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Abstract. MicroRNA‑133a (miR‑133a) is downregulated in 
various types of human malignancy, including hepatocel-
lular carcinoma (HCC), renal cell carcinoma, esophageal 
squamous cell carcinoma, bladder cancer, ileal carcinoid 
and rhabdomyosarcoma. The aim of the present study was to 
examine the effects of miR‑133a on HCC cell proliferation, 
colony formation, migration and invasion. miR‑133a was 
transfected into the HCC HepG2 and SMMC‑7721 cell lines 
and the expression levels of miR‑133a were determined; in 
addition, cell viability assays, colony formation assays, cell 
migration assays, cell invasion assays, western blot analyses 
and luciferase assays were performed in the HCC cell lines. 
The results demonstrated that miR‑133a significantly inhibited 
cell proliferation, colony formation, migration and invasion 
in HepG2 and SMMC‑7721 cells. To the best of our knowl-
edge, the present study also provided the first evidence that 
miR‑133a directly downregulated the expression of matrix 
metallopeptidase 9 (MMP‑9) in the HCC cells. In conclusion, 
the results of the present study indicated that miR‑133a may 
have suppressed cell proliferation, colony formation, migration 
and invasion via the downregulation of MMP‑9 in HCC cell 
lines. Therefore, MMP‑9 may be used for the development of 
novel molecular markers and therapeutic approaches to inhibit 
hepatocellular carcinoma metastasis.

Introduction

Types of primary liver cancer include hepatocellular carcinoma 
(HCC), intrahepatic cholangiocarcinoma (ICC) and hepatic 

angiosarcoma. HCC accounts for between 85 and 90% of all 
cases of primary liver cancer and is the third leading cause of 
mortality from cancer worldwide and the fifth most common 
type of malignancy (1‑4). It has been reported that ~21,000  cases 
of HCC are diagnosed and ~700,000 patients succumb to the 
disease worldwide annually (5). The established risk factors of 
HCC include viral hepatitis, alcohol abuse and non‑alcoholic 
fatty liver disease (6). For the majority of patients with HCC, 
surgical resection and liver transplantation are the only effec-
tive treatment options; however, only between 10 and 20% of 
patients are eligible for surgical intervention, due to the diffi-
culty in effectively diagnosing HCC in the early stages of the 
disease (7). Frequent tumor metastasis and recurrence following 
surgical intervention lead to poor prognoses of patients with 
HCC with a five‑year survival rate of ~5% (8). Advances in 
functional genomics have provided a deeper understanding of 
hepatocarcinogenesis; however, the molecular pathogenesis of 
HCC remains to be fully elucidated (9,10). In addition, the clin-
ical heterogeneity of HCC and insufficient effective diagnostic 
markers and therapeutic approaches for the treatment of HCC 
have rendered this disease a major challenge (11). Therefore, 
in order to improve the prognosis of patients with HCC, novel 
diagnostic markers and treatments are required.

MicroRNAs (miRNAs) are a type of small, endogenous, 
single‑stranded, non‑coding RNA, which consist of between 
20 and 25 bases (12). miRNA was first detected during a devel-
opmental timing experiment, which was performed in the 
nematode Caenorhabditis elegans in 1993 (13). To date, the 
family of human miRNAs consists of >2,000 mature miRNAs 
and, using in silico techniques, it was predicted that ~60% of 
human messenger (m)RNA may be targets of miRNAs (14). In 
addition, miRNAs abberrantly expressed in several types of 
human cancer may function as oncogenes and tumor suppres-
sors (15). Based upon a large number of experimental studies 
performed over the past two decades, it has been confirmed 
that miRNAs are important in the regulation of gene expres-
sion, which primarily occurs through post‑transcriptional 
destabilization, translational repression of target mRNAs 
which bear complementary sites or a combination of these two 
mechanisms (16‑19).

Previous studies have demonstrated that miRNAs are 
essential in the biology of various types of human cancer, 
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including cell differentiation, proliferation, apoptosis, 
invasion and angiogenesis  (20,21). It was reported that 
≥17 miRNAs are downregulated in HCC, while six miRNAs 
are upregulated(22). miRNAs which are upregulated in 
cancer may function as oncogenes through the negative 
regulation of tumor suppressors. By contrast, miRNAs 
which are downregulated in cancer may normally function 
as tumor suppressor genes, which inhibit cancer through the 
regulation of oncogenes (23). Therefore, the identification 
of miRNA targets is critical in order to fully elucidate the 
function of miRNAs in the development and progression of 
cancer. In addition, it has been suggested that miRNAs may 
be potential target for the treatment of cancer (24).

It has been reported that miRNA (miR)‑133a is among 
the most frequently downregulated miRNAs in various 
types of human malignancy, including HCC (25), renal cell 
carcinoma (26), esophageal squamous cell carcinoma (27), 
bladder cancer (28), ileal carcinoid (29) and rhabdomyosar-
coma (30). The aim of the present study was to determine the 
effects of miR‑133a on cell proliferation, colony formation, 
migration and invasion in HCC HepG2 and SMMC‑7721 cell 
lines, as well as to investigate whether matrix metallopepti-
dase 9 (MMP‑9) may be a target of miR‑133a. 

Materials and methods

Cells and culture conditions. The human HCC cell lines, 
HepG2 and SMMC‑7721, were obtained from the Shanghai 
Institute Of Biochemistry And Cell Biology (Shanghai, 
China). The HepG2 and SMMC‑7721 cells were cultured 
in RPMI 1640 medium  (Gibco, Grand Island, NY, USA) 
supplemented with 10% heat‑inactivated fetal bovine serum 
(FBS; Gibco) under a humidified atmosphere of 5% CO2 at 
37˚C. To propagate sphere formation in vitro, spheres were 
collected through gentle centrifugation at 200 x g for 5 min, 
dissociated to single cells by blowing gently and cultured in 
RPMI‑1640 to produce the next generation of spheres.

Transfection. Mature miR‑133a mimics and negative control 
(NC) miRNA mimics were designed and synthesized by 
GenePharma (Shanghai, China). The sequences were as follows: 
miR‑133a mimic, 5'‑UUUGGUCCCCUUCAACCAGCUG‑3' 
and NC mimic, 5'‑UUCUCCGAACGUGUCACGUTT‑3'. The 
cells were transfected using Lipofectamine 2000 (Invitrogen 
Life Technologies, Carlsbad, CA, USA), according to manu-
facturer's instructions.

Quantitative detection of miR‑133a. Total RNA was 
extracted from the cells using TRIzol reagent (Invitrogen 
Life Technologies) in a one‑step extraction procedure, as 
previously described (31). RNA was stored in diethylpyro-
carbonate‑treated water at ‑80˚C and the quantity and quality 
of samples were evaluated using a ND‑1000 NanoDrop 
spectrophotometer (NanoDrop, Wilmington, DE, USA). 
Reverse transcription quantitative polymerase chain reac-
tion (RT‑qPCR) for miR‑133a was performed using a SYBR 
Green miRNA assay (GenePharma), according to the manu-
facturer's instructions. qPCR was performed on an AB7300 
thermo‑recycler (Applied Biosystems, Waltham, MA, USA) 
using miR‑133 primer set (Tiangen Biotech, Co., Ltd, Beijing, 

China) and double strand binding dye SYBR Green. GAPDH 
was used as an internal control. Each sample was replicated 
three times, with no RT or template control included. Data 
were analyzed by comparing Ct values (32).

3‑(4, 5‑dimethylthiazol‑2‑yl)‑2,5‑ diphenyltetrazolium 
bromide (MTT) assay. Cell proliferation was determined 
using a MTT Cell Proliferation and Cytotoxicity Assay 
kit (Beyotime Institute of Biotechnology, Shanghai, China). 
The transfected cells (miR‑133a mimics and NC) were 
seeded into 96‑well flat‑bottomed plates (Becton‑Dickinson, 
Heidelberg, Germany) at a density of 3,000 cells per well. 
Every 24  h for 5  days, the viable cells were assayed for 
their ability to transform MTT into purple formazan, and 
their optical density was measured at 490 nm (OD)490. The 
suppression rate was calculated using the following formula:  
Suppression rate = (1‑ODmiR‑145 / ODmiR‑NC) × 100%. Proliferation 
curves were drawn on the basis of the mean absorbance at 
each time‑point. All experiments were performed in tripli-
cate.

Colony formation assay. The colony formation ability of 
the miR‑133a‑transfected HepG2 and SMMC‑7721 cells 
was assessed using a colony formation assay. In brief, the 
transfected cells (miR‑133a mimics and NC) growing 
in the logarithmic phase were trypsinized with 0.05% 
Trypsin‑EDTA (Gibco) and seeded into six‑well plates at a 
density of 2,000 cells per well. The cells were maintained 
in an incubator at 37˚C for 7 days. On day 8, the colonies 
were washed with phosphate‑buffered saline (PBS), fixed 
with formalin (10%), and stained with methyl violet, which 
were all purchased from Beyotime Institute of Biotechnology. 
The methyl violet dye was then washed with PBS and the 
number of colonies were counted under a microscope (IX53; 
Olympus Corp., Tokyo, Japan). The following calculations 
were then performed: Colony‑inhibition rate = [(1 ‑ number of 
colonies in experimental groups) / control group] × 100%; and 
colony‑forming efficiency = 1 ‑ colony‑inhibition rate.

Cell migration and invasion assay. The cell migration and inva-
sion were assayed using Transwell® chambers (8 µm; Corning 
Costar, Cambridge, MA, USA). For the Transwell® migration 
assay, 1x105 transfected cells (miR 133a mimics and NC) were 
placed into the upper chamber, which was cultured in medium 
with 2% FBS, while 500 µl RPMI‑1640 medium containing 
20% FBS was added to the lower chamber. For the Transwell® 
invasion assay, a Transwell® chamber coated with Matrigel® 
(BD Biosciences, San Jose, CA, USA) and a total of 1x105 cells 
were seeded into the upper chamber, while the lower chamber 
was incubated with 500 µl RPMI‑1640 medium containing 
20% FBS. The cells were incubated under a humidified atmo-
sphere of 5% CO2 at 37˚C for 12 h for the migration assay and 
24 h for the invasion assay. Subsequently, cells remaining in 
the upper chambers or on the upper membrane of the inserts 
were carefully removed with cotton swabs. Following fixa-
tion and staining in a dye solution containing 0.5% crystal 
violet (Beyotime Institute of Biotechnology) and 20% meth-
anol (Macklin Biochemical Co., Ltd, Shanghai, China), the 
cells adhering to the lower membrane of the inserts were 
counted and imaged with microscopy (magnification, x200). 
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Five five fields of vision for each insert were randomly selected 
and counted under a light microscope (IX53; Olympus Corp.). 
Each condition was assayed in triplicate and each experiment 
was repeated a minimum of three times.

Target of miR‑133b. In order to determine whether miR‑133a 
targets the MMP‑9 3'‑UTR, TARGETSCAN 5.2 (http://www.
targetscan.org/) and PICTAR (http://pictar.mdc‑berlin.de/) 
were used.

Western blot analysis. The transfected cells  (miR‑133a 
mimics and NC) were washed with ice‑cold PBS and 
lysed with 1% radioimmunoprecipitation assay lysis buffer 
(Beyotime Institute of Biotechnology) 72 h after transfection. 
The supernatants were collected and the protein concentra-
tions were determined using a Bicinchoninic Acid Assay kit 
(Beyotime Institute of Biotechnology). Equal quantities of the 
proteins were separated and analyzed using 10% SDS‑PAGE 
(Beyotime Institute of Biotechnology) and then transferred 
onto polyvinylidene difluoride membranes (Beyotime Institute 
of Biotechnology). The membranes were then blocked with 
5% skimmed milk (Shyuanmu, Shanghai, China), followed by 
incubation overnight at 4˚C with a primary rabbit anti‑human 
polyclonal MMP‑9 antibody (1:1,000; Bioworld Technology, 
Inc., St. Louis Park, MN, USA), according to the manufac-
turer's instructions. The membranes were then washed three 
times with Tris‑buffered saline with 1% Tween 20 (TBST; 
Beyotime) and then incubated at room temperature with 
the corresponding horseradish peroxidase‑conjugated goat 
anti‑rabbit secondary antibody (1:1,000) in TBST. Western 
blots were developed using enhanced chemilluminescence 
solution (Pierce Biotechnology, Inc., Rockford, IL, USA) and 
images were captured using a FluorChem imaging system 
(Alpha Innotech Corp., San Leandro, CA, USA). The data 
were normalized to β‑actin.

Luciferase assay. The HepG2 and SMMC‑7721 cells were 
transfected with 0.5 µg reporter plasmid, 40 nmol miR‑133a 
mimics or NC in a 12‑well plate using Lipofectamine 2000, 
according to manufacturer's instructions. The assays were 
performed using the Dual‑Luciferase Reporter Assay system 
(Promega Corporation, Manheim, Germany) 48 h after trans-
fection. The activities of Firefly and Renilla luciferase were 
measured using a luminometer (Tecan Group, Ltd, Maennedorf, 
Switzerland). The firefly luciferase activity was normalized to 
that of the Renilla luciferase for each transfected well. Each 
reporter plasmid was transfected a minimum of three times (on 
different days) and each sample was assayed in triplicate.

Statistical analysis. Data are presented as the mean ± stan-
dard deviation and were compared using the Student's t‑test 
using Stata 10.0 software (StataCorp LP, College Station, 
TX, USA). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Expression of miR‑133a prior to and following transfec‑
tion of miR‑133a mimics in HepG2 and SMMC‑7721 cells. 
The endogenous levels of miR‑133a in the HepG2 and 

SMMC‑7721 cells, and its expression following transfection 
with miR‑133a, was determined every 24 h. As expected, 
the basal expression of miR‑133a was too low to be shown 
in Fig. 1. However, following transfection with miR‑133a, 
the expression levels of miR‑133a were markedly increased 
compared with those of the untransfected cells at 24 h, until 
144 h. Of note, the expression of miR‑133a decreased in a 
time‑dependent manner from 24 h.

miR‑133a reduces the proliferation and colony formation 
abilities of HepG2 and SMMC‑7721 cells. In order to inves-
tigate the effect of miR‑133a on cell proliferation, an MTT 
assay was performed. The results demonstrated that upregu-
lation of miR‑133a significantly inhibited cell proliferation 
compared with the NC‑transfected cells (Fig. 2A). In addi-
tion, the MTT assays revealed that after 144 h of treatment, 
the suppression rate of miR‑133a reached 35.80±3.2% in the 
HepG2 cells and 41.15±3.6% in the SMMC‑7721 cells.

In order to investigate the effect of miR‑133a on colony 
formation in theHCC cells, a colony formation assay was 

Figure 1. Expression of miR‑133a in HepG2 and SMMC‑7721 hepatocellular 
carcinoma cells. The expression of miR‑133a was markedly increased until 
144 h following transfection with miR‑133a. Values are presented as the 
mean ± standard deviation. miR‑133a, microRNA‑133a.
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performed. As shown in Fig. 2B, the relative colony‑formation 
efficiency of the miR‑133a‑transfected cells was 53.2±4.5% 
in the HepG2 cells and 34.4±5.9% in the SMMC‑7721 cells, 
compared with the cells transfected with the NC (P<0.05). 
Overall, these results indicated that miR‑133a may be impor-
tant in the proliferation and colony formating ability of HCC 
HepG2 and SMMC‑7721 cells.

miR‑133a suppresses cell migration and invasion in HCC 
HepG2 and SMMC‑7721 cells. In order to measure the 
effect of miR‑133a on tumor cell migration and invasion, a 
Transwell® apparatus assay was performed. The results of the 
migration assay demonstrated that migration was significantly 
decreased in the miR‑133a‑transfected groups to 48.25±5.39% 
in the HepG2 cells and 58.46±6.21% in the SMMC‑7721 cells 
compared with those of the NC‑transfected groups (P<0.05; 
Fig. 3A). In the invasion assay (Fig.3B), miR‑133a‑transfection 
induced a 58.35±7.89% decrease in the number of invasive 
HepG2 cells and a 63.12±6.52% decrease in the number of 

invasive SMMC‑7721 cells compared with the NC‑transfected 
cells (P<0.05). These results indicated that the overexpression 
of miR‑133a reduced the migration and invasion abilities of 
the HCC cell lines.

MMP‑9 is downregulated following overexpression of 
miR‑133a in HCC cells. Western blot analysis was performed 
in order to determine whether the protein expression of MMP‑9 
was altered following transfection with miR‑133a mimics in 
the HCC HepG2 and SMMC‑7721 cell lines. As shown in 
Fig. 4, MMP‑9 was significantly downregulated in the HCC 
HepG2 and SMMC‑7721 cell lines following overexpression 
of miR‑133a compared with the NC‑transfected cells (P<0.05). 
These results indicated that miR‑133a may reduce the protein 
level of MMP‑9 in HCC cells.

MMP‑9 is a direct target gene of miR‑133a in HCC. To 
determine whether miR‑133a targets the MMP‑9 3'‑untrans-
lated region (UTR), TARGETSCAN 5.2 and PICTAR were 

Figure 2. Cell proliferation and colony forming ability of HepG2 and SMMC‑7721 cells following transfection with miR‑133a or miR‑NC. (A) 3‑(4, 5‑dimeth-
ylthiazol‑2‑yl)‑2,5‑ diphenyltetrazolium bromide assays were used to determine cell proliferation in the HCC cell lines. Upregulation of miR‑133a significantly 
suppressed cell proliferation in the HepG2 and SMMC‑7721 cells compared with that in the cells transfected with miR‑NC. (B) miR‑133a inhibited cell colony 
formation in HCC cells. A total of 2,000 transfected cells (miR‑133a and NC) were plated onto six‑well plates. On day 8, the cells were fixed with formalin and 
stained with methyl violet to reveal colony formation. The upregulation of miR‑133a significantly suppressed colony formation in the HepG2 and SMMC‑7721 
cell lines. Values are presented as the mean ± standard deviation. *P<0.05 vs. NC‑transfected cells. miR, microRNA; HCC, hepatocellular carcinoma; NC, 
negative control.
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Figure 3. Cell migration and invasion of HepG2 and SMMC‑7721 cells following transfection with miR‑133a or miR‑NC. (A) miR 133a inhibited cell migration 
in the HCC cell lines. After 12 h incubation, the number of miR‑133a‑transfected HepG2 and SMMC‑7721 cells that transversed the Transwell® membrane 
were significantly decreased. (B) miR 133a inhibited cell invasion in theHCC cell lines. After 24 h incubation, the number of miR‑133a‑transfected HepG2 and 
SMMC‑7721 cells that transversed the Transwell® membrane precoated with Matrigel were significantly decreased. Magnification, x200. Values are presented 
as the mean ± standard deviation. *P<0.05 vs. NC‑transfected cells. miR, microRNA; HCC, hepatocellular carcinoma; NC, negative control.

Figure 4. Western blot analysis of the protein expression of MMP‑9 following transfection with miR‑133a or miR‑NC in the HCC cell lines. The expression of 
MMP‑9 was significantly downregulated in the HepG2 and SMMC‑7721 cells following transfection of miR‑133a. Values are presented as the mean ± standard 
deviation. *P<0.05 vs. NC‑transfected cells. miR, microRNA; HCC, hepatocellular carcinoma; NC, negative control.
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used to assess the complementarity of miR‑133a to the 
MMP‑9 3'‑UTR. It was demonstrated that MMP‑9 mRNA 
contained an miR‑133a seven‑nucleotide seed match at posi-
tion 43‑49 of the MMP‑9 3'‑UTR (Fig.5A). 

Luciferase reporter assays were performed to evaluate 
whether MMP‑9 was a target of miR‑133a in HCC cells. As 
shown in Fig. 5B, overexpression of miR‑133a suppressed the 
activity of MMP‑9 3'‑UTR‑luciferase by 55% in the HepG2 
cells and 42% in the SMMC‑7721 cells compared with the 
NC‑transfected cells (P<0.05). Overall, these results indi-
cated that MMP‑9 may be a direct target of miR‑133a in vitro.

Discussion

miR‑133 is an miRNA family containing miR‑133a and 
miR‑133b; which differ by only one base in the terminal 3' 
position (33). miR‑133a is a multicopy gene, with two copies 
in chromosomes 18 and 20, which are located next to another 
muscle‑enriched miRNA, miR‑1, while miR‑133b is located 
in chromosome 6 (34). miR‑133a has been recognized as a 
muscle‑specific miRNA, which may regulate myoblast differen-
tiation and be involved in myogenic and heart diseases (30,35,36). 
Furthermore, miR‑133a has been commonly identified as being 
downregulated in various human malignancies, including 

hepatocellular carcinoma  (25), renal cell carcinoma  (26), 
esophageal squamous cell carcinoma (27), bladder cancer (28), 
ileal carcinoid (29) and rhabdomyosarcoma (30).

Identification of miR‑133a target genes is essential for 
understanding its role in tumorigenesis and for defining novel 
therapeutic targets. Studies have found that miR‑133a regu-
lates oncogenic transcripts in human cells, including FSCN1, 
EGFR, LASP1, GSTP1 and TAGLN2 (34,37,38). Therefore, 
upregulating miR‑133a or providing exogenous analogous 
pharmaceutical compounds may provide effective cancer 
therapies for HCC, which resulted from the overexpression of 
these oncogenic transcripts. The results of the present study 
revealed multiple inhibitory effects of miR‑133a in the HepG2 
and SMMC‑7721 HCC cell lines, including growth arrest, 
reduced cell colony formation ability and suppression of 
migration and invasion, by downregulating the expression of 
MMP‑9. These findings suggested that miR‑133a may be used 
for the development of novel molecular markers and thera-
peutic approaches for the inhibition of metastasis in HCC.

The incidence of HCC is increasing in several countries 
and is becoming one of the most prevalent types of terminal 
cancer worldwide (39). In addition, HCC is characterized 
by rapid progression, early metastasis and frequent recur-
rence  (40). Despite improvements in the diagnosis and 

Figure 5. MMP‑9 is a direct target gene of miR‑133a in HCC. (A) TARGETSCAN software was used assess the complementarity of miR‑133a to the 
MMP‑9 3'‑UTR, the results of which revealed that MMP‑9 mRNA contained a miR‑133a seven‑nucleotide seed match at position 43‑49 of the MMP‑9 3'‑UTR. 
(B) Luciferase reporter assays were performed in order to evaluate whether MMP‑9 was a target of miR‑133a in the HCC cells in vitro. Luciferase activity was 
reduced significantly to 55 and 42% in the HepG2 and SMMC‑7721 cells, respectively, following co‑transfection with miR‑133a and a reporter plasmid. Values 
are presented as the mean ± standard deviation. *P<0.05 vs. miR‑Ctrl. MMP‑9, matrix metallopetidase‑9; miR, microRNA; HCC, hepatocellular carcinoma; 
UTR, untranslated region; Ctrl, negative control.
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  B
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treatment of HCC, however, it remains an aggressive type of 
cancer with a poor prognosis. Tissue invasion and metastasis 
are the primary cause of mortality in patients with HCC (40). 
Defining the mechanisms regulating HCC invasion may iden-
tify novel elements, which may be exploited therapeutically to 
reduce metastasis and improve patient survival. The process 
of metastasis involves several steps, including the detachment 
of cancer cells from the primary tumour, followed by the 
migration, adhesion and invasion of cancer cells into blood 
or lymphatic vessels; cancer cells then undergo extravasation 
and subsequently interact with target tissues, where they 
form metastastic foci in distant organs (41). The destruction 
of the extracellular matrix (ECM) by enzymes is an essen-
tial initial step in the processes of tumor cell invasion and 
metastasis, and several studies have reported that, among the 
enzymes responsible for ECM degradation, MMPs are have 
a critical role (42,43).

MMPs are a family of zinc‑dependent endopeptidases, 
which have share several structural and functional properties, 
but with different substrate specificities (44). MMPs are impor-
tant in various physiological processes, which include tissue 
remodeling, organ development, angiogenesis, inflammatory 
processes, vascular and autoimmune disorders and cancer (45). 
In addition, MMPs are upregulated in various types of human 
malignant tumor. The majority of clinical data had revealed 
correlations between the expression of MMPs and advanced 
tumor stages, invasion, metastasis and decreased survival 
rates  (46). Previous studies have demonstrated that several 
MMPs are overexpressed in HCC and that high expression 
levels of MMPs are associated with cancer progression and 
metastasis (47‑49). It was therefore suggested that inhibitors of 
MMP activity may be investigated for the prevention or reduc-
tion of tumor metastasis.

A total of 24 soluble and membrane‑anchored members 
of the MMP family have been identified, which are subdi-
vided into four families based on structure and substrate 
specificity as follows: Collagenases, gelatinases, stromelysins 
and membrane‑associated MMPs (50). Among these MMPs, 
the activities of MMP‑2 and ‑9 have been associated with the 
progression of HCC (48,51). In addition, these studies revealed 
an association between the overexpression of MMP‑2 or ‑9 and 
the invasion and metastasis of HCC. Increased levels of MMP‑9 
in HCC also correlate with increased tumour recurrence and 
metastasis following resection (48,49,52). Hayasaka et al (53) 
reported that MMP‑9 plasma levels were upregulated in HCC 
patients, particularly in patients who presented with macro-
scopic portal vein invasion, which suggested that MMP‑9 may 
serve as a marker for transformation and invasion in HCC or as 
a therapeutic target for the inhibition of metastasis in HCC. The 
results of the present study suggested that miR‑133a suppressed 
HCC cell migration and invasion via the downregulation of 
MMP‑9, therefore indicating the predictive value of MMP‑9 for 
early detection of tumor metastasis and as a target for preventa-
tive therapies to inhibit HCCs becoming invasive.

In conclusion, to the best of our knowledge, the present 
study was the first to demonstrate that miR‑133a inhibited 
HCC cell proliferation, colony formation, migration and 
invasion by downregulating the expression of MMP‑9. These 
findings have therapeutic implications and may be exploited 
for further treatment of HCC. Further studies are required to 

determine whether the potential of miR‑133a may be fully 
realized in cancer treatment.
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