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Abstract. Acetaminophen (APAP), is a safe analgesic and 
antipyretic drug at therapeutic dose, and is widely used in 
the clinic. However, high doses of APAP can induce hepa-
totoxicity and nephrotoxicity. Most studies have focused on 
high‑dose APAP‑induced acute liver and kidney injury. So 
far, few studies have investigated the effects of the therapeutic 
dose (1/10 of the high dose) or of the low dose (1/100 of the 
high dose) of APAP on the cells. The aim of this study was 
to investigate the cellular effects of therapeutic- or low‑dose 
APAP treatment on hepatoma cells and kidney fibroblasts. As 
expected, high‑dose APAP treatment inhibited while thera-
peutic and low‑dose treatment did not inhibit cell survival of 
kidney tubular epithelial cells. In addition, therapeutic-dose 
treatment induced an increase in the H2O2 level, activated the 
caspase‑9/‑3 cascade, and induced cell apoptosis of hepatoma 
cells. Notably, APAP promoted fibroblast proliferation, even 
at low doses. This study demonstrates that different cellular 
effects are exerted upon treatment with different APAP 

concentrations. Our results indicate that treatment with the 
therapeutic dose of APAP may exert an antitumor activity 
on hepatoma, while low‑dose treatment may be harmful 
for patients with fibrosis, since it may cause proliferation of 
fibroblasts.

Introduction

Acetaminophen (APAP), also known as paracetamol, is a 
safe analgesic and antipyretic agent at therapeutic dose (1). 
It has been widely applied in the clinic (2‑4). In general, an 
overdose of APAP of 10‑15 g can cause serious toxicity and 
is harmful to the liver and the kidneys (5,6). APAP is easily 
available and cheap, and thus patients may easily receive an 
overdose. This is one of the reasons that APAP constitutes 
the most common cause of self‑poisoning in numerous coun-
tries (7‑9). In order to study APAP overdose‑induced liver and 
acute kidney damage, a number of animal and cell models 
have been established. Studies in these models have shown 
that treatment with high doses of APAP (300‑2,500 mg/kg) 
can cause hepatotoxicity and nephrotoxicity in vivo (10‑14), 
and doses >0.005 mol/l can induce cytotoxicity on kidney 
and liver cells  (15‑20). Previous studies have shown that 
APAP can induce apoptosis or necrosis on different cell 
models (14,19,21), and that high‑dose APAP treatment can 
increase oxidative stress, decrease the glutathione level and 
activate MAPK signaling pathways, resulting in cell cytotox-
icity (14,16,20,22‑25).

A number of recent studies have indicated that high‑dose 
APAP treatment causes liver and kidney failure  (26-28). 
However, other studies reported that high‑dose APAP treat-
ment also exerts anticancer effects. These studies showed that 
APAP can induce cytotoxicity on neuroblastoma (SH‑SY5Y 
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cells), hepatoma (HuH7 cells) and breast cancer (FM3A 
cells) (29‑33). These studies also demonstrated, in different 
tumor cell types, that APAP‑induced cell death is related to 
the proteins NF-κB, members of the Bcl-2 family, and the 
glycogen synthase kinase‑3. In addition, APAP can enhance 
the chemotherapeutic anticancer effects of drugs used to treat 
neuroblastoma, leukemia and ovarian carcinoma (30,34,35). 
According to the above studies, APAP can activate 
different cytotoxic mechanisms in liver, kidney and tumor 
cells (14,19,21,31,36). To date, most studies have focused on 
the mechanisms of APAP‑induced cytotoxicity and on how to 
prevent high‑dose APAP-related poisoning of the liver and the 
kidneys. However, whether APAP can enhance cell prolifera-
tion remains unclear.

Kidney tubular epithelial cell damage can induce renal 
failure (37‑40). Kidney fibrosis, via fibroblast proliferation, 
can also cause renal failure (41‑43). Therefore, both kidney 
tubular cell damage and fibroblast proliferation can cause 
kidney dysfunction. Recently, high‑dose APAP‑induced 
nephrotoxicity was reported and investigated (13,22,44‑47). 
These studies found that high‑dose APAP treatment can 
induce kidney tubular cell death in animal and cell models. In 
addition, numerous studies have demonstrated that high‑dose 
APAP treatment can induce an increase in oxidative stress, 
causing tubular cell death through necrosis or the apoptotic 
pathway (13,22,44,47,48). However, there is no evidence that 
APAP can cause kidney dysfunction by inducing fibroblast 
proliferation. The present study is the first to demonstrate, to 
the best of our knowledge, that high doses of APAP (7.94 mM) 
can inhibit cell survival in kidney tubular cells (NRK‑52E), 
while promoting cell proliferation in kidney interstitial fibro-
blasts (NRK‑49F). 

In addition, APAP can induce different cytotoxic 
mechanisms on different hepatoma cell lines. APAP can 
induce caspase‑dependent apoptosis on hepatoma HuH7 
and SK‑Hep1 cells  (31,49) and induces apoptosis and 
necrosis on hepatoma HepG2 cells (50). Additionally, a study 
demonstrated that high‑dose APAP treatment can inhibit 
DOX‑induced cell death in hepatoma HepG2 cells  (36). 
Although APAP‑induced apoptosis of hepatoma Hep3B 
cells was reported (51), the underlying mechanisms are still 
unclear.

Materials and methods

Materials. Luminol, lucigenin and Hoechst  33342 were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Transforming growth factor (TGF)‑β was purchased 
from R&D Systems (Minneapolis, MN, USA). The 
MTT assay kit was purchased from Bio Basic Canada, 
Inc. (Markham, ON, Canada). The caspase‑9 substrate 
acetyl‑Leu‑Glu‑His‑Asp‑p‑nitroanilide (Ac‑LEHD‑pNA), the 
caspase‑3-like substrate acetyl‑Asp‑Glu‑Val‑Asp‑p‑nitroan-
ilide (Ac‑DEVD‑pNA) and the caspase‑8 substrate 
acetyl‑Ile‑Glu-Thr‑Asp‑p‑nitroanilide (Ac‑IETD‑pNA) were 
purchased from AnaSpec, Inc.  (San Jose, CA, USA). Fetal 
bovine serum (FBS), Dulbecco's modified Eagle's medium 
(DMEM), non‑essential amino acids, L‑glutamine and 
penicillin/streptomycin were purchased from Gibco‑BRL 
(Carlsbad, CA, USA).

Cell lines and cultures. The rat kidney cell lines NRK‑52E 
(tubular epithelial cells) and NRK‑49F (fibroblasts) and Hep3B 
cells were purchased from the Bioresource Collection and 
Research Center (Hsinchu, Taiwan). These cell lines were 
cultured in DMEM medium supplemented with 10% FBS, 
2 mM L‑glutamine, 100  IU/ml penicillin/streptomycin and 
0.1 mM non‑essential amino acids, and were maintained at 37˚C 
in a humidified atmosphere containing 5% CO2, as in (52,53).

Cell survival assay. Survival rates of NRK‑52E, NRK‑49F and 
Hep3B cells were determined with the MTT assay as previously 
described (54,55). Briefly, cells were cultured in 96‑well plates. 
On the second day, cells were divided into the control and experi-
mental groups. After cells were treated with 7.94 nM APAP, 0.794 
nM APAP, 0.0794 nM APAP and 1nM TGF-B, respectively, cell 
survival rates were measured every day. The MTT assay was 
conducted daily according to the manufacturer's instructions. 
Absorbance was measured at 570 nm using a multi‑well ELISA 
reader (Molecular Devices, Sunnyvale, CA, USA).

Quantification of H2O2 and O2
‑ levels. H2O2 and O2

‑ levels 
were measured using a lucigenin‑amplified chemiluminescence 
method, as in (56,57). Briefly, 200 µl of cell lysate was mixed 
with 0.2 mmol/l of luminol solution (100 µl) for the quantifica-
tion of the H2O2 level, or with 0.1 mmol/l of lucigenin solution 
(500 µl) for the quantification of the O2

‑ level. Measurements 
were then performed on the CLA‑FSI chemiluminescence 
analyzing system (Tohoku Electronic Industrial Co., Ltd., 
Sendal, Japan). Each assay was performed four times and results 
were expressed as the chemiluminescence count per 10 sec.

Nuclear observation. Nuclear morphology was observed by 
nuclear staining with Hoechst 33342. Cells were treated with 
Hoechst 33342 (10 µg/ml) for 10 min. Nuclear condensation 
and DNA fragmentation were observed under a fluorescence 
microscope (excitation, 352; emission, 450  nm; Olympus 
BX61; Olympus Corporation, Tokyo, Japan), as described in 
previous studies (58,59).

Caspase activity assay. Cells were treated with lysis buffer 
(50 mM Tris‑HCl, 120 mM NaCl, 1 mM EDTA, 1% NP‑40, 
pH 7.5), and then 1 µM protease inhibitors (Cocktail set 
539131; Merck KGaA, Darmstadt, Germany) were added. 
Cell pellets were obtained by centrifugation (15,000 x g, 
4˚C, 30 min). Caspase‑3, ‑8 and ‑9 activities were determined 
based on assays described in previous studies  (60-62). 
Briefly, 40 µl of cell lysate (80 µg total protein) were mixed 
with 158 µl reaction buffer (20% glycerol, 0.5 mM EDTA, 
5  mM dithiothreitol, 100  mM HEPES, pH  7.5) and 2  µl 
fluorogenic substrate (Ac‑LEHD‑pNA, Ac‑DEVD‑pNA, or 
Ac‑IETD‑pNA) and were incubated at 37˚C for 6 h. The 
absorbance of the cleaved fluorogenic substrate was detected 
at 405 nm (A405) in a FLx800™ fluorescence microplate 
reader (BioTek Instruments, Inc., Winooski, VT, USA). The 
fold increase (FI) in caspase activity was calculated using the 
following formula: FI = (A405sample ‑ A405control)/A405control.

Data analysis. Data were obtained from four independent 
triplicate experiments and are presented as mean values of all 
data, with related standard deviations (SD).
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Results

APAP treatment reduces the survival rate of kidney tubular 
epithelial cells, while inducing proliferation of kidney fibro‑
blasts. Previous studies showed that a high dose of APAP 
(>5  mM) can cause cell cytotoxicity in vitro  (15‑20). In 
accordance with these studies, we also found that high‑dose 
(7.94 mM) APAP treatment reduces the survival rate of kidney 
tubular epithelial cells (NRK‑52E line), in a time‑dependent 
manner (Fig. 1A). The survival rate of NRK‑52E cells did not 
decrease upon treatment with 1/10 of the high dose of APAP 
compared to high‑dose treatment (Fig. 1A). These results 
suggest that APAP‑induced cell cytotoxicity is dependent on 
APAP concentration and incubation time. However, to our 
surprise, although high‑dose APAP treatment decreased the 
survival rate of NRK‑52E cells, it promoted cell proliferation 
of kidney fibroblasts (NRK‑49F line) (Fig. 1B). This was also 
observed upon treatment with 1/10 of the high dose of APAP 
(Fig. 1B). It is well established in the clinic that both tubular 
epithelial cell damage and kidney fibrosis can induce renal fail
ure (13,22,41,43,47,48,63,64). Therefore, our findings indicate 
that APAP‑induced renal failure may not only relate to the 
inhibition of tubular epithelial cell survival, but also to the 
promotion of renal fibroblast proliferation.

Low‑dose APAP treatment induces proliferation of kidney 
fibroblasts. Previous studies have demonstrated that high‑dose 
APAP treatment can inhibit tubular epithelial cell survival to 
induce renal failure (13,22,43,47,48). In the present study, as 
shown in Fig. 1, high‑dose APAP treatment inhibited growth 
of tubular epithelial cells, and induced proliferation of kidney 
fibroblasts. In patients with kidney fibrosis, it is important 
to prevent fibroblast proliferation, which further aggravates 
their condition. In order to enhance our understanding on 
the effects of APAP treatment on patients with fibrosis, it is 
therefore valuable to investigate whether low doses of APAP 
(below the therapeutic dose) can induce fibroblast prolifera-
tion. In this study, low‑dose APAP treatment was applied on 
kidney fibroblasts to study its effects on cell growth. It is 
notable that low‑dose APAP treatment did not inhibit cell 
survival of NRK‑52E cells, while low‑dose treatment induced 
cell proliferation in the fibroblast cell line NRK‑49F (Fig. 2A). 
In addition, APAP induced fibroblast proliferation simi-
larly to the treatment with the positive control TGF‑β, and 
in a dose‑dependent manner (Fig. 2B). APAP has not been 
reported to be toxic to liver and kidney cells at doses below 
the therapeutic dose in the clinic. However in our experiments, 
a low dose of APAP induced fibroblast proliferation, which 
may have harmful effects in patients with fibrosis. Thus, our 

Figure 1. Effects of high‑dose acetaminophen (APAP) treatment on the survival rates of the kidney cell lines (A) NRK‑52E and (B) NRK‑49F. Cells were 
treated with a high dose and 1/10 of the high dose of APAP. Survival rates were calculated daily using the MTT assay. Data are presented as mean ± SD from 
four independent experiments. 

Figure 2. Effects of low‑dose acetaminophen (APAP) treatment on kidney cell survival rates. Survival rates were calculated daily using the MTT assay. 
(A) NRK‑49F and NRK‑52E cells were treated with a low dose of APAP. (B) NRK‑49F cells were treated with a high dose, 1/10 of the high dose and a low dose 
of APAP, as well as with the transforming growth factor (TGF)‑β, as a positive control. Data are presented as mean ± SD from four independent experiments.
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study suggests that these patients may be sensitive to even low 
doses of APAP.

The cytotoxic effects of APAP are more prominent in 
Hep3B compared to NRK52 cells. High‑dose APAP treat-
ment induced cytotoxic effects not only in the tubular cell 
line NRK‑52E, but also in the hepatoma cell line Hep3B 
(Fig. 3A). Cell survival rates of treated Hep3B cells were 
lower compared to those observed in NRK‑52E cells. 
However, at an APAP concentration that was 1/10 of the high 
dose (therapeutic dose), no obvious cytotoxic effects were 
observed in NRK‑52E cells, while the survival rate of Hep3B 
cells was markedly reduced  (Fig.  3B). Therefore, APAP 
exerts more prominent cytotoxic effects on Hep3B compared 
to NRK‑52E cells. These results indicate that APAP, at a 
non‑toxic concentration for healthy tubular cells, may exert 
an antitumor effect on hepatoma cells.

APAP treatment increases apoptosis of Hep3B cells via an 
increase in the H2O2 level. APAP‑induced cytotoxic effects 
that relate to an increase in the generation of reactive oxygen 
species  (ROS) were previously reported (65,66). However, 
it is still unclear which ROS elements are increased upon 
APAP treatment. O2

‑ and H2O2 are two commonly found ROS 

types in the cells. O2
‑ and H2O2 levels were thus quantified 

following APAP treatment. The result showed that APAP 
causes an increase in the H2O2 (Fig. 4A), but not in the O2

‑, 
level in Hep3B cells  (Fig.  4B). Therefore, APAP‑induced 
cytotoxicity is possibly related to H2O2 but not to O2

‑. In addi-
tion, microscopic observations of the nuclear morphology 
revealed nuclear condensation and DNA fragmentation in 
the APAP‑treated Hep3B cells (Fig. 5). These results overall 
suggest that APAP can induce cell cytotoxicity via an increase 
in the H2O2 level.

APAP activates the caspase‑9/‑3 cascade in Hep3B cells. 
Caspase activation can induce cell apoptosis (60,61). In our 
study, APAP treatment also induced apoptosis of Hep3B cells, 
as indicated by results presented in Figs. 4 and 5. Therefore, 
caspase activities were next measured in Hep3B cells, focusing 
on the two major caspase cascades, the caspase‑9/‑3 and the 
caspase‑8/‑3, and using a substrate cleavage assay as previ-
ously described (60,61). The caspase‑9 and ‑3 activities were 
found induced by treatment with 1/10 of the high dose of 
APAP (Fig. 6A and C) However, the caspase‑8 activity did not 
notably change upon APAP treatment (Fig. 6B). This result 
suggests that APAP can activate the caspase‑9/‑3 cascade to 
induce cell cytotoxicity in Hep3B cells.

Figure 3. Effects of acetaminophen (APAP) on hepatoma cell survival rates. Survival rates were calculated daily using the MTT assay. (A) NRK‑52E and 
Hep3B cells were treated with a high dose of APAP. (B) NRK‑52E and Hep3B cells were treated with 1/10 of the high dose of APAP. Data are presented as 
mean ± SD from four independent experiments.

Figure 4. Effects of acetaminophen (APAP) on (A) O2
‑ and (B) H2O2 levels in Hep3B cells. Measurements were performed following APAP treatment (6 h) 

using a lucigenin‑amplified chemiluminescence method. Control (non-treated), high‑dose APAP‑treated and 1/10 high‑dose APAP‑treated cells were exam-
ined. Data are presented as mean ± SD from four independent experiments.
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Discussion

Both tubular epithelial cell damage and fibroblast prolif-
eration can induce renal dysfunction (13,22,41,43,47,48,63,64). 
Numerous studies have demonstrated that an APAP overdose 
can reduce tubular epithelial cell survival, resulting in nephro-
toxicity (13,22,43‑46). Most of the studies to date have focused 
on high‑dose APAP‑induced acute intoxication of kidney 
tubular cells. These studies have highlighted the need to further 
investigate the effects of APAP and take these effects into 
consideration in order to prevent APAP‑induced acute damage. 
However, it is still unclear whether low doses of APAP may 
cause chronic kidney damage. Our present study demonstrated 
that high‑dose APAP treatment not only reduces survival of 

tubular epithelial cells, but it can also induce proliferation of 
fibroblasts, even at low doses. This implies that APAP‑induced 
renal damage may occur through epithelial cell damage or fibro-
blast proliferation. In general, acute damage is easier to detect 
and diagnose compared to chronic damage; therefore, APAP 
overdose‑induced acute intoxication is commonly observed, 
whereas low‑dose APAP‑induced damage is more likely to 
be ignored in the clinic. Here, we demonstrated that low‑dose 
APAP treatment can promote fibroblast proliferation. Thus, we 
consider the therapeutic dose of APAP to be a safe analgesic 
and antipyretic agent for patients who do not show fibrosis, but 
potentially harmful to patients with kidney fibrosis.

The TGF‑β signaling pathway was shown to be involved 
in renal damage  (67‑69). TGF‑β‑induced renal damage 

Figure 5. Effects of acetaminophen (APAP) treatment on nuclear condensation and DNA fragmentation. (A) Control (non-treated) and (B) APAP‑treated 
Hep3B cells. Following cell treatment with APAP for 72 h, nuclear morphology was observed by nuclear staining with the Hoechst 33342 dye. Nuclear 
condensation (yellow arrows) and DNA fragmentation (white arrows) were observed on APAP‑treated cells.

Figure 6. Activity of (A) Caspase‑9; (B) caspase‑8; and (C) caspase‑3 activities in control (non-treated) and acetaminophen (APAP)‑treated cells. Caspase‑3 
and ‑9 activities are increased in cells treated with 1/10 of the high dose of APAP. Data are presented as mean ± SD from three independent experiments.
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has been associated with: i)  tubular cell death (68,70,71); 
ii) epithelial mesenchymal transition (72,73); and iii) fibro-
blast proliferation (74,75). Up to now, no study has provided 
evidence that APAP can induce kidney fibroblast prolifera-
tion via TGF‑β‑related signals. In this study, NRK-49F cells 
(fibroblasts) treated with APAP showed a similar induction 
in proliferation to the one observed in the group treated with 
TGF‑β. In addition, a previous study showed that TGF‑β is 
significantly elevated in APAP‑treated liver tissue (71). Based 
on these observations, we hypothesize that APAP induces 
kidney fibroblast proliferation via the TGF‑β signaling 
pathway. Whether APAP also exerts effects on epithelial 
mesenchymal transition in kidney tubular cells warrants 
future investigation.

O2
‑ and H2O2 are two commonly found ROS in the cells. 

They are typically produced by the electron transport chain. O2
‑ 

can be removed from the cells through the enzymatic activity 
of superoxide dismutase, and H2O2 through the activity of 
catalase or glutathione. It is well established that cell damage 
occurs when O2

‑ and H2O2 levels are increased. Previous studies 
showed that an APAP overdose can increase ROS levels and 
eventually, reduce cell viability (51,76). However, these studies 
did not directly demonstrate which ROS element is increased 
upon APAP treatment. Here, two types of ROS (O2

‑ and H2O2) 
were quantified following APAP treatment. The H2O2 level 
increased, but no notable change in the O2

‑ level was observed 
in APAP‑treated cells. Our study suggests that the inhibition 
of cell survival by APAP may occur through an increase in the 
H2O2 level. This is possibly the reason why N‑acetyl cysteine, a 
substrate for glutathione synthesis, is applied on patients with 
APAP‑induced poisoning in emergency clinical cases (77,78).

APAP‑induced cell death has been extensively studied 
(13,22,44,47,48). These studies demonstrated that APAP 
induces cell death either via the apoptotic or the necrotic death 
pathways in different cells. In our study, features of apoptosis 
were observed in APAP‑treated Hep3B cells, similar to 
previous studies (51,75). Moreover, our study further demon-
strated that the caspase‑9/‑3 cascade is activated upon APAP 
treatment, while the caspase‑8/‑3 cascade is not. Caspase‑9/‑3 
signaling related to mitochondrial damage and caspase‑8/‑3 
signaling related to death receptor signals have been previously 
reported (60,61). Thus, our data suggest that APAP‑induced 
cell cytotoxicity might be associated with mitochondrial 
damage in Hep3B cells. Finally, previous studies have shown 
cytotoxicity upon high-dose (>5  mM) APAP treatment 
in  vitro  (15‑20). In this study, high‑dose APAP treatment 
induced cytotoxicity in both healthy kidney tubular cells and 
hepatoma cells. However, 1/10 of this dose was only cytotoxic 
to hepatoma cells. This suggests that non‑toxic (to healthy 
cells) doses of APAP may be applied in the future as antitumor 
agents targeting cancer cells.

In summary, the present study shows that: i)  APAP 
treatment can induce cell proliferation of kidney fibroblasts 
even at low doses, and thus we suggest that APAP treatment 
needs to be carefully monitored in patients with fibrosis; 
ii) APAP treatment can increase the H2O2 level and activate 
the caspase‑9/‑3 cascade to cause cytotoxicity; and iii) the 
cytotoxic effects of APAP depend on the cell type, with hepa-
toma cells being more severely affected compared to healthy 
kidney tubular cells.
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