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Abstract. The aim of the present study was to investigate the
characteristic microRNAs (miRNAs) expressed during the
pre-invasive and invasive stages of cervical cancer. A gene
expression profile (GSE7803) containing 21 invasive squamous
cell cervical carcinoma samples, 10 normal squamous cervical
epithelium samples and seven high-grade squamous intraepi-
thelial cervical lesion samples, was obtained from the Gene
Expression Omnibus. Differentially expressed genes (DEGs)
were identified using significance analysis of microarray
software, and a Gene Ontology (GO) enrichment analysis was
conducted using the Database for Annotation, Visualization
and Integrated Discovery. The miRNAs that interacted with
the identified DEGs were selected, based on the TarBase v5.0
database. Regulatory networks were constructed from these
selected miRNAs along with their corresponding target genes
among the DEGs. The regulatory networks were visualized
using Cytoscape. A total of 1,160 and 756 DEGs were identi-
fied in the pre-invasive and invasive stages of cervical cancer,
respectively. The results of the GO enrichment demonstrated
that the DEGs were predominantly involved in the immune
response and the cell cycle, in the pre-invasive and invasive
stages, respectively. Furthermore, a total of 18 and 26 char-
acteristic miRNAs were screened in the pre-invasive and
invasive stages, respectively. These miRNAs may be potential
biomarkers and targets for the diagnosis and treatment of the
different stages of cervical cancer.

Introduction
Cervical cancer is the most common gynecological malig-

nancy, and is the second leading cause of cancer-associated
mortality in females worldwide (1,2). One reason for the high
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levels of prevalence of this cancer is the lack of awareness and
early detection approaches (3,4). Therefore, understanding
the underlying molecular mechanisms of cervical cancer, and
establishing more effective therapies are important areas of
ongoing research.

The identification and characterization of key microRNAs
(miRNAs) that participate in cervical cancer, is essential for
determining the underlying mechanisms of this disease and
establishing novel therapeutic strategies. miRNAs are 20-24 nt
RNAs that are derived from distinct hairpin precursors in
animals, plants and fungi, which bind to complementary
sequences on target mRNAs (5,6). miRNAs regulate gene
expression by cleaving target mRNAs, and by translational
suppression at the post-transcriptional level (7). Previous
studies have shown that miRNAs have important roles in
various biological and metabolic processes, including cell
growth, apoptosis, viral infection, differentiation, signal trans-
duction and cancer (8-11). Numerous studies have demonstrated
that miRNAs are involved in the initiation and progression of
cancer, and may be potential biomarkers for the diagnosis and
prognosis of tumors, in addition to functioning as potential
therapeutic targets (12-14). Therefore, it may be beneficial to
identify novel miRNAs to act as diagnostic and therapeutic
biomarkers, or therapeutic targets, in cervical cancer.

Recently, molecular network analysis technology,combined
with gene expression profile data, has exhibited potential in a
number of areas, including classification of diseases and the
identification of novel therapeutic targets (15,16). In the present
study a microarray dataset of healthy and malignant cervical
samples was downloaded from the Gene Expression Omnibus
(GEO) database. Differentially expressed genes (DEGSs) were
identified between these groups. Based on the TarBase v5.0
database, regulatory networks were constructed from selected
miRNAs and their corresponding target genes from the iden-
tified DEGs. Key miRNAs, which may be used as potential
biomarkers or therapeutic targets in cervical cancer, were
subsequently identified.

Materials and methods

Affymetrix microarray data. A gene expression profile gener-
ated by Zhai et al (17) was used in the present study, which
was deposited in the GEO database (http:/www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE7803). This gene expression
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profile is based on the GPL96 platform (Affymetrix Human
Genome U133A Array). A total of 38 samples were avail-
able, including 21 invasive squamous cell cervical carcinoma
(SCC) samples, ten normal squamous cervical epithelium
(NE) samples and seven high-grade squamous intraepithelial
cervical lesion (HSIL) samples.

Screening of DEGs. In order to identify the DEGs, the original
GSE7803 dataset was converted into an identifiable expres-
sion form and was normalized. Probe sets were mapped to
the National Centers of Biotechnology Information genes
(http:/www.ncbi.nlm.nih.gov). Probe sets that corresponded to
numerous genes or to no genes were removed from subsequent
analyses. For genes that corresponded with numerous probe sets
and had a plurality of expression values, the expression values
were averaged. Subsequently, the SAMR package (18) in R
and a significance analysis of microarray (SAM) were used to
identify the DEGs between the samples (19). SAM software is
a practical tool used for detecting significantly expressed genes,
and for controlling the proportion of falsely detected genes.
In the present study, genes with a fold-change >1.2 and a false
discovery rate (FDR) <0.05 were selected as DEGs. In addition,
the identified DEGs were divided into two groups: DEGs from
the NE and HSIL samples were considered pre-invasive DEGs,
whereas DEGs from the HSIL and invasive SCC samples were
considered invasive DEGs.

Functional enrichment analysis of DEGs. The Database for
Annotation, Visualization and Integrated Discovery (DAVID;
http://david.abcc.ncifcrf.gov/) is a web-accessible program
that provides a comprehensive set of functional annotation
tools, which may be used by investigators to understand the
underlying biological functions of large lists of genes (20).
The present study used DAVID to perform a Gene Ontology
(GO) enrichment analysis of the identified DEGs. Based
on hypergeometric distribution, GO terms were enriched,
and numerous testing corrections were conducted using the
Benjamini-Hochberg method (21). An FDR<0.05 was set as
the cut-off value.

Construction of regulatory networks. TarBase is a database
that contains a manually curated collection of experimentally
supported miRNA targets from a animal, pant and viral
species of central scientific interest (22). TarBase v5.0 is the
updated and extended version of the TarBase database, with
>1,300 experimentally supported miRNA-target interactions
(MTIs). It contains 1,094 human MTTIs between 285 miRNAs
and 1,721 target genes.

In the present study, human miRNA target gene data were
downloaded from the TarBase v5.0 database (http://diana.
cslab.ece.ntua.gr/tarbase/). miRNAs that interacted with
the identified DEGs were then selected. Subsequently, MTIs
regulatory networks were constructed from these selected
miRNAs and their corresponding target genes within the
DEGs. The MTIs regulatory networks were visualized by
Cytoscape (23). In addition, the MTIs regulatory networks
were divided into two groups: The regulatory network
constructed from the selected miRNAs and the pre-invasive
DEGs was termed the pre-invasive regulatory network,
whereas the regulatory network constructed from the

selected miRNAs and the invasive DEGs was termed the
invasive regulatory network.

Comparison of the regulatory networks. In order to determine
the differences between the pre-invasive and invasive stages
of cervical cancer, regulatory networks were constructed and
compared. Regulatory networks may be characterized by
topological properties, such as degree (24). Degree is defined
as the number of edges per node, which indicates the number
of interacting partners. The present study used Freeman's
degree centrality to analyze the degree of the regulatory
networks (25). Freeman's degree centrality consists of ingoing
(in-degree) and outgoing degree (out-degree). In-degree refers
to the number of links a node receives from other nodes,
whereas out-degree refers to the number of links originating
from a particular node.

Results

DEG analysis. The original GSE7803 dataset was down-
loaded from the GEO database, and the DEGs were identified
using SAM. Genes with a fold-change >1.2 and an FDR <0.05
were classed as DEGs. A total of 1,160 pre-invasive and 756
invasive DEGs were identified. In addition, 2,001 DEGs were
identified from the NE and invasive SCC samples.

GO analysis of DEGs. In order to study the DEGs that
contributed to cervical cancer, a GO enrichment analysis for
the pre-invasive and invasive DEGs was performed using
DAVID software. The pre-invasive DEGs (e.g. PSMBI0,
POU2AFI, ST6GALI, CLU, SERPINGI and APOL2) were
predominantly involved in the immune response, such as the
acute inflammatory response (FDR=3.06E-04; Table I). By
contrast, the invasive DEGs (e.g. TTK, AURKA, BRCA2,
PSMC3IP, CDK10 and TUBGI1) were predominantly
involved in the regulation of the cell cycle, such as Cell Cycle
(FDR=1.25E-19; Table II).

Construction of regulatory networks. Based on human MTIs
data, pre-invasive and invasive regulatory networks were
constructed. The pre-invasive regulatory network consisted of
80 pairs of regulatory interactions between 18 miRNAs and
66 pre-invasive DEGs (Fig. 1). The invasive regulatory network
consisted of 64 pairs of regulatory interactions between 26
miRNAs and 51 invasive DEGs (Fig. 2). The highest out-degree
was observed in miR-124, in the pre-invasive as well as the
invasive regulatory networks.

Comparisons between the regulatory networks. Based on
the topological properties of the networks, the similari-
ties and differences between the pre-invasive and invasive
regulatory networks were identified. The invasive regulatory
network (Fig. 2) consisted of many smaller sub-networks and
the out-degree of miRNAs was decreased, compared with
those in the pre-invasive regulatory network (Fig. 1). For
example, there were 14 DEGs associated with miR-1, and 21
DEGs associated with miR-124 in the pre-invasive regula-
tory network (Fig. 1). However, only eight and nine DEGs
were associated with miR-1 and miR-124 in the invasive
regulatory network, respectively (Fig. 2).
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Figure 1. Pre-invasive regulatory network. Regulatory network constructed by microRNAs and differentially expressed genes from normal squamous cervical
epitheilum and high grade squamous intraepithelial cervical lesion samples. Red nodes represent target differentially expressed genes and green nodes rep-
resent microRNAs. Blue lines represent microRNA-target regulatory interactions (in-degree), and arrows indicate microRNA target differentially expressed
genes (out-degree). The size of each green node represents the out-degree. As the out-degree increases, the associated green node becomes larger.

A total of 10 common miRNAs were identified in the
regulatory networks. Three miRNAs: miR-1, miR-124 and
miR-16, had a degree change >5. In addition, there were eight
miRNAs that were only detected in the pre-invasive regula-
tory network (Fig. 1), including miR-126 and miR-199a. By
contrast, there were 16 miRNAs that were only detected in
the invasive regulatory network (Fig. 2), including miR-127,
miR-143, miR-17-5p, miR-26a, miR-29a, miR-34a and
miR-375.

Discussion

Malignant transformation during tumor progression results
from a series of genetic alterations (26). In order to gain a
better understanding of the genetic changes that occur during
the progression of cervical cancer, a gene expression profile
(GSE7803) was analyzed using a bioinformatics approach. In the
present study, a total of 756 invasive DEGs, 1,160 pre-invasive
DEGs, and 2,001 DEGs from invasive SCC and NE samples,
were identified. These findings are in accordance with those
of previous studies, which have consistently shown that the

expression of genes is markedly altered in invasive tumor cells,
compared with that of noninvasive and normal cells (27,28).
Furthermore, the results of a GO enrichment of the identi-
fied DEGs, indicated that the expression of key genes differs
between the pre-invasive and invasive stages of cervical cancer.

Clusterin (CLU) was initially identified as a secreted
glycoprotein that has a cytoprotective role. However, numerous
intracellular CLU variants have recently been identified in
diverse pathological conditions (29-31). Furthermore, recent
studies have shown that CLU is involved in various biological
functions, such as cell death, tumor progression and neuro-
degenerative disorders (32,33). A previous study used DNA
microarray data to identify novel candidate molecular markers
for cervical cancer diagnosis and therapy, and observed the
downregulation of human C1 inhibitor (SERPING]) in invasive
cervical carcinoma cells (34). In addition, a recent genomic
study demonstrated that apolipoprotein L2 (APOL?2) is mark-
edly upregulated in cervical cancer (35). These findings, as well
as the results of the present study, indicate that CLU, SERPINGI1
and APOL2 may have important roles in the progression of
cervical cancer.
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Figure 2. Invasive regulatory network. Regulatory network constructed by microRNAs and differentially expressed genes from invasive squamous cell cer-
vical carcinoma samples and high grade squamous intraepithelial cervical lesion samples. Red nodes represent target differentially expressed genes and green
nodes represent microRNAs. Blue lines represent microRNA-target regulatory interactions (in-degree), and arrows indicate microRNA target differentially
expressed genes (out-degree). The size of each green node represents the out-degree. As the out-degree increases, the green node becomes bigger.

TTK has been shown to be associated with metastasis via
chromosomal instability, in a previous study, which aimed to
identify genes associated with the progression and metastasis
of advanced cervical cancer following radiotherapy (36).
Furthermore, genetic variants of Aurora A kinase (AURKA)
have been shown to be associated with a radiotherapy-induced
early adverse reaction in patients with cervical cancer (37).
Previous studies have demonstrated that both BRCA1 and
BRCA2 participate in a common DNA damage response
pathway, and are involved in the activation of homologous
recombination and double-strand break repair (38). By
contrast, Narayan et al (39) reported the downregulation of
BRCALI in a small subset of patients with cervical cancer.
These previous findings and the results of the present analysis
suggest that TTK, AURKA and BRCA?2 may participate in the
progression of cervical cancer.

In order to obtain the upstream regulatory information of
the DEGs, two regulatory networks were constructed based on
the TarBase v5.0 database. These regulatory networks were

then compared, and the common and specific miRNAs were
identified. The miRNA with the highest out-degree was shown
to be miR-124, in the pre-invasive as well as the invasive
regulatory networks. miR-124 has previously been shown to
be the most abundant miRNA expressed in neuronal cells (40).
Furthermore, previous studies have shown that the upregula-
tion of miR-124 induces neuronal differentiation of various
tumor cell lines in mice (41-43). Wilting et al (44) previously
demonstrated that the silencing of miR-124 expression, by
methylation, inhibited the development of cervical carcinoma.
These results suggest that miR-124 may be a potential thera-
peutic target for cervical cancer therapy.

Of the eight miRNAs specific to the pre-invasive regula-
tory network, miR-126 has previously been reported to be
downregulated in cervical cancer tissues (45), and miR-199a
has previously been suggested as a potential therapeutic target
for cervical cancer therapy (46). miR-126 is a human miRNA
that is expressed only in endothelial cells, throughout capil-
laries as well as in larger blood vessels (47), and acts upon
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various transcripts in order to control angiogenesis (48).
miR-126 has been identified as a tumor suppressor and as an
oncogene, depending on the type of cancer involved. Inhibition
of cancer progression by miR-126 is achieved through the
negative control of proliferation, migration, invasion and cell
survival. However, miR-126 may also support cancer progres-
sion through the promotion of blood vessel formation and
inflammation at the site of activation (49). According to these
previous findings and the results of the present study, miR-126
may be a potential biomarker for the diagnosis of cervical
cancer, and a therapeutic target for the pre-invasive stage of
this disease.

Of the 16 miRNAs specific to the invasive regulatory
network, seven have been reported in previous studies and
described as being upregulated or downregulated in cervical
cancer. These include miR-127, miR-143, miR-17-5p, miR-26a,
miR-29a, miR-34a and miR-375 (45,50-54). Lee et al (46)
demonstrated that the expression of miR-127 was significantly
increased in patients with invasive squamous cell carcinoma,
which had metastasized to the lymph nodes. The results of
the present study are in accordance with those of previous
studies, which indicate that miR-127 may be a marker for
lymph node metastasis in invasive cervical cancer. miR-143 is
highly conserved in vertebrates (55) and changes in miR-143
expression have frequently been implicated in cancer (56-58).
Furthermore, the upregulation of miR-143 has previously been
observed in a hepatocellular carcinoma model during tumor
metastasis, through repression of FNDC38 (59). However,
reduced expression of miR-143 has also been observed in a
range of cancer stages, including at very early stages (60). The
results of previous studies and of the present study indicate
that miR-143 may be involved in tumor progression, and may
be a candidate for RNA-targeted treatment of tumors (61).
Wang et al (52) previously reported that miR-375 is downregu-
lated in squamous cervical cancer, and inhibits cell migration
and invasion by targeting the transcription factor, SP1. This
finding indicates that deregulation of miR-375 may have an
important role in the malignant transformation of cervical
cancer cells. However, the elucidation of the underlying
molecular mechanisms of miR-17-5p, miR-26a, miR-29a and
miR-34a in the progression of cervical cancer, and the use of
other miRNAs screened in the present study as biomarkers or
therapeutic targets in cervical cancer require further investiga-
tion.

In conclusion, a total of 1,160 and 756 DEGs were identified
in the pre-invasive and invasive stages of cervical cancer, respec-
tively. The GO enrichment analysis demonstrated that the DEGs
were primarily involved in the immune response and regulation
of the cell cycle, in the pre-invasive and invasive stages, respec-
tively. These findings indicate that the expression of key genes
differs between the pre-invasive and invasive stages of cervical
cancer progression. Based on the analysis of the regulatory
networks, a total of 18 and 26 key miRNAs were screened in the
pre-invasive and invasive stages, respectively. It is hypothesized
that these miRNAs are involved in the malignant transforma-
tion of cervical cancer cells. In addition, these miRNAs may
have a function as novel biomarkers in cervical cancer diagnosis
and detection, and as therapeutic targets in this disease. Further
studies in independent patient cohorts are required, in order to
validate the potential roles of these miRNAs.
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