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Abstract. Autophagy has a significant role in myocardial 
injury induced by lipopolysaccharide (LPS). Estrogen (E2) 
has been demonstrated to protect cardiomyocytes against 
apoptosis; however, it remains to be determined whether it 
exhibits anti‑autophagic effects. The aim of the present study 
was to investigate whether estrogen‑regulated autophagy 
attenuates cardiomyocyte injury induced by LPS. The cardio-
myocytes of neonatal rats were randomized to the control 
(Con), LPS and estrogen + LPS groups. The LPS group 
was treated with 1 µg LPS for 24 h and the estrogen + LPS 
group was treated with 10 -8 M estrogen 30 min prior to 
treatment with LPS. Cardiomyocyte autophagy was quan-
titated by investigating the mRNA and protein level of 
autophagy‑related genes (Atgs). The mRNA expression of 
Atg5 and Beclin1 were measured by quantitative polymerase 
chain reaction and the microtubule‑associated protein light 
chain 3 (LC3) protein expression was measured by western 
blot analysis. To demonstrate the cardiomyocyte protection 
of estrogen, cell vitality and serum lactate dehydrogenase 
(LDH) levels were measured following LPS treatment. It was 
identified that LPS induced cardiomyocyte injury, together 
with the upregulation of Atg5, Beclin1 mRNA and LC3‑II 
protein. Furthermore, estrogen attenuated the effect of LPS. 
The present study provides evidence that estrogen has a 
myocardial protective role against injury induced by LPS by 
regulating autophagy.

Introduction

The myocardium is one of the target organs of septic 
shock (1‑2), which is a major cause of mortality. This 
myocardial injury may occur as a result of the release of 
proinflammatory cytokines induced by bacterial endotoxin 
lipopolysaccharide (LPS) (3). Furthermore, it appears that 
LPS may be responsible for multiple organ failure during 
septic shock (4). It has also been demonstrated that LPS 
reduced myocardial function (5). Numerous studies have 
suggested that LPS‑induced myocardial dysfunction is 
mediated by multiple proinflammatory mediators, including 
tumor necrosis factor‑α (TNF‑α), Toll‑like receptor 4 (TLR4) 
and TLR2 (6‑8).

Recently, LPS was reported to stimulate cardiomyocyte 
autophagy (4,9), which may mediate cell death. Autophagy, 
which has been suggested to be an essential function for 
cell homeostasis, as well as cell defense and adaptation 
to an adverse environment, is a type of programmed cell 
death (10‑12). Autophagy has an important role in the heart, 
and activation of autophagy has been observed in a variety of 
heart diseases, including cardiac hypertrophy, heart failure 
and ischemia reperfusion injury. Therefore, it is important 
to regulate cardiomyocyte autophagy in order to reduce 
myocardial injury induced by LPS.

It is well established that the incidence of cardiovascular 
disease is reduced in females prior to menopause, which may 
be due to estrogen (E2) levels (13‑14). Studies have demon-
strated that E2 exhibits cardioprotective effects due to the 
ability to decrease TNF‑α levels (15). However, few studies 
have investigated whether E2 may regulate cardiomyocyte 
autophagy. Based on these observations, the present study 
aimed to examine whether E2 may reduce cardiomyocyte 
injury by regulating autophagy.

Materials and methods

Animal care. All animal experiments were approved by the 
Animal Research Ethics Committee of the Second Military 
Medical University (Shanghai, China). The experimental 
procedures conformed with the guide for the care and use 
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of laboratory animals published by the US National Institutes 
of Health.

Cell culture and experimental procedures. Neonatal cardio-
myocytes were prepared from the hearts of Sprague‑Dawley 
rats younger than 3 days (16). On the 4th day, the cardiomyo-
cytes were randomized to three groups: The control group (con), 
where the cells were cultured in Dulbecco's modified Eagle's 
medium (DMEM) with 5% CO2 and 95% air for 24 h; the LPS 
group, where the cells were treated with 1 µg/ml LPS for 24 h; 
and the E2+LPS group, where the cells were treated with 10-8 M 
E2, and then were treated with 1 µg/ml LPS 30 min later.

3‑(4, 5‑dimethylthiazol‑2‑yl)‑2, 5‑diphenyl tetrazonium bromide 
(MTT) assay. For the MTT assay, 10 µl MTT solution was 
added to the growing cells and incubated for 4 h. The crystals 
were then solubilized by adding 100 µl solubilization solution. 
The absorbance of the purple solution was determined at a 
wavelength of 450 nm with a microtiter plate reader (Bio‑Rad, 
Hercules, CA, USA).

Lactate dehydrogenase (LDH) assay. LDH release was 
measured following treatment as a cellular injury index. The 
culture media was collected for determination of LDH activity 
using an Hitachi 7020 chemistry analyzer (Hitachi, Ltd., Tokyo, 
Japan).

Quantitative polymerase chain reaction (qPCR) of Atg5 and 
Beclin1. Total RNA of cells was isolated using TRIzol reagent 
and reverse transcribed according to the manufacturer's instruc-
tions (Thermo Scientific, Waltham, MA, USA). Dysregulated 
Atg5 and Beclin1 were validated by qPCR in duplicates using 
the Mini OPTICON realtime PCR system (Bio‑Rad). The 
annealing temperature of Atg5 and Beclin1 was set at 56˚C. 
The comparative Ct (threshold cycle) method with arithmetic 
formulae (2-ΔΔCt) was used to determine the relative quan-
titation of gene expression of the target and housekeeping 
genes (β-actin). The following sense and antisense primers 
were used: Beclin1 (accession number NM_001034117), 
forward 5'‑GGCAGTGGCTCCTATT‑3' and reverse 
5'‑GGCGTGCTGTGCTCTGAAAA‑3'; Atg5 (accession number 
NM_001014250), forward 5'‑AGTGGAGGCAACAGAACC‑3' 
and reverse 5'‑GACACGAACTGGCACATT‑3'.

Western blotting of microtubule‑associated protein light 
chain 3 (LC3). The protein concentration was determined 
with a bicinchoninic acid protein assay kit (Beyotime Institute 
of Biotechnology, Haimen, Jiangsu, China) according the 
manufacturer's instructions. Equal quantities of protein (40 µg) 
from the cardiomyocytes were subjected to western blotting 
analysis to evaluate LC3 expression (the primary rabbit anti-
body was purchased from Sigma, St. Louis, MO, USA) with 
an enhanced chemiluminescence detection kit (Amersham 
Biosciences, Piscataway, NJ, USA). The results are presented as 
LC3‑Ⅱ/LC3‑Ⅰ.

Statistical analysis. Quantitative data are presented as the 
mean ± standard error. Statistical significance was determined 
using one‑way analysis of variance. P<0.05 was considered to 
indicate a statistically significant difference.

Results

E2 produces a cardioprotective effect against LPS. The serum 
was collected for the LDH and MTT assays and was used for 

Figure 1. Results of LDH in the cell culture serum (n=6). It was identified 
that LDH was increased following treatment with LPS (*P<0.05) and was 
decreased in the E2 + LPS group compared with the LPS group (#P<0.05). 
LDH, lactate dehydrogenase; LPS, lipopolysaccharide; E2, estrogen; Con, 
control.

Figure 2. Results of relative cell vitality (n=6). It was identified that cell 
vitality was decreased following treatment with LPS (*P<0.05), and was 
increased in the E2 + LPS group compared with the LPS group (#P<0.05). 
E2, estrogen; LPS, lipopolysaccharide; Con, control. 

Figure 3. Results of Atg5 expression with quantitative polymerase chain 
reaction (n=5). Atg5 was upregulated by LPS compared with the Con group 
(*P<0.05) and was downregulated by E2 compared with the LPS group 
(#P<0.05). LPS, lipopolysaccharide; E2, estrogen; Con, control.



MOLECULAR MEDICINE REPORTS  10:  1509-1512,  2014 1511

comparing cardiomyocyte vitality. It was identified that LDH 
was higher and the cell vitality was decreased in the LPS group 
compared with the Con group, and that E2 was able to attenuate 
the effect of LPS (Figs. 1 and 2).

E2 attenuates Atg5 and Beclin1 mRNA expression level. The 
Atg family members, particularly Beclin1 and Atg5, have been 
reported to have an important role in the autophagic cell death 
pathway (17‑18). When the cardiomyocytes were treated with 
E2, the mRNA expression of Atg5 and Beclin1 was downregu-
lated, which was upregulated by LPS (Figs. 3 and 4).

E2 attenuates the LC3‑II protein relative expression level. 
LC3‑Ⅱ was used as a marker of autophagy (19). The ratio of 
LC3‑Ⅱ/LC3‑Ⅰ was used to examine the autophagy level in the 

present study. It was identified that the ratio was increased in 
the LPS group and decreased in the E2 + LPS group (Fig. 5).

Discussion

LPS, which is a major component of bacterial outer walls, 
has been demonstrated to be responsible for the multiorgan 
dysfunction that characterizes septic shock (4). It has been 
found that LPS is able to stimulate inflammatory mediator 
production and activate NF‑κB (20‑21). The myocardium is 
one of the main target organs of septic shock (2). Therefore, 
it is clinically beneficial to investigate ways to attenuate the 
myocardial injury induced by LPS in patients with septic 
shock. In the present study LPS was used to simulate the heart 
injury induced by septic shock in vitro. According to this 
model, the present study aimed to investigate novel reagents 
that may protect the heart against LPS injury. LDH and cell 
vitality were generally used to evaluate cell injury (16,22). It 
was found that LPS was harmful to the cardiomyocytes and 
E2 attenuated the injury induced by LPS.

Apoptosis, necrosis and autophagy occur in cardiomyocytes 
during cardiac injury (23). The autophagy process is regulated 
by Atgs, among which Beclin1 is required for the autophagy 
vesicle nucleation step of autophagy. The autophagosome 
is formatted through two pathways, the Atg12‑Atg5‑Atg16 
pathway and the Atg4‑Atg7‑Atg3 pathway. These conjugations 
lead to the conversion of the soluble form of LC3 (LC3‑I) to 
the autophagic vesicle‑associated form (LC3‑II), which is used 
as a marker of autophagy (19). In the majority of these studies, 
the ratio of LC3‑II/LC3‑I has been used for examining the 
autophagy level (24).

Apoptosis and necrosis are well established as detrimental 
processes to the heart (25). However, the effect of autophagy 
in the heart is controversial (26‑27). At low levels, autophagy 
removed the damaged proteins and organelles, that facilitated 
myocardial survival during periods of energy deprivation (28). 
Therefore, low levels of autophagy are beneficial to cardiomy-
ocytes (29). However, excessive levels of autophagy appear to 
contribute to cardiomyocyte damage (24). Furthermore, accu-
mulation of autophagic vacuoles precedes apoptotic cell death, 
and autophagy induces cell death when apoptosis is inhibited. 
For instance, it has been demonstrated that autophagy was 
marginally increased in the myocardium during the ischemic 
period, and it was protective for the heart, while during the 
reperfusion period autophagy was markedly enhanced and was 
subsequently harmful to the heart (24,27). Furthermore, it has 
been identified that the inhibition of autophagy is cardiopro-
tective against LPS‑induced injury (9). Therefore, moderate 
regulation of autophagy may aid in attenuating cardiomyocyte 
injury induced by LPS.

Studies have suggested that E2 has important cardioprotec-
tive roles against ischemia‑reperfusion (IR) injury (30‑31) and 
that E2 treatment may upregulate the expression of anti-apop-
totic genes (32). Recently, several studies demonstrated that 
Beclin1 was able to downregulate E2ic signaling, suggesting the 
importance of the interaction between E2 and autophagy (33).

The biological effects of E2 are predominantly mediated 
via E2 receptors (ERs). The two classic ER isoforms (ERα and 
ERβ) are expressed in cardiomyocytes, and there appears to be 
no difference in the distribution or abundance between males 

Figure 4. Results of Beclin1 expression with quantitative polymerase chain 
reaction (n=5). Beclin1 was upregulated by LPS compared with the Con 
group (*P<0.05), while was downregulated by E2 compared with the LPS 
group (#P<0.05). E2, estrogen; LPS, lipopolysaccharide; Con, control.

Figure 5. Results of LC3 protein expression with western blotting (n=5). 
(A) Representative western blot of LC3 from the different groups. (B) The 
ratio of LC3‑II/LC3‑Ⅰ in different groups. It was identified that LC3‑II was 
upregulated by LPS (*P<0.05) and it was attenuated by E2 (#P<0.05). LC3, 
microtubule‑associated protein light chain 3; E2, estrogen; LPS, lipopolysac-
charide; Con, control.
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and females (30). ERα is mainly expressed in the ventricles and 
its activation may result in rapid cardioprotective signaling (34). 
ERβ is evenly distributed throughout the heart and may not be 
involved in cardioprotection (35‑36). E2 may protect the heart 
following ischemia‑reperfusion by decreasing TNF‑α levels (15), 
which has been associated with cardiomyocyte autophagy 
induced by LPS. In the present study, cardiomyocyte autophagy 
was induced by LPS, as is consistent with the results of Yuan 
et al (4). LDH in the serum was increased and the cell vitality 
was decreased following LPS treatment. This suggested that 
LPS may be harmful to cardiomyocytes by inducing autophagy. 
When the cardiomyocytes were treated with E2 1 h prior to LPS, 
the autophagy level and LDH in the serum were attenuated and 
the cell vitality was increased. Therefore, E2 may protect cardio-
myocytes by attenuating autophagy against LPS, mediated by 
the ERα subtype receptor.

In conclusion, the results demonstrated that E2 has an impor-
tant protective role against LPS‑induced injury by regulating 
autophagy. However, further studies are required to investigate 
the mechanisms underlying the interaction between E2 and the 
regulation of autophagy.
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