genes to be located, which is also capable 
of metabolism regulation and has been proposed as a new 
therapeutic target in metabolic diseases (97) and aging (98). 
Sirtuins are a class of enzymes, NAD-dependent histone 
deacetylases, found in prokaryotic and eukaryotic cells, which 

affect the regulation of cellular metabolism and the expres-
sion of certain genes. It is a cellular regulator of the balance 
between NADH and NAD+. SIRT1 has been postulated as a 
sensor which is connected to metabolic homeostasis (99), and 
directly regulates the activity of the acetyl-CoA synthetases 
through deacetylation (100). Furthermore, SIRT1 may directly 
interact with PGC-1 (101), suggesting that SIRT1 is capable of 
regulating the transcriptional activity of PGC-1 and thereby 
regulating the energy balance and metabolism (92).

6. Conclusion

MS represents a clustering of cardiometabolic risk factors that 
are considered to be a direct consequence of overnutrition, 
sedentary lifestyles and the resultant obesity. Inflammation is 
receiving increased attention for its potential role in the patho-
genesis of a range of disorders from insulin resistance and 
DM2 to fatty liver and CVD, the unexpected overlap between 
inflammatory and metabolic sensors and their downstream 
tissue responses indicates that inflammation plays a crucial 
role in the numerous complications of obesity.

The ability of PPARs to serve as master regulators of 
various metabolic processes, including lipid, glucose and 
energy homeostasis, inflammation and cardiovascular events, 
has made them the ideal target for the development of new 
pharmacological tools by which to treat individual risk 
factors. However, as TZDs and fibrates only have an impact 
on individual components of MS, they exhibit undesirable side 
effects, particularly with the use of TZDs, and are ineffective 
against CVD.

Further studies are required in order to approach the role 
of the innate immune system in maintaining obesity, and the 
teleological reasons for obesity-dependent inflammation.
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