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Abstract. The aim of the present study was to screen for 
feature genes associated with spinal cord injury (SCI), in 
order to identify the underlying pathogenic mechanisms. 
Differentially expressed genes were screened for using 
pre‑processing data. Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment analysis was performed to 
analyze and identify the genes involved in pathways asso-
ciated with SCI. Subsequently, Gene Ontology enrichment 
analysis and Uniprot tissue analysis were used to screen out 
genes specifically expressed in spinal cord tissue. In addition, 
a protein‑protein interaction network was used to demon-
strate possible associations among SCI‑associated feature 
genes. Finally, a link was identified between feature genes 
and SCI by analyzing protein domains in coding areas of the 
three feature genes. The cytochrome c oxidase subunit Va, 
adenosine triphosphate (ATP) synthase, H+  transporting, 
mitochondrial F1 complex, α subunit 1 and cardiac muscle 
and mitochondrial β‑F1‑ATPase may be downregulated in 
SCI, resulting in destruction of the mitochondrial electron 
transport chain and membrane‑bound enzyme complexes/
ion transporters, thus, affecting the normal function of 
nerves. The three screened feature genes have the potential 
to become candidate target molecules to monitor, diagnose 
and treat SCI and may be beneficial for the early diagnosis 
and therapeutic control of the condition.

Introduction

The spinal cord is a part of the central nervous system in humans 
and other vertebrates (1). Spinal cord injury (SCI) is damage to 
the spinal cord, which is categorized according to the extent of 
loss of function, loss of sensation and the inability of the indi-
vidual to stand or walk (2). It often results in confinement to a 
wheelchair and a lifetime of medical comorbidity (3). SCI may 
result from serious accidents, including road traffic accidents 
or sports injuries, but may also occur accompanying serious 
diseases, including developmental disorders, neurodegen-
erative diseases or demyelinating diseases. Multiple sclerosis, 
transverse myelitis resulting from stroke or inflammation and 
vascular malformations can all result in severe consequences 
and high‑disability due to SCI (4).

Several genes and signaling pathways are involved in spinal 
cord injury (5). Expression of nerve growth factor, brain‑derived 
neurotrophic factor (BDNF), neurotrophin‑3 (NT‑3), p75 
low‑affinity nerve growth factor receptor, transforming tyrosine 
kinase B and interleukin (IL)‑6 have been reported to increase 
in non‑neuronal cells and neuronal cells, suggesting that these 
molecules may be involved in promoting axonal sprouting in the 
injured spinal cord (6). Furthermore, it has been demonstrated 
that upregulation of IL‑1β, BDNF and NT‑3 in the injured spinal 
cord is attenuated by treatment with high‑dose glucocorticoids, 
with the suggestion that the downregulation of BDNF and NT‑3 
may be disadvantageous to the survival and axonal sprouting 
of spinal neurons (7). As for the pathways involved, a previous 
study revealed that the Rho signaling pathway may be a potential 
target for therapeutic interventions following SCI (8). In addi-
tion, apoptosis signal‑regulating kinase l and stress‑activated 
mitogen‑activated protein kinase pathways, have also been 
reported to be involved in the transmission of apoptotic signals 
following SCI (9). However, identification and evaluation of 
specific and associated genes of SCI, which assist in the clinical 
diagnosis and treatment of SCI, remain to be elucidated.

In the present study, bioinformatics methods were used 
to assess the abnormal gene expression in SCI to determine 
the associated feature genes. Critical genes were screened 
using expression profiling microarray data. Pathway analysis 
and protein‑protein interaction (PPI) network analysis were 
performed on the proteins involved in SCI to investigate their 
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function. The aim of the present study was to explore the 
molecular mechanisms of SCI and identify potential therapeutic 
target genes for the treatment of SCI.

Materials and methods

Data preprocessing and differential expression analysis. The 
transcription profile of GSE2599 was downloaded from the 
Gene Expression Omnibus database (http://www.ncbi.nlm.nih.
gov/geo/), which was based on the Affymetrix Rat Genome 
U34 array (Affymetrix, Santa Clara, CA, USA) and deposited 
by Aimone et al (10). A total of six tissue specimens were 
available for further analysis, including three SCI samples, 
obtained from female Fischer 344 rats (165‑200 g) 35 days 
after SCI, and three normal tissues, as described in the original 
experiment (10). The annotation information of all probe sets 
was provided by Affymetrix, where the raw data (CEL) file 
was downloaded.

Initially, the probe‑level data in the CEL files were 
converted into expression measures. For each sample, the 
expression values of all the probes for a particular gene were 
reduced to a single value by calculating the average expres-
sion value. Probes corresponding to more than one gene 
were discarded. Subsequently, the data with the low signal 
strength was missing data and the missing data was imputed 
using the K‑nearest neighbor averaging (KNN) method (11) 
and the complete data were standardized  (12). The Samr 
package in R language (13) was used to identify differen-
tially expressed genes (DEGs) between three samples in the 
control group (normal specimen) and three samples in the 
experimental group (samples with SCI). In order to circum-
vent the multi‑test problem, which may induce an excess of 
false positive results, the Benjamini‑Hochberg procedure (14) 
was used to adjust the raw P‑values into false discovery rate 
(FDR). FDR<0.05 and |logFC|>1.5 were used as the cut‑off 
criteria for DEG identification.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway and Gene Ontology (GO) enrichment analysis. 
Based on the deficiency of individual gene analysis, gene 
set enrichment analysis evaluates differential expression 
patterns of gene groups to distinguish whether their biolog-
ical functions and characteristics differ (15). In the present 
study, the P‑value indicated the probability that a gene was 
randomly endowed a GO function and it was usually used 
as the criterion for assigning a certain function to a module. 
A lower P‑value increased the probability that the function 
of a module had not been assigned randomly, but with the 
purpose of performing a certain biological function, and 
it has important biological significance (16). The Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID) (17) bioinformatics resource consists of an inte-
grated biological knowledge base and analytical tools aimed 
at systematically extracting biological meaning from lists of 
genes or proteins (18). The functional enrichment analysis 
for the screened DEGs was performed using DAVID, and 
FDR<0.01 and P<0.05 were selected as the cut‑off criteria. 
Subsequently, KEGG pathway analysis was performed on 
the upregulated and downregulated genes, obtained using 
DAVID, to screen for disease‑associated pathways.

Uniprot (UP) tissue analysis. GO analysis has become a 
commonly used approach for functional investigations of 
large‑scale genomic or transcriptomic data (19). DAVID, a 
high‑throughput and integrated data‑mining environment, 
analyzes gene lists derived from high‑throughput genomic 
experiments (20).

In the present study, UP tissue analysis was performed on 
DEGs in disease‑associated metabolic pathways to identify 
the genes associated with spinal cord tissue. Therefore, the 
abnormally expressed genes in the injured spinal cord 35 days 
after injury were selected to distinguish these genes from 
those, which were expressed not solely in injured spinal cord.

Construction of the PPI network. PPI analysis was performed 
on the DEGs using Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING; http://www.string‑db.org/) online 
database (21). Combined_score was used to measure the strength 
of the interaction of protein pairs and only the interaction with 
combined_score > 0.4 was selected as significant. Subsequently, 
critical genes, which exhibited >45 interactions with other 
genes, were selected. The feature genes associated with SCI 
were identified by comparing the critical genes with the DEGs 
35 days after SCI. Finally, the PPI network was constructed 
using Cytoscape software (http://cytoscape.org/) (22,23), based 
on the STRING database, to determine the association between 
feature genes and the interacting genes, which may trigger SCI.

Protein domain analysis of specific genes. Coding area predic-
tion of the critical genes associated with SCI was performed 
using the GENSCAN (http://genes.mit.edu/GENSCAN.html) 
online software programme (24). Subsequently, the Pfam (25) 
database was used to examine the protein domain for further 
protein domain analysis.

Results

Data pre‑processing and screening for DEGs. The results 
of data pre‑processing are shown in Fig. 1. Following data 
pre‑processing, the median was almost identical between 
the samples, indicating good normalization and that the data 
was suitable for further analysis. A total of 929 DEGs were 
screened for, including 339 upregulated genes and 590 down-
regulated genes (Fig. 2).

KEGG pathway enrichment analysis. As shown in Table I, the 
pathways associated with SCI included Huntington's disease 
(rno 05016), Parkinson's disease (rno 05012) and Alzheimer's 
disease (rno 05010). A total of 39 mutual genes were identified 
between these pathways and all of these genes were downregu-
lated, as shown in Table II.

GO enrichment analysis. DAVID was used to identify 
over‑represented GO categories among the genes (Table II) 
and P<0.05 and FDR<0.01 were selected as thresholds. The 
most markedly enriched five terms among these genes in 
the PPI network were all associated with the chondriosome 
(Table  III). GO terms associated with the mitochondria, 
which were enriched in the network, included the ‘mito-
chondrial inner membrane’, ‘organelle inner membrane’ and 
‘mitochondrial envelope’.
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Identification of feature genes in SCI. Downregulated genes, 
which were abnormally expressed following SCI, were also 
involved in several known nerve disease pathways, including 
Huntington's disease (rno 05016), Parkinson's disease 

(rno 5012) and Alzheimer's disease (rno 05010) KEGG 
pathways. Combined with the annotation information of 
spinal‑cord‑specific expressed genes from the Uniprot data-
base, a candidate set of SCI‑associated feature genes was 
obtained, including Sdha, Uqcrc2, Ndufa5, Atp5b, Atp5a1 
and Cox5a.

PPI network analysis. Feature genes were obtained by 
further analysis of abnormally expressed genes in the injured 
spinal cord. Subsequently, a PPI network was constructed, 
as shown in Fig. 3, which revealed that Atp5b, Atp5a1 and 
Cox5a, all downregulated genes, were closely associated with 
the SCI when examined 35 days after the SCI. Additionally, 
the majority of genes interacting with these three genes were 
also downregulated.

Protein‑domain analysis. The protein domain in the coding 
area of the Atp5b, Atp5a1 and Cox5a feature genes, among 

Table I. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis.

Term	 P‑value	 False discovery rate	 Up/downregulated

rno03010: Ribosome	 3.22 E‑12	 3.79 E‑09	 Upregulated
rno04612: Antigen processing and presentation	 4.13 E‑08	 4.85 E‑05	 Upregulated
rno00190: Oxidative phosphorylation	 2.50 E‑23	 2.98 E‑20	 Downregulated
rno05016: Huntington's disease	 1.94 E‑21	 2.31 E‑18	 Downregulated
rno05012: Parkinson's disease	 9.73 E‑21	 1.16 E‑17	 Downregulated
rno05010: Alzheimer's disease	 7.00 E‑20	 8.33 E‑17	 Downregulated

Table II. Downregulated genes in Huntington's disease, Parkinson's disease and Alzheimer's disease.

Uqcrc2	 Atp5o	 Ndufb5	 Cox7a2
Atp5d	 Atp5j	 Ndufb6	 Ndufa3
Atp5b	 Ndufb10	 Ndufb8	 Ndufa8
Cyc1	 Cycs	 Ndufb9	 Ndufa9
Ndufab1	 Ndufc2	 Cox7b	 Ndufa6
Cox5a	 Cox4i1	 Atp5g1	 Sdha
Uqcrfs1	 Uqcr	 Ndufb2	 Ndufv2
Cox5b	 Atp5c1	 Ndufa4	 Cox6a1
Ndufs7	 Ndufb3	 Loc688869	 Atp5a1
Ndufs5	 Ndufb4	 Ndufa5

Figure 2. Number of differentially expressed genes (DEGs) that were upregu-
lated (up; 36.5%) and downregulated (down; 62.5%) in spinal cord injury 
tissue compared with that of normal tissue. 

Figure  1. Box pattern of expression data following normalization. The 
horizontal axis indicates different samples and the vertical axis indicates the 
expression value. The black line within each box indicates the median of 
each group of data, which revealed the extent of normalization of the data. 
The black lines were almost on the same straight line, indicating a high level 
of normalization.
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genes that may be associated with the disease at 35 days after 
the spinal cord injury are shown in Table IV.

As shown in Table IV, the protein domain in the coding 
areas of Cox5a belonged to the COX5A family, 13 sub‑unit 
complex, EC: 1.9.3.1, which is the terminal oxidase in the 
mitochondrial electron transport chain (26). By contrast, the 
protein domain in the coding areas of Atp5a and Atp5b belong 
to the ATP synthase α and β family, including ATP‑synt_ab_N, 
ATP‑synt_ab and ATP‑synt_ab_C. The ATP synthase α/β 
family includes the ATP synthase α and β subunits and ATP 
synthase, associated with flagella (27).

Discussion

In the present study, it was demonstrated that the three feature 
genes, Cox5a, Atp5al and Atp5b, in the injured spinal cord, 
were rapidly downregulated 35 days after the onset of injury, 
resulting in the destruction of the mitochondrial electron 
transport chain and membrane‑bound enzyme complexes/ion 
transporters. These genes have been reported to be involved in 
the pathways of several types of neurological disease, including 
Huntington's disease, Parkinson's disease and Alzheimer's 
disease (28,29). Since these processes are associated with the 

Table IV. Protein domain in coding areas of feature genes associated with diseases 35 days after spinal cord injury.

Gene	 Family	 Description	 P‑value

Cox5a	 COX5A	 Cytochrome c oxidase subunit Va	 2.50 E‑58
Atp5a1	 ATP‑synt_ab_N	 ATP synthase α/β family, β‑barrel domain	 3.60 E‑17
Atp5b	 ATP‑synt_ab	 ATP synthase α/β family, nucleotide‑binding domain	 2.50 E‑72
	 ATP‑synt_ab_C	 ATP synthase α/β chain, C terminal domain	 1.50 E‑26

ATP, adenosine triphosphate.

Figure 3. Interaction network of feature genes associated with disease 35 days after spinal cord injury. The rhombi indicate feature genes and circles indicate 
interacting genes. The green color indicates downregulated genes, while the red color indicates upregulated genes.

Table III. The five most enriched genes in Gene Ontology enrichment analysis.

Category	 GO term	 P‑value	 FDR

CC	 0005743: Mitochondrial inner membrane	 4.40 E‑53	 4.14 E‑50
CC	 0019866: Organelle inner membrane	 4.34 E‑52	 4.09 E‑49
CC	 0031966: Mitochondrial membrane	 3.90 E‑49	 3.67 E‑46
CC	 0005740: Mitochondrial envelope	 4.49 E‑48	 4.22 E‑45
CC	 0044429: Mitochondrial part	 1.43 E‑43	 1.34 E‑40

GO, Gene Ontology; CC, cellular component; FDR, false discovery rate.



MOLECULAR MEDICINE REPORTS  11:  3615-3620,  2015 3619

transportation of energy in biological bodies, changes to these 
processes 35 days after SCI may result in disruption in the 
transport of energy.

COX5A is a protein‑coding gene. It is a multi‑subunit 
enzyme complex, which couples the transfer of electrons from 
cytochrome c to molecular oxygen and contributes to a proton 
electrochemical gradient across the inner mitochondrial 
membrane  (26). Diseases associated with COX5A include 
acquired idiopathic sideroblastic anemia and cardioencepha-
lomyopathy (30). Its associated super‑pathways include the 
electron transport chain and metabolic pathways. GO annota-
tions associated with this gene include electron carrier activity 
and cytochrome c oxidase activity (31). This indicates that 
COX5A may be important in the regulation and assembly of 
the complex in the human mitochondrial respiratory chain 
enzyme, thus, affecting energy supply in SCI. A previous study 
revealed that COX5A is associated with the migration, inva-
sion and prediction of distant metastasis (32). In the present 
study, COX5A was markedly downregulated in SCI, therefore, 
it was hypothesized that the downregulation of COX5A in SCI 
caused the interdiction of energy transportation, interrupting 
the metabolic process.

ATPases, or ATP synthases, are membrane‑bound enzyme 
complexes/ion transporters, which combine ATP synthesis 
and/or hydrolysis with the transport of protons across a 
membrane. ATPases harness the energy from a proton gradient, 
using the flux of ions across the membrane via the ATPase 
proton channel, to drive the synthesis of ATP (33). Atp5a1 (34) 
and Atp5b (35) are also protein‑coding genes. Super‑pathways 
associated with the genes include the electron transport 
chain and adenosine ribonucleotides de novo biosynthesis. 
GO annotations associated with ATP5A1 include eukaryotic 
cell surface binding and ATPase activity (36), while those 
for ATP5B include transmembrane transporter activity and 
transporter activity (37,38). Deregulated energy metabolism 
is a marker of malignant disease, which offers possible future 
targets for treatment  (39). Polymorphism and association 
analysis has revealed that mutations in Atp5a1 and Atp5b 
genes may be potential markers of diseases associated with the 
destruction of energy transport (40). Atp5a1 and Atp5b, which 
are involved in energy transportation in mitochondria, may be 
critical genes and certain variations of these genes may lead to 
increased risk in SCI (40).

In addition, the results obtained from GO enrichment 
analysis of the PPI network in the present study demonstrated 
that most enriched GO terms of the DEGs in SCI were asso-
ciated with mitochondria, including ‘mitochondrial electron 
transport chain’, ‘mitochondrial membrane’ and ‘mitochon-
drial envelope’. This suggested that the majority of DEGs in 
SCI were associated with energy transportation and that the 
progression of SCI may be affected by the genes expressed 
differently in the tissue. Therefore, the 39 mutual genes in 
Huntington's disease, Parkinson's disease and Alzheimer's 
disease, which coordinate with genes in SCI, may assist in 
defining the origins of malignancies and offer promise for 
earlier diagnosis and improved treatment of SCI.

In conclusion, the results of the present study presented a 
comprehensive bioinformatics analysis of genes and pathways, 
which may be involved in the progression of SCI. A total of 
929 DEGs were identified from GSE2599, and PPI networks 

were constructed using these DEGs. Furthermore, the Cox5a, 
Atp5al and Atp5b genes, which were downregulated in SCI, 
were found to result in the destruction of the mitochondrial elec-
tron transport chain and membrane‑bound enzyme complexes/
ion transporters, thus affecting the normal function of nerves. 
These genes can be identified as feature genes of SCI and assist 
in the early diagnosis and improved treatment of SCI.
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