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Abstract. Glycogen synthase kinase‑3 (GSK‑3) is a pleiotropic 
serine/threonine protein kinase found in almost all eukaryotes. 
It is structurally highly conserved and has been identified as 
a multifaceted enzyme affecting a wide range of biological 
functions, including gene expression and cellular processes. 
There are two closely related isoforms of GSK‑3; GSK‑3α and 
GSK‑3β. The latter appears to play crucial roles in regulating 
the pathogenesis of diverse diseases, including neurodegenera-
tive disease. The present review focuses on the involvement of 
this protein in Parkinson's disease (PD), a common neurode-
generative disorder characterized by the gradually progressive 
and selective loss of dopaminergic neurons, and by intracellular 
inclusions known as Lewy bodies (LBs) expressed in surviving 
neurons of the substantia nigra (SN). GSK‑3β is involved in 
multiple signaling pathways and has several phosphorylation 
targets. Numerous apoptotic conditions can be facilitated by the 
GSK‑3β signaling pathways. Studies have shown that GSK‑3β 
inhibition protects the dopaminergic neurons from various 
stress‑induced injuries, indicating the involvement of GSK‑3β 
in PD pathogenesis. However, the underlying mechanisms of 
the protective effect of GSK‑3β inhibition on dopaminergic 
neurons in PD is not completely understood. Multiple patho-
logical events have been recognized to be responsible for the 
loss of dopaminergic neurons in PD, including mitochondrial 

dysfunction, oxidative stress, protein aggregation and neuro-
inflammation. The present review stresses the regulatory roles 
of GSK‑3β in these events and in dopaminergic neuron degen-
eration, in an attempt to gain an improved understanding of 
the underlying mechanisms and to provide a potential effec-
tive therapeutic target for PD.
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1. Introduction

Parkinson's disease (PD) is a common neurodegenerative 
disorder characterized by the gradually progressive and 
selective loss of dopaminergic neurons and by intracel-
lular inclusions known as Lewy bodies (LBs) expressed 
in the surviving neurons of the substantia nigra (SN)  (1). 
The progressive loss of dopaminergic neurons is a complex 
process, and multiple pathological events, including oxidative 
stress, mitochondrial dysfunction, protein aggregation and 
neuroinflammation, are indicated in PD pathogenesis (2,3). 
Substantial evidence indicates that mitochondrial dysfunction 
induced by diverse stress conditions plays a crucial role in the 
pathogenesis of PD (4,5). A central event in the mitochondrial 
cell death pathway is the formation of a mitochondrial perme-
ability transition pore (mPTP). The production of reactive 
oxygen species (ROS) triggered by complex I inhibition are 
believed to be key inducers of mPTP formation (6). Complex I 
deficiency has been shown to contribute to the dopaminergic 
cell death in idiopathic PD patients (7,8). The administration 
of 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine (MPTP) 
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and rotenone, well‑known inhibitors of complex I, induce PD 
syndrome characterized by the loss of SN neurons in animal 
models (9‑11), supporting the involvement of mitochondrial 
dysfunction in the pathogenesis of PD. Decreased complex I 
activity in the mitochondrial respiratory chain leads to exces-
sive ROS production, which contributes to the oxidative 
damage of cellular macromolecules and the activation of mPTP, 
ultimately leading to cell death (12,13). Neuroinflammation has 
increasingly been recognized as a pathological contributor to 
neurodegenerative diseases (14‑16), and particularly as a key 
promoter to the chronic loss of nigral dopaminergic neurons in 
PD (17). Postmortem studies revealed activated microglia and 
accumulation of inflammatory mediators expressed in the SN 
of PD patients and animal models (16,18,19). Inhibition of the 
inflammatory response promotes dopaminergic neuron survival 
in various PD models (20‑22), confirming the indicated action 
of the inflammatory response in neurodegenerative diseases. 
Several studies have revealed that the inhibition of GSK‑3β 
reduces dopaminergic neuron injury induced by MPTP toxicity, 
indicating the association of GSK‑3β with the pathogenesis of 
PD (23,24). GSK‑3β is a central point in a number of signaling 
pathways in the pathogenesis of this neurodegenerative disease, 
affecting multiple pathological events involved in dopaminergic 
neuron degeneration, thus providing a potential target in the 
therapeutic management by blocking the pathogenic pathways 
involved in PD pathogenesis.

2. Properties of GSK‑3

GSK‑3 is a serine/threonine (Ser/Thr) protein kinase 
expressed in the cytosol, nucleus and mitochondria of all 
eukaryotic cells. There are two major GSK‑3 protein isoforms 
(GSK3α and GSK3β) encoded by two highly homologous 
genes, gsk‑3α and gsk‑3β (25). This enzyme was originally 
identified as a regulator of glycogen synthase (26). However, 
GSK‑3 has been recognized as a pleiotropic enzyme, affecting 
numerous biological functions including gene expression and 
cellular processes such as cell proliferation, differentiation 
and apoptosis (27,28). GSK‑3 phosphorylates and regulates 
>50  substrates, which allows this enzyme to modulate a 
wide range of biological functions (27,28). Dysregulation of 
GSK‑3 is implicated in diverse diseases, including diabetes, 
ischemia/reperfusion injury, bipolar disorder, cancer and 
neurodegenerative disease (27,29‑32). GSK‑3β is a point of 
convergence for multiple signaling pathways and thus plays a 
crucial role in regulating the pathogenesis of diverse diseases. 
Its activity and functions are controlled by phosphorylation at 
specific sites. Phosphorylation at Ser9 of GSK‑3β markedly 
inhibits its activity (33), whereas phosphorylation at Tyr216 
increases its activity. The inactivation of GSK‑3β is mainly 
targeted by the Akt signaling pathway by the phosphoryla-
tion of Ser9 of this enzyme. GSK‑3β is mainly localized in 
the cytosol, but lower amounts are expressed in the nucleus 
and mitochondria (34‑37), and its regulatory role in the mito-
chondrial cell death pathway has been elicited by a variety 
of stress conditions shown in neuronal cells (38‑43). GSK‑3β 
facilitates numerous apoptotic conditions involved in PD 
pathogenesis, including mitochondrial dysfunction, oxidative 
stress, protein aggregation and the inflammatory response, 
by modulating diverse signaling pathways (Fig. 1) (23,24,42). 

Inhibition of GSK‑3β is indicated in the suppression of a 
number of pathogenic events in PD, thus promoting dopami-
nergic neuronal survival (23,24,44,45).

3. Regulation of GSK‑3β in mitochondrial complex  I 
activity and ROS formation

In eukaryotic cells, mitochondria are key organelles providing 
essential energy for cell metabolism through adenosine 
triphosphate (ATP) generation. Complex  I is a protein 
component of the electron transport chain located in the 
inner part of the mitochondrial membrane and functioning as 
the effective enzyme of the oxidative phosphorylation system 
responsible for the generation of cellular ATP. Mitochondrial 
complex I is the main site of ROS formation as it transfers 
single electrons to oxygen, thus generating O2

‑ and subse-
quently H2O2  (46,47). Inhibition of complex  I leads to a 
decrease in ATP levels and excessive production of ROS, the 
central events of mitochondrial dysfunction that have been 
indicated in PD pathogenesis (48). The first evidence for the 
involvement of complex I inhibition in PD was the recogni-
tion that MPTP caused a severe and irreversible parkinsonian 
syndrome in drug abusers (49). MPTP is a lipophilic molecule 
and can rapidly cross the blood‑brain barrier. Once it crosses 
the barrier, it is oxidized in the brain to its toxic metabolite 
1‑methyl‑4‑phenylpyridinium (MPP+) by type B monoamine 
oxidase (50). MPP+ is then taken up by dopaminergic neurons 
via a dopamine transporter and accumulates in the mitochon-
dria where it causes excessive ROS formation by inhibiting 
respiration complex I (51), finally leading to dopaminergic 
neuron death. Mitochondrial complex I inhibition has also 
been reported in the SN, platelets and skeletal muscle of idio-
pathic PD patients (7,8,52). Complex I is generally known 
to be the primary source of mitochondrial ROS  (53‑55). 
Inhibition of mitochondrial complex I elicited by neurotoxins 
MPP+ and rotenone, well‑established dopaminergic cell death 
inducers in PD, have been shown to increase the production 
of ROS (5,56). GSK‑3β has been shown to be located into 
the mitochondria, where it is highly activated compared 
with the cytosolic form (36). Although the significance of 
the presence of GSK‑3β in the mitochondria remains poorly 
understood, its involvement in mitochondrial dysfunction has 
been reported (57,58). GSK‑3β can regulate cell survival and 
apoptosis by controlling mitochondrial complex I activity 
and ROS production (43). GSK‑3β regulates oxidative phos-
phorylation by inhibiting NADH (complex I), which is the 
main site of ROS formation, whereas this enzyme is impli-
cated in homeostatic redox equilibrium (43). Previous studies 
have shown that mitochondrial toxins, including rotenone 
and MPTP treatments, increase GSK3β activity. Inhibition of 
GSK‑3β protects dopaminergic neurons from the toxicity of 
rotenone and MPTP, indicating the involvement of GSK‑3β 
in the complex I inhibition‑induced cell death pathway in 
PD (23). Studies in the MPTP model of PD also demonstrate 
that mitochondrial GSK‑3β significantly promotes ROS 
production by further inhibiting complex I, and that this can 
be reversed by GSK‑3β inhibitors (43). Similar studies have 
indicated that GSK‑3β inhibition promotes mitochondrial 
biogenesis and prevents ROS production during ischemic 
cerebral damage (59). Although the mechanism underlying 
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the contribution of GSK‑3β to the mitochondrial complex I 
inhibition remains unclear, these reports clearly indicate that 
GSK‑3β inhibition contributes to cell survival induced by 
mitochondrial complex I inhibition and ROS formation.

4. GSK‑3β and mitochondrial intrinsic apoptosis pathway

Mitochondria are integrated in diverse signaling pathways 
linked to multiple cell processes, including apoptosis. The 
major property for mitochondria is the maintenance of 
its membrane potential and the low‑conductance state of 
the mitochondrial permeability transition pore (mPTP) 
in living cells. mPTP activation is a central event in 
mitochondria‑mediated intrinsic cell apoptosis, which has 
been implicated in the pathogenesis of PD and several other 
neurodegenerative disorders (60‑62). The mPTP pathway of 
cell death is mediated by the disruption of the mitochondrial 
membrane and the release of apoptogenic molecules, which 
can be regulated by GSK‑3β signaling pathways through 
modulating the opening of the mPTP (63,64). Studies have 
shown that GSK‑3β inactivation protects cardiac cells 
from ischemia/reperfusion injury through the inhibition 
of the mPTP opening, indicating its regulatory role in 
the mitochondrial cell death pathway (65‑68). It has also 
been shown in cell and animal models of PD that GSK‑3β 
inhibition can protect dopaminergic neurons from MPTP 
toxicity (23,24,42,69). This contribution of GSK‑3β to cell 

death and survival appears to correlate with its ability to 
control the mitochondrial localization and activation of a 
number of proteins, particularly B‑cell lymphoma 2 (Bcl‑2) 
family proteins, including Bax, Bcl‑2 and Mcl‑1, considered 
as central players in mPTP formation (70,71). Generally, Bax 
is a cytosolic protein that can be translocated to the mito-
chondrial membrane in response to apoptotic stimuli (72). 
Once located in the mitochondrial membrane, this protein 
increases the mitochondrial membrane permeabilization by 
sequestering Bcl‑2 and by oligomerization within the mito-
chondrial membrane, leading to the release of pro‑apoptotic 
molecules into the cytoplasm (73,74). By contrast, Bcl‑2 and 
Mcl‑1 are anti‑apoptotic members that preserve mitochon-
drial membrane integrity, thereby preventing the release 
of apoptogenic molecules and cell apoptosis (75). GSK‑3β 
activation promotes mitochondria‑mediated apoptosis by 
the upregulation of Bax expression levels (58,76). Treatment 
with lithium, a pharmacological inhibitor of GSK‑3β, could 
suppress the pro‑apoptotic pathway by decreasing the expres-
sion levels of Bax, but promote anti‑apoptotic signaling 
through increasing Bcl‑2 expression  (77‑79). In addition, 
GSK‑3β can facilitate the mitochondrial localization of Bax 
by directly phosphorylating Ser163 of this protein (70). In 
PD, models reveal that the inhibition of GSK‑3β protects 
dopaminergic cells against neurotoxin‑induced damage 
through attenuating the translocation of Bax to the mitochon-
dria (80‑82). Additionally, GSK‑3β phosphorylates Mcl‑1 on 

Figure 1. Glycogen synthase kinase‑3β (GSK‑3β) facilitates the toxic effects of mitochondrial dysfunction, protein aggregation and inflammatory response on 
dopaminergic neurons. Mitochondrial GSK‑3β inhibits complex I activity thus increasing reactive oxygen species (ROS) production. This production of ROS 
contributes to the oxidative damage of cellular macromolecules, including proteins, lipids and DNA, and facilitates mitochondrial permeability transition pore 
(mPTP) formation. Cytosolic GSK‑3β phosphorylates the α‑synuclein and τ proteins, leading to their aggregation, which contributes to cell injury by oxidative 
stress and the inflammatory response. Activated GSK‑3β can also promote the inflammatory response by activating microglia and increasing the production of 
inflammatory cytokines. In addition, the GSK‑3β signal upregulates the levels of Bax and promotes its mitochondrial membrane translocation. Once located in 
the membrane, this protein increases the mitochondrial membrane permeabilization by sequestering Bcl‑2 and oligomerization, finally causing the release of 
cytochrome c and cell death. Additionally, GSK‑3β phosphorylates Mcl‑1 on Ser159, resulting in the destabilization of this protein and blockage  of the Mcl‑1 
dependent integrity of the mitochondrial membrane. Cyt‑c, cytochrome c; LB, Lewy body; Ser, serine; Bcl, B‑cell lymphoma.
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Ser159, resulting in the destabilization of this protein and the 
blockage of the Mcl‑1‑dependent integrity of the mitochon-
drial membrane (71). Overall, GSK‑3β may be vital in the 
regulation of cell death and survival through the modulation 
of the mitochondrial apoptotic cell death pathway.

5. Regulation of GSK‑3β in α‑synuclein and τ  protein 
expression and aggregation

Protein aggregation and inclusion body formation in selected 
areas of the neuronal system are pathological hallmarks of 
neurodegenerative diseases, including PD, in which intracel-
lular inclusions known as LBs are expressed in surviving SN 
neurons. LBs are composed mainly of the α‑synuclein protein, 
a presynaptic neuronal protein abundantly expressed in the 
nervous system (83‑85). The regulatory role of α‑synuclein in 
the production of dopamine through the interaction with tyro-
sine hydroxylase has been shown in cultured cells (86,87). TH 
is the rate‑limiting enzyme responsible for the conversion of 
tyrosine to L‑3,4‑dihydroxyphenylalanine in the dopamine 
synthesis pathway (86,88). Overexpression of α‑synuclein 
inhibits TH activity and decreases dopamine biosynthesis, 
while suppression of α‑synuclein expression levels promotes 
TH activity and consequently increases dopamine produc-
tion (86,87,89). The toxicity of α‑synuclein overexpression 
and accumulation to the neurons has been established in 
in  vivo and in  vitro models  (90‑93). α‑synuclein protein 
overexpression and aggregation exacerbate the impair-
ment of mitochondrial functions by augmenting oxidative 
stress (94‑97). This protein overexpression can also directly 
activate microglia via a classical activation pathway, leading 
to the increase of the inflammatory response by the produc-
tion and release of proinflammatory mediators (98‑100). The 
actions of α‑synuclein in promoting oxidative stress and the 
inflammatory response may be the underlying mechanism 
responsible for the toxicity of its overexpression and accu-
mulation to dopaminergic neurons in PD. α‑synuclein is a 
substrate for GSK‑3β phosphorylation. GSK‑3β inhibition 
decreases α‑synuclein protein expression and prevents cell 
death in a cellular model of PD, indicating that inhibition 
of GSK‑3β activity may be neuroprotective to dopaminergic 
neurons by attenuating the toxicity of α‑synuclein overex-
pression (101). τ protein was originally discovered as a key 
component of intracellular neurofibrillary tangles within the 
brain of AD patients, however, this protein is also expressed 
highly in LBs and in the striatum of PD brains, indicating that 
it contributes to the pathogenesis of PD (102,103). Blockage 
of τ phosphorylation with special inhibitors prevents the 
dopaminergic neuronal death of PD models (101). GSK‑3β is 
a main kinase affecting τ function through interfering with 
τ phosphorylation. Activation of GSK‑3β increases τ phos-
phorylation  (104‑106), which can be reversed by GSK‑3β 
inhibitors or upstream Akt inhibitors (107,108). Additionally, 
GSK‑3β may also facilitate the aggregation of  τ protein 
and neurodegeneration (109,110). Animal models indicate 
that the inhibition of GSK‑3β promotes neuron survival by 
reducing τ‑induced toxicity (111‑113). These findings provide 
a potential target in the therapeutic management of PD by 
blocking the pathogenic pathway of protein overexpression 
and aggregation.

6. GSK‑3β and neuroinflammation

The inflammatory response, including a host of cytokines has 
been shown to be implicated in neuronal degeneration in PD 
and other neurodegenerative diseases (15,114). The activation 
of microglia and the upregulation of proinflammatory cyto-
kines are key characters of brain inflammation. Microglia 
are resident immunocompetent cells in the brain and become 
activated in response to infection and damage  (115). The 
release of proinflammatory and neurotoxic mediators from 
activated microglia contributes to progressive neuron damage 
in neurodenerative conditions (116,117). Studies have shown 
that microglia are activated regionally in the SN of PD patients 
and animal models  (16,18,19,118), and that the levels of a 
number of inflammatory cytokines, including tumor necrosis 
factor‑α (TNF‑α), interleukin (IL)‑1β, IL‑2 and IL‑6, are also 
upregulated in PD (119‑122), indicating the involvement of the 
inflammatory response in PD pathogenesis. The contribution of 
inflammation‑derived oxidative stress and cytokine‑dependent 
toxicity to the nigrostriatal dopaminergic neuron death has 
also been reported in PD models (117,123,124). Additionally, 
suppression of the inflammatory response leads to the protec-
tion of dopaminergic neurons against neurotoxin‑induced 
cell damage (22,125), which further supports the indication 
that the inflammatory mechanism is involved in neurodegen-
erative disease. Microglia can be activated by injured neurons 
through generating a spectrum of noxious endogenous media-
tors. Once activated, microglia produce and release multiple 
proinflammatory factors. This production of proinflammatory 
factors in turn exacerbates neuron damage by oxidative stress 
and cytokine toxicity  (14,19), leading to further release of 
noxious endogenous mediators from injured neurons and an 
everlasting inflammatory response. This positive feedback 
between activated microglia and damaged neurons contributes 
to an uncontrolled, prolonged inflammatory process, which 

Figure 2. Glycogen synthase kinase‑3β (GSK‑3β) signaling pathways pro-
mote an uncontrolled, prolonged inflammatory and neuron injury process in 
Parkinson's disease (PD). GSK‑3β can facilitate multiple insult‑induced neu-
ronal injuries, thus generating a spectrum of noxious endogenous mediators, 
which contribute to the activation of microglia. Activated microglia produce 
and release proinflammatory cytokines, which can be promoted by GSK‑3β 
signaling pathways, resulting in further neuron damage by the inflammatory 
response through oxidative stress and cytokine toxicity. Thereby GSK‑3β 
plays a central role in the maintenance of the vicious cycle between neuron 
damage and microglia activation, leading to an uncontrolled, prolonged 
inflammatory and neuron injury process. 
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is believed to be, at least in part, responsible for the progres-
sive loss of dopaminergic neurons in PD (17,114). Thereby, 
inhibition of the inflammatory response caused by microglia 
activation may be beneficial in neurodegenerative conditions. 
GSK‑3β is a point of convergence of a wide range of signaling 
pathways, and has been recognized as a key regulator of 
inflammation  (126,127). Activation of GSK‑3β promotes 
inflammatory responses by activating microglia and increasing 
the production of inflammatory cytokines (45,128‑129). The 
signals of GSK‑3β can also promote various insult‑induced 
neuronal injuries and the noxious generation of endogenous 
mediators. Thus, GSK‑3β plays a central role in the mainte-
nance of the vicious cycle between activated microglia and 
damaged neurons responsible for the progressive loss of 
dopaminergic cell loss in PD (Fig. 2). Inhibition of GSK‑3β 
attenuates the microglia response to inflammatory stimuli and 
reduces cytokine production, thereby providing protection 
from inflammation‑induced toxicity (45,126). However, the 
direct substrates of GSK‑3β that are involved in inflamma-
tion‑induced neuron damage remain unclear. TNF‑α may be a 
key downstream signal transducer that is indicated in the proin-
flammatory effect of GSK‑3β in activated microglia‑mediated 
neuroinflammation  (130). Within the brain, TNF‑α is a 
mainly proinflammatory cytokine that is released by acti-
vated microglia in response to various insults or injury. This 
production of TNF‑α triggers the uncontrolled inflammatory 
response by further activating microglia (131), which can be 
blocked by GSK‑3β inhibition through modulation of nuclear 
factor  κB and mixed lineage kinase 3/c‑Jun N‑terminal 
kinase 3 signaling cascades (130). These findings indicate that 
GSK‑3β activity is critical for neuronal death in response to 
the neuroinflammation elicited by the microglial activation. 
Attenuation of the microglia‑mediated inflammatory response 
targeted by GSK‑3β inhibition to prevent dopaminergic neuron 
degeneration in PD requires further investigation.

Conclusion

The pathogenesis of PD is a complex process, and multiple 
pathological events, including oxidative stress, mitochondrial 
dysfunction, protein aggregation and neuroinflammation, are 
considered to mediate and drive the gradual loss of dopaminergic 
neurons in PD (8,132‑134). Understanding the intracellular 
signaling processes that regulate the events involved in the 
pathogenesis of PD is critical for developing novel therapeutics 
for PD treatment. GSK‑3β is a multifaceted enzyme that has 
been indicated to be involved in the pathogenesis of neuro-
degenerative diseases, including PD, by modulating multiple 
signaling pathways (101,135‑137). GSK‑3β inhibition protects 
dopaminergic neurons from various stress‑induced injuries in 
the cell culture and animal models of PD (23,42). The cellular 
and molecular mechanisms of the protective effects of GSK‑3β 
inhibition on dopaminergic neurons in pathogenic conditions 
require further elucidation, and may provide a potential 
efficient target for treating PD by blocking the pathogenic 
pathway.
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