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Abstract. Glioblastoma multiforme (GBM) is the most 
malignant type of human glioma, and has a poor prognosis. 
Screening differentially expressed genes (DEGs) in brain 
tumor samples and normal brain samples is of importance 
for identifying GBM and to design specific‑targeting drugs. 
The transcriptional profile of GSE30563, containing three 
genechips of brain tumor samples and three genechips of 
normal brain samples, was downloaded from Gene Expression 
Omnibus to identify the DEGs. The differences in the expres-
sion of the DEGs in the two different samples were compared 
through hierarchical biclustering. The co-expression coef-
ficient of the DEGs was calculated using the information from 
COXPRESdb, the network of the DEGs was constructed and 
functional enrichment and pathway analysis were performed. 
Finally, the transcription factors of important DEGs were 
predicted. A total of 1,006 DEGs, including 368 upregulated 
and 638 downregulated DEGs, were identified. A close 
correlation was demonstrated between six important genes, 
associated with immune response, HLA-DQB1, HLA-DRB1, 
HLA-DPA1, HLA-B, HLA-DMA and HLA-DRA, and the 
immune response. Allograft rejection was selected as the 
most significant pathway. A total of 17 transcription factors, 
including nuclear factor (NF)-κB and NF-κB1, and their 
binding sites containing these six DEGs, were also identi-
fied. The DEGs, including major histocompatibility complex 
(MHC) class II, DQβ1, MHC class II, DRβ1, MHC class IB, 
MHC class II, DMα, MHC class II, DPα1, MHC class II, DRα, 
may provide novel targets for the diagnosis and treatment of 

GBM. The transcription factors of these six genes and their 
binding sites may also provide evidence and direction for 
identifying target‑specific drugs.

Introduction

Glioblastoma multiforme (GBM) is the most malignant type 
of human glioma and has a poor prognosis. Despite advances 
in diagnosis and treatment, the median survival rate of 
patients with GBM remains ~15 months (1-3). GBM is one of 
the most intractable types of refractory tumor. Surgery and 
radiotherapy have been the predominant forms of therapy for 
GBM, however, the curative effect is poor (4). Gene treatment 
offers possible approaches in the treatment of GBM, however, 
it retains shortcomings, including the lack of special target 
genes and high‑efficiency carriers (5). For decades, how to 
treat GBM has remained a focus and difficulty in investiga-
tions and clinical treatment.

There has been substantial progress in the use of 
microarrays for investigating the molecular mechanisms of 
brain gliomas. Microarrays are valuable for identifying the 
important genes involved in the occurrence, development 
and targeted therapy of gliomas (6). Microarrays have been 
used to screen genes associated with GBM (3,7,8), and bioin-
formatics analysis has revealed that these genes, screened 
using a microarray, are closely associated with cell signal 
transduction, cell metabolization, cytoskeleton and motility, 
immunity, the cell cycle and apoptosis (7). However, the 
specific molecular mechanisms underlying human GBM are 
not yet fully understood.

In the present study, the transcriptional profile of GSE30563 
was downloaded and the differentially expressed genes (DEGs) 
between GBM and healthy brain tissues were identified. In 
addition, a co-expression network of DEGs was constructed, 
and Gene Ontology (GO) functional and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analyses were 
performed to identify the target genes for the diagnosis and 
treatment of GBM. Finally, the interactions between DEGs 
and transcription factors were assessed for further evaluation 
at the molecular level. The findings of these investigations may 
contribute to improvements in the understanding and diagnosis 
of GBM, and the design of target‑specific drugs.

Screening of differentially expressed genes associated with human 
glioblastoma and functional analysis using a DNA microarray
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Materials and methods

Microarray data. The transcriptional profile of GSE30563 
was downloaded from Gene Expression Omnibus (GEO) 
(http://www.ncbi.nlm.nih.gov/geo/), which was based on 
the platform of the Affymetrix Human Genome U133 
Plus 2.0 array. This dataset (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE30563) was deposited by 
Lee et al (Ajou University School of Medicine, Suwon, South 
Korea). To identify DEGs, human brain tumor samples and 
normal brain samples were collected from patients with a 
brain tumor, for subsequent RNA extraction and hybridiza-
tion on Affymetrix microarrays. A total of six genechips 
(GSM758396, GSM758397, GSM758398, GSM758399, 
GSM758400 and GSM758401) were available for further 
analysis, including three genechips of brain tumor samples 
and three genechips of normal brain samples.

Data pre‑processing and analysis of differential expression. 
The probe‑level data in the raw data files were converted into 
expression measures, according to the function of log2 (9). 
The expression values of all the probes were matched 
to the genes and the empty probes were reduced. The 
LIMMA package in R (http://www.bioconductor.org/pack-
ages/release/bioc/html/limma.html) (10) was used to identify 
the DEGs in the brain tumor samples compared with the 
healthy controls. The present study selected a cut-off criteria 
of P≤0.01 and |log2fold change|>1 to identify the DEGs.

Comparison of differential expression in different samples. 
The expression values of the DEGs in each sample were 
extracted from the expression value files, according to the 
information of the probes corresponding to the DEGs. Based 
on these expression values, the pheatmap package in R was 
used for hierarchical clustering (11), through Euclidean 
distance (12), and a heat map was constructed.

Searching for the co‑expression network of DEGs. 
COXPRESdb (http://coxpresdb.hgc.jp) is a database of 
co-expressed gene networks and can assist in elucidating the 
function and regulation network of genes in a wide range of 
mammals (13). Based on the hypothesis that genes, which are 
regulated by the same transcription factor, are co-expressed, 
and that co-expressed genes may be associated in func-
tion (14), the DEGs were divided into either upregulated or 
downregulated genes, and co-expression networks of the 
DEGs were constructed, using the information obtained from 
COXPRESdb. The gene pairs with a co‑expression coefficient 
>0.6 were selected, and the network was visualized using 
Cytoscape software (http://www.cytoscape.org/) (15).

GO and pathway analyses of the DEGs. The Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
is a web-accessible program, which clusters distinct genes by 
the pathways in which they are involved, producing intuitive 
graphical summaries (16). The DEGs in the co-expression 
networks in the present study were analyzed using DAVID to 
identify which biological process the genes in the networks 
were involved in. To circumvent the problem of multi-testing, 
which may induce too many false positive results, the 

Benjamini and Hochberg method (17) was used to adjust the 
raw P-values into false discovery rate (FDR). FDR<0.05 was 
used as the cut-off criterion. The DEGs were analyzed using 
KEGG, and the biological pathways, which were mapped 
significantly by the DEGs were identified (18,19).

Interactions between DEGs and transcription factors. The 
gene sequence can inhibit or enhance the expression of a gene 
by covalently binding to the transcription factor DNA binding 
domain (20). In the present study, based on text mining using 
PubChem Bioassay neighboring analysis (http://pubchem.
ncbi.nlm.nih.gov/) (21), the interactions between the genes 
and transcription factors were extracted using the online 
tool, EpiTect ChIP qPCR Primers (http://www.sabiosciences.
com/chipqpcrsearch.php?app=TFBS).

Results

Screening for DEGs. Following data preprocessing, the 
expression values with high standardization were analyzed 
through comparison of the differences (Fig. 1). A total of 
1,006 DEGs, exhibiting a cut‑off criteria P<0.01 and |logFC|>1, 
were selected, including 638 downregulated and 368 upregu-
lated DEGs.

Hierarchical clustering analysis of DEGs. Hierarchical clus-
tering revealed systematic variations in the expression levels of 
genes between the brain tumor samples and the healthy control 
samples (Fig. 2). The results revealed that these differential 
probes were able to distinguish these two groups from the 
whole samples.

Searching for the co‑expression networks of DEGs. 
COXPRESdb was used to construct a co-expression network 
of the resulting DEGs, following which a total of 113 gene 
pairs with a co‑expressed coefficient >0.6 were identified. 
These were subsequently visualized using Cytoscape (Fig. 3) 
and, among them, the ANXA2 and ANXA2P2 gene pairs 
were selected as exhibiting the highest co-expression coef-
ficient of 0.94.

GO functional and pathway analyses of the DEGs. Based 
on the co-expression network, GO functional enrichment 
analysis of the DEGs was performed using DAVID soft-
ware, with FDR<0.05. The results indicated that 59 DEGs 
were significantly increased in seven GO terms (Table Ⅰ). 
The most significant functional term was associated with 
the immune response, and the genes enriched in this term 
included major histocompatibility complex (MHC) class II, 
DQβ1 (HLA-DQB1), MHC class II, DRβ1 (HLA-DRB1), 
MHC class IB (HLA-B), MHC class II, DMα (HLA-DMA), 
MHC class II, DPα1 (HLA-DPA1) and MHC class II, DRα 
(HLA‑DRA). The KEGG pathway analysis identified six path-
ways (Table Ⅱ), which had an FDR<0.05. The most significant 
pathway was associated with allograft rejection, and the genes 
enriched in this pathway were HLA-DQB1, HLA-DRB1, 
HLA-DPA1, HLA-B, HLA-DMA and HLA-DRA.

Transcription factors of important DEGs. Based on the 
comparison of the most significant biological process 
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and KEGG pathway, six genes, including HLA-DQB1, 
HLA-DRB1, HLA-DPA1, HLA-B, HLA-DMA and 
HLA-DRA, were differentially expressed in two lists at 
the same time, located on the short arm of chromosome 6 
(Fig. 4). A total of 17 transcription factors, including nuclear 
factor (NF)-κB, NF-κB1 and their binding sites, were identi-
fied with these six important DEGs.

Discussion

GBM is one of the most frequent types of human brain cancer 
and it develops from either a lower grade astrocytic tumor or 
primary GBM (22). However, neither chemotherapy nor radio-
therapy have been effective in treating this type of cancer (23). 
Biochip technology has emerged as an efficient, rapid and 

Table Ⅱ. Results of differentially expressed genes in KEGG pathway enrichment analysis.

Term KEGG FDR

hsa05330 Allograft rejection 0.008554
hsa05322 Systemic lupus erythematosus 0.011522
hsa05332 Graft-versus-host disease 0.012834
hsa04940 Type I diabetes mellitus 0.018628
hsa04612 Antigen processing and presentation 0.046172
hsa05320 Autoimmune thyroid disease 0.048764

FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table Ⅰ. Results of GO functional enrichment analysis for differentially expressed genes.

Term Name Count FDR

GO:0006955 Immune response 18 9.03E-06

GO:0019882 Antigen processing and presentation 8 1.33E-04

GO:0002504 Polysaccharide antigen via MHC class II 6 5.35E-04

GO:0030198 Extracellular matrix organization 7 0.011087
GO:0030199 Collagen fibril organization 5 0.012866
GO:0043062 Extracellular structure organization 8 0.012897
GO:0002252 Immune effector process 7 0.04723

GO, Gene Ontology; FDR, false discovery rate.

Figure 1. Box-plot of the gene expression values following standardization, detected using the LIMMA package in R. The pink boxes indicate the samples from 
patients with glioblastoma multiforme and the blue indicates the normal samples. The black line represents the median value in each set of data. The whiskers 
represent the upper edge and lower edge of the box plot, which are the maximum and minimum expression values, respectively.
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Figure 3. Interaction networks of the DEGs. The red nodes represent the upregulated DEGs and the green nodes represent the downregulated DEGs. DEG, 
differentially expressed genes.

Figure 4. Diagrammatic representation of the transcription factors of differentially expressed genes and their binding sites with the genes. Red arrows indicate 
transcription start sites, and green lines represent transcription binding sites. NF, nuclear factor.

Figure 2. Hierarchical clustering of human brain tumor samples and normal brain tissue samples based on the differentially expressed genes. The Database for 
Annotation, Visualization and Integrated Discovery programme was used for clustering. Blue indicates the expression value of downregulated genes, orange 
indicates the expression value of upregulated genes and red boxes represent clustering of the normal brain samples with the brain tumor samples.
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multi-parameter technology, which provides a useful strategy 
for diagnosis, classification and therapy against the develop-
ment of human GBM.

The present study identified 1,006 DEGs, including 
638 upregulated and 368 downregulated DEGs, from the gene 
expression profile of GSE30563. Following this, a co‑expres-
sion network of DEGs was constructed and GO functional 
and KEGG pathway analyses were performed. Functional 
analysis of the DEGs demonstrated a close correlation with 
the immune response. Additionally, allograft rejection was the 
most significantly enriched pathway, and the genes involved in 
these processes were HLA-DQB1, HLA-DRB1, HLA-DPA1, 
HLA-B, HLA-DMA and HLA-DRA.

These genes belong to the human leukocyte antigen (HLA) 
gene family. The HLA genes encode numerous molecules, 
including HLA class I and II, and are known to be associ-
ated with the majority of autoimmune diseases (24). Human 
HLA molecules are important in eliminating tumor cells 
with cellular and humoral immunity (25,26). The HLA-DRA, 
HLA-DRB1, HLA-DQB1, HLA-DPA1 genes belong to the 
HLA class II β chain paralogs. They bind peptides derived 
from antigens, which access the endocytic route of antigen 
presenting cells (APCs) and present them on the cell surface 
for recognition by CD4 T‑cells (27). The HLA‑DMA gene 
belongs to the HLA class II α chain paralogues. It is involved 
in the peptide loading of MHC class II molecules, by assisting 
in the release of the class II-associated invariant chain peptide 
molecule from the peptide binding site (28). The HLA-B gene 
belongs to the HLA class I heavy chain paralogues. Class I 
molecules are important in the immune system by presenting 
peptides derived from the endoplasmic reticulum lumen (29). 
GBM function profoundly impairs the immune response by 
inhibiting the proliferation and activation of T-cells, inducing 
regulator T-cells and triggering apoptosis (30). In addition, 
it has been reported that the expression of HLA is positively 
associated with patients with GBM. For example, compared 
with the control population, HLA-B*27 exhibits a 2.7‑fold 
increase and HLA-DRB1*15 exhibits a 2.2-fold increase in the 
risk of glioma occurrence (31), suggesting that the HLA family 
may be used as a specific therapeutic molecular target in the 
treatment of GBM.

Allograft rejection includes a coordinated response of the 
innate and adaptive immune systems of the host (32). The 
mechanism for allograft rejection in the immune response 
may be similar to this (33), in that the innate immune system is 
involved in the early phase of the allograft response by chemo-
kines and cell adhesion, which are essential for leukocyte 
migration into the graft and T‑cell trafficking between lymph 
nodes and the transplant. The T cells and other cells from the 
innate immune system act synergistically to reject the allograft 
through nonexclusive pathways, including the cytotoxicity of 
contact-dependent T cells, the activation of granulocyte and 
natural killer cells and the production of alloantibody. GBM 
is closely associated with the immune response, suggesting 
that allograft rejection is possibly involved in the processes of 
GBM. However, further investigations are required to confirm 
this hypothesis.

In conclusion, the present study demonstrated that 
HLA-DQB1, HLA-DRB1, HLA-DPA1, HLA-B, HLA-DMA, 
HLA-DRA are associated with GBM. In addition, the patho-

genesis of GBM was closely associated with the immune 
response and pathways, including allograft rejection. These 
findings may offer novel targets for the diagnosis and treat-
ment of GBM.
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