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Abstract. Although genetic variants, which regulate lipid 
metabolism, have been extensively investigated in Caucasian 
populations, the genes, which confer susceptibility to dyslip-
idemia in Japanese individuals, remain to be elucidated. The 
aim of the present study was to examine a possible association 
among hypertriglyceridemia, hypo‑high density lipoprotein 
(HDL)‑cholesterolemia or hyper‑low density lipoprotein 
(LDL)‑cholesterolemia in Japanese individuals with 29 poly-
morphisms observed to confer susceptibility for coronary 
heart disease. This was performed through meta‑analyses of 
genome‑wide association studies in Caucasian populations. 
The study population comprised 2,354 individuals with dyslip-
idemia (hypertriglyceridemia, hypo‑HDL‑cholesterolemia or 
hyper‑LDL‑cholesterolemia) and 3,106 control individuals. 
To compensate for multiple comparisons of genotypes, a false 
discovery rate (FDR) of <0.05 was adopted to determine the 
statistical significance of the associations. Comparisons of 
allele frequencies using the χ2 test revealed that rs964184 of 
zinc finger gene (ZPR1; FDR=2.1x10‑7), rs4845625 of 
interleukin 6 receptor (IL6R; FDR=0.032), rs46522 of ubiq-
uitin‑conjugating enzyme E2Z gene (UBE2Z; FDR=0.032) 
and rs17514846 of furin (FDR=0.041) were significantly 
associated with hypertriglyceridemia. The χ2 test revealed 
that rs599839 of proline/serine‑rich coiled‑coil 1 (PSRC1; 
FDR=0.004) and rs2075650 of translocase of outer mitochon-
drial membrane 40 homolog (TOMM40; FDR=0.004) were 

significantly associated with hyper‑LDL‑cholesterolemia. 
Multivariate logistic regression analysis with adjustment 
for age, gender and body mass index revealed that rs964184 
of ZPR1 (P=5.1x10‑7; odds ratio, 1.37; dominant model), 
rs4845625 of IL6R (P=0.0019, odds ratio, 1.25; dominant 
model) and rs46522 of UBE2Z (P=0.0039, odds ratio, 1.19; 
dominant model) were significantly associated with hypertri-
glyceridemia, and that rs599839 of PSRC1 (P=0.0004, odds 
ratio, 0.70; dominant model) and rs2075650 of TOMM40 
(P=0.0004, odds ratio, 1.43; dominant model) were signifi-
cantly associated with hyper‑LDL‑cholesterolemia. Therefore, 
ZPR1, IL6R, and UBE2Z may be susceptibility loci for hyper-
triglyceridemia, whereas PSRC1 and TOMM40 may be such 
loci for hyper‑LDL‑cholesterolemia in Japanese individuals.

Introduction

Dyslipidemia is a complex and multifactorial disease caused 
by an interaction between genetic and environmental factors, 
the latter including a high-fat and high-calorie diet and phys-
ical inactivity. In conjunction with lifestyle and environmental 
factors, a genetic factor has been revealed to contribute to the 
development of this metabolic disorder (1,2). Accordingly, 
recognizing the genetic susceptibility for dyslipidemia has 
become crucial to promote an improved assessment of disease 
prediction and allow an earlier preventive strategy to be impli-
cated.

Genetic variants, which regulate lipid metabolism, have 
been extensively investigated and 157 loci associated with 
plasma lipid levels have been identified, including 62 loci, which 
have not been previously reported (3). At present, >400 genes 
have been postulated as potential candidates for dyslipid-
emia (4). It was previously identified that rs6929846 (C→T) 
of the butyrophilin, subfamily 2, member A1 gene (5‑7) was a 
susceptibility locus for dyslipidemia in Japanese individuals. 
However, the genetic variants, which confer susceptibility to 
dyslipidemia in Japanese individuals, remain to be elucidated.

Various loci and genes, which confer susceptibility to coro-
nary heart disease (CHD), have been identified in Caucasian 
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populations by meta‑analyses of genome‑wide association 
studies (GWAS) (8,9). Considering that dyslipidemia is a major 
risk factor for CHD, it was hypothesized that certain polymor-
phisms may contribute to the genetic susceptibility to CHD 
through their effects on the susceptibility to dyslipidemia.

The aim of the present study was to examine a possible 
association of hypertriglyceridemia, hypo‑high density 
lipoprotein (HDL)‑cholesterolemia or hyper‑low density lipo-
protein (LDL)‑cholesterolemia in Japanese individuals. This 
was performed with 29 polymorphisms identified as suscepti-
bility loci for CHD by meta‑analyses of GWAS in Caucasian 
populations (8,9).

Patients and methods

Study population. The study population comprised 
5,460  Japanese individuals who either visited outpatient 
clinics or were admitted to the participating hospitals (Gifu 
Prefectural General Medical Center, Gifu, Japan; Gifu 
Prefectural Tajimi Hospital, Tajimi, Japan; Japanese Red Cross 
Nagoya First Hospital, Nagoya, Japan; Inabe General Hospital, 
Inabe, Japan; Hirosaki University Hospital and Hirosaki Stroke 
Center, Hirosaki, Japan) between 2002 and 2012, as a result of 
various symptoms or for an annual health checkup. Venous 
blood was collected from the patients in the early morning 
following fasting overnight. Blood samples were centrifuged 
at 1,600 x g for 15 min at 4˚C, and the serum was separated 
and stored at ‑30˚C prior to analysis. Serum concentrations 
of triglycerides, HDL‑cholesterol and LDL‑cholesterol were 
measured using an automatic biochemical analyzer at a clinical 
laboratory in each hospital.

Hypertriglyceridemia was defined as a serum concentration 
of triglycerides of >1.65 mmol/l (150 mg/dl), hypo‑HDL‑choles-
terolemia as a serum concentration of HDL‑cholesterol 
of <1.04 mmol/l (40 mg/dl) and hyper‑LDL‑cholesterolemia 
as a serum concentration of LDL‑cholesterol of >3.63 mmol/l 
(140  mg/dl). Individuals with dyslipidemia either exhib-
ited hypertriglyceridemia, hypo‑HDL‑cholesterolemia or 
hyper‑LDL‑cholesterolemia. The corresponding controls 
exhibited a serum triglyceride level of <1.65 mmol/l, a serum 
HDL‑cholesterol of ≥1.04 mmol/l or a serum LDL‑cholesterol 
of <3.64 mmol/l in investigations of hypertriglyceridemia, 
hypo‑HDL‑cholesterolemia or hyper‑LDL‑cholesterolemia, 
respectively, and no history of taking antidyslipidemic medi-
cations.

The study protocol complied with the Helsinki Declaration 
of 1975 (as revised in 1983) and was approved by the Ethics 
Committees of each participating hospital. Written informed 
consent was obtained from all individuals involved in the 
present study.

Selection and genotyping of polymorphisms. Single nucleo-
tide polymorphisms (SNPs), which have been revealed to be 
significantly associated with CHD or myocardial infarction in 
Caucasian populations in meta‑analyses of GWAS data were 
searched (8,9). The identified SNPs were examined using the 
SNP database (dbSNP; National Center for Biotechnology 
Information, Bethesda, MD, USA; http://www.ncbi.nlm.nih.
gov/SNP) to identify SNPs with a minor allele frequency 
of ≥0.015 in a Japanese population. A total of 29  SNPs 

were selected (data not shown) and the possible association 
with hypertriglyceridemia, hypo‑HDL‑cholesterolemia or 
hyper‑LDL‑cholesterolemia was investigated. Wild‑type 
(ancestral allele) and variant alleles of the SNPs were deter-
mined from the original sources.

Venous blood (7  ml) was collected into tubes, 
containing  50  mmol/l ethylenediaminetetraacetic acid 
(disodium salt) and the peripheral blood leukocytes were 
isolated. The genomic DNA was subsequently extracted from 
these cells using a DNA extraction kit (Genomix; Talent Srl, 
Trieste, Italy). The genotypes of the 29 polymorphisms were 
determined at G&G Science Co., Ltd. (Fukushima, Japan) 
using a method, which combines polymerase chain reaction 
and sequence‑specific oligonucleotide probes with suspension 
array technology (Luminex Corporation, Austin, TX, USA). 
The overall call rate of genotyping of 29 SNPs was 99%. 
Detailed genotyping methodology was as described previ-
ously (10).

Statistical analysis. The χ2 test was used to compare 
categorical variables and the Mann‑Whitney U  test was 
used for the analysis of quantitative data. The allele frequen-
cies of each SNP were compared between the patients 
with hypertriglyceridemia, hypo‑HDL‑cholesterolemia or 
hyper‑LDL‑cholesterolemia, and the controls, using the χ2 test. 
To compensate for multiple comparisons of genotypes, a false 
discovery rate (FDR) was calculated from the distribution of 
P‑values for the allele frequencies of 29 SNPs, and an FDR 
of <0.05 was considered to be statistically significant for the 
association. The statistical power of each SNP was calculated 
using an Online Sample Size Estimator (http://osse.bii.a-star.
edu.sg/index.php). Multivariable logistic regression analysis 
was performed with hypertriglyceridemia, hypo‑HDL‑choles-
terolemia or hyper‑LDL‑cholesterolemia as a dependent 
variable, and independent variables, including age, gender (0, 
female; 1, male), body mass index (BMI) and the genotype of 
each SNP. Each SNP was assessed, according to dominant (the 
combined group of heterozygotes and variant homozygotes 
versus wild‑type homozygotes), recessive (variant homozy-
gotes versus the combined group of wild‑type homozygotes 
and heterozygotes) and two additive [additive 1 (heterozy-
gotes versus wild‑type homozygotes) and additive 2 (variant 
homozygotes versus wild‑type homozygotes)] genetic models. 
Considering that the serum concentrations of triglycerides, 
HDL‑cholesterol, or LDL‑cholesterol were not normally 
distributed (P<0.01, according to the Kolmogorov‑Smirnov 
and Lilliefors test), these parameters were compared among 
genotypes using the non‑parametric Kruskal‑Wallis test. 
Statistical analyses were performed with JMP version 11 and 
JMP Genomics version 6 software (SAS Institute Inc., Cary, 
NC, USA).

Results

Characteristics of the patients. The clinical characteristics of 
patients with hypertriglyceridemia, hypo‑HDL‑cholesterol-
emia or hyper‑LDL‑cholesterolemia, and the corresponding 
controls are presented in Tables  I‑III. In the investigation 
of hypertriglyceridemia, the frequency of males, BMI, the 
prevalence of smoking, diabetes mellitus, hypertension, the 
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serum concentrations of triglycerides, LDL‑cholesterol and 
creatinine, and the fasting plasma glucose level were greater, 
whereas age, the serum concentrations of HDL‑cholesterol and 
the estimated glomerular filtration rate (eGFR) were lower, in 
patients with hypertriglyceridemia compared with the controls 
(Table  I). In the study of hypo‑HDL‑cholesterolemia, the 
frequency of males, BMI, the prevalence of smoking, diabetes 
mellitus, hypertension, the serum concentrations of triglycer-
ides and creatinine, and the fasting plasma glucose level were 
greater, whereas the serum concentrations of LDL‑cholesterol, 
HDL‑cholesterol and eGFR were lower, in patients with 
hypo‑HDL‑cholesterolemia compared with the controls 
(Tables II). In the study of hyper‑LDL‑cholesterolemia, BMI, 
the serum concentrations of triglycerides and LDL‑cholesterol, 

and the fasting plasma glucose level were greater, whereas age, 
the frequency of males and the serum concentrations of creati-
nine were lower, in patients with hyper‑LDL‑cholesterolemia 
compared with the controls (Table III).

Associat ion of  SNPs with hypert r iglyceridemia, 
hypo‑HDL‑cholesterolemia or hyper‑LDL‑cholesterolemia. 
The allele frequencies were compared between the patients 
with hypertriglyceridemia, hypo‑HDL‑cholesterolemia (data 
not shown) or hyper‑LDL‑cholesterolemia and the corre-
sponding controls using the χ2 test, and SNPs with an FDR 
of <0.05 are demonstrated in Table IV. The analysis revealed 
that rs964184 of zinc finger protein (ZPR1), rs4845625 of inter-
leukin 6 receptor (IL6R), rs46522 of the ubiquitin‑conjugating 

Table I. Characteristics of patients with hypertriglyceridemia and the corresponding controls.

Characteristic	 Hypertriglyceridemia	 Controls	 P‑value

No. of patients	 1,612	 3,005
Age (years)	 63.6±10.3	 64.7±11.2	 0.0004
Gender (male/female, %)	 69.6/30.4	 60.0/40.0	 <0.0001
Body mass index (kg/m2)	 24.7±3.5	 23.4±3.4	 <0.0001
Current or former smoker (%)	 31.5	 25.8	 <0.0001
Diabetes mellitus (%)	 47.4	 34.4	 <0.0001
Hypertension (%)	 72.6	 61.9	 <0.0001
Serum triglycerides (mmol/l)	 2.63±1.31	 1.03±0.34	 <0.0001
Serum HDL‑cholesterol (mmol/l)	 1.19±0.35	 1.40±0.42	 <0.0001
Serum LDL‑cholesterol (mmol/l)	 3.21±1.02	 3.09±0.86	 <0.0001
Serum creatinine (µmol/l)	 92.9±101.7	 86.7±103.5	 <0.0001
eGFR (ml min‑1 1.73 m‑2)	 66.1±25.2	 70.1±23.6	 <0.0001
Fasting plasma glucose (mmol/l)	 7.52±3.75	 6.63±3.00	 <0.0001

Quantitative data are presented as the mean ± standard deviation. HDL, high density lipoprotein; LDL, low density lipoprotein; eGFR, esti-
mated glomerular filtration rate (ml min‑1 1.73 m‑2)=194 x [age (years)]‑0.287 x [serum creatinine (mg/dl)]‑1.094 x [0.739 if female].

Table II. Characteristics of patients with hypo‑HDL‑cholesterolemia and the corresponding controls.

Characteristic	 Hypo‑HDL‑cholresterolemia	 Controls	 P‑value

No. of patients	 1,100	 3,521
Age (years)	 64.1±10.8	 64.3±11.0	 0.5742
Gender (male/female, %)	 81.9/18.1	 57.2/42.8	 <0.0001
Body mass index (kg/m2)	 24.4±3.5	 23.6±3.4	 <0.0001
Current or former smoker (%)	 37.4	 24.2	 <0.0001
Diabetes mellitus (%)	 47.3	 35.4	 <0.0001
Hypertension (%)	 71.6	 63.5	 <0.0001
Serum triglycerides (mmol/l)	 1.89±1.42	 1.49±0.97	 <0.0001
Serum HDL‑cholesterol (mmol/l)	 0.88±0.12	 1.46±0.36	 <0.0001
Serum LDL‑cholesterol (mmol/l)	 3.06±0.95	 3.15±0.91	 <0.0001
Serum creatinine (µmol/l)	 99.9±126.5	 84.9±94.6	 <0.0001
eGFR (ml min‑1 1.73 m‑2)	 67.1±28.3	 69.2±22.7	 0.0008
Fasting plasma glucose (mmol/l)	 7.46±3.41	 6.77±3.27	 <0.0001 

Quantitative data are presented as the mean ± standard deviation. HDL, high density lipoprotein; LDL, low density lipoprotein; eGFR, esti-
mated glomerular filtration rate.
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enzyme E2Z (UBE2Z) and rs17514846 of furin (FURIN) were 
significantly associated with hypertriglyceridemia (FDR<0.05). 
Similar analysis revealed that rs599839 of proline/serine‑rich 
coiled‑coil 1 (PSRC1) and rs2075650 of translocase of outer 
mitochondrial membrane  40 homolog (TOMM40) were 
significantly associated with hyper‑LDL‑cholesterolemia. The 
statistical power of each SNP was calculated with the sample 
sizes and minor allele frequencies of cases and controls, and 
the significance level (α=0.05) was between 50.4 and 98.1%. 
No SNPs significantly associated with hypo‑HDL‑choles-
terolemia were identified (data not shown). The genotype 
distributions of six SNPs were in Hardy‑Weinberg equilibrium 
(FDR >0.05) among patients with hypertriglyceridemia or 
hyper‑LDL‑cholesterolemia, and the controls.

Multivariable logistic regression analysis with adjust-
ment for age, gender and BMI revealed that rs964184 of 
ZPR1 (dominant, recessive, and additive 1 and 2 models), 
rs4845625 of IL6R (dominant and additive 1 and 2 models) 
and rs46522 of UBE2Z (dominant and additive 1 models), 
however, not rs17514846 of FURIN, were significantly 
associated with hypertriglyceridemia (Table V). A similar 
analysis revealed that rs599839 of PSRC1 (dominant and 
additive 1 models) and rs2075650 of TOMM40 (dominant and 
additive 1 and 2 models) were significantly associated with 
hyper‑LDL‑cholesterolemia.

Association of SNPs with serum concentrations of triglycerides 
or LDL‑cholesterol. Finally, the association of the genotypes 
of each SNP with the serum concentrations of triglycerides or 
LDL‑cholesterol were examined using the Kruskal‑Wallis test 
(Table VI). The serum concentrations of triglycerides signifi-
cantly differed among the genotypes of rs964184 of ZPR1, 
rs485625 of IL6R and rs46522 of UBE2Z, with the minor G, 
C and C alleles, respectively, being associated with increased 
serum triglycerides. The rs17514846 of FURIN was also 
significantly associated with serum concentrations of triglyc-
erides with the minor A allele being associated with reduced 

serum triglycerides. Serum concentrations of LDL‑cholesterol 
also differed significantly among the genotypes of rs599839 
of PSRC1 and rs2075650 of TOMM40. The minor G allele of 
rs599839 or the G allele of rs2075650 was associated with a 
reduced or increased concentration of serum LDL‑cholesterol, 
respectively.

Discussion

The association between 29 SNPs and dyslipidemia was exam-
ined and it was observed that rs964184 of ZPR1, rs485625 of 
IL6R and rs46522 of UBE2Z were significantly associ-
ated with hypertriglyceridemia and that rs599839 of 
PSRC1 and rs2075650 of TOMM40 were associated with 
hyper‑LDL‑cholesterolemia.

The previous GWAS revealed that the G allele of rs964184 of 
ZPR1 was significantly associated with increased serum 
triglycerides and LDL‑cholesterol, and with decreased serum 
HDL‑cholesterol in European populations (11‑14). The present 
study replicated the association of rs964184 with hypertriglyc-
eridemia, however, not with hyper‑LDL‑cholesterolemia or 
hypo‑HDL‑cholesterolemia. The rs964184 of ZPR1 is located 
in close proximity to the APOA5‑A4‑C3‑A1  locus, which 
was revealed to be associated with plasma triglycerides in 
several previous studies with diverse populations, including 
Caucasian individuals  (15,16), Chinese individuals  (17), 
individuals of Caucasian and African descent in the United 
States (18), and Middle Eastern populations (19). The expres-
sion of APOA5 is an efficient regulator of plasma triglycerides 
through its enhancement of the catabolism of triglyceride‑rich 
lipoprotein (20) and prohibiting the transportation of triglyc-
erides (21). The present results supported the findings of the 
previous investigations  (11‑19), that the genetic variant of 
ZPR1 is important in the development of hypertriglyceridemia.

Consistent with previous GWAS investigating other ethnic 
groups (22,23), an association between rs4845625 of IL6R with 
hypertriglyceridemia in Japanese individuals was observed. 

Table III. Characteristics of patients with hyper‑LDL‑cholesterolemia and the corresponding controls.

Characteristic	 Hyper‑LDL‑cholesterolemia	 Controls	 P‑value

No. of patients	 1,174	 3,296
Age (years)	 63.7±10.7	 64.5±11.0	 0.0135
Gender (male/female, %)	 57.4/42.6	 65.1/34.9	 <0.0001
Body mass index (kg/m2)	 24.1±3.5	 23.7±3.5	 0.0018
Current or former smoker (%)	 26.4	 28.4	 0.1850
Diabetes mellitus (%)	 40.0	 38.0	 0.2087
Hypertension (%)	 67.3	 64.8	 0.1287
Serum triglycerides (mmol/l)	 1.55±0.82	 1.50±0.91	 <0.0001
Serum HDL‑cholesterol (mmol/l)	 1.31±0.36	 1.33±0.41	 0.3301
Serum LDL‑cholesterol (mmol/l)	 4.28±0.68	 2.72±0.59	 <0.0001
Serum creatinine (µmol/l)	 82.3±84.0	 92.0±110.6	 0.0026
eGFR (ml min‑1 1.73 m‑2)	 69.6±23.4	 68.2±24.6	 0.2490
Fasting plasma glucose (mmol/l)	 7.08±3.43	 6.81±3.17	 0.0036

Quantitative data are presented as the mean ± standard deviation. HDL, high density lipoprotein; LDL, low density lipoprotein; eGFR, esti-
mated glomerular filtration rate.
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IL6 binds to its receptor, initiating the intracellular cascade of 
the inflammatory response. In addition, IL6 has been reported 

to inhibit lipoprotein lipase activity and stimulate lipolysis, 
which lead to increased concentrations of serum triglycer-

Table IV. Comparison of allele frequencies of SNPs (FDR<0.05) using the χ2 test between patients with hypertriglyceridemia or 
hyper‑LDL‑cholesterolemia and controls.

A, Hypertriglyceridemia allele frequencies

			   P	 FDR	 Statistical
SNP	 Hypertriglyceridemiaa	 Controlsa	 (allele)	 (allele)	 power (%)

rs964184			   7.1x10‑9	 2.1x10‑7	 98.1
  CC	 773 (48.3)	 1,659 (55.8)
  CG	 672 (42.0)	 1,136 (38.2)
  GG	 156 (9.7)	 178 (6.0)
  G allele frequency	 0.31	 0.25
  Hardy‑Weinberg P	 0.5727	 0.3699
rs4845625			   0.003	 0.032	 54.2
  TT	 379 (23.7)	 828 (27.8)
  TC	 820 (51.2)	 1,475 (49.5)
  CC	 402 (25.1)	 679 (22.8)
  C allele frequency	 0.51	 0.48	
  Hardy‑Weinberg P	 0.3255	 0.6521
rs46522			   0.001	 0.032	 57.1
  TT	 850 (53.1)	 1,729 (58.2)
  TC	 631 (39.4)	 1,043 (35.1)
  CC	 119 (7.4)	 200 (6.7)
  C allele frequency	 0.27	 0.24
  Hardy‑Weinberg P	 0.8988	 0.0132
rs17514846			   0.006	 0.041	 50.4
  CC	 1,175 (73.8)	 2,067 (70.2)
  CA	 387 (24.3)	 796 (27.0)
  AA	 31 (2.0)	 82 (2.8)
  A allele frequency	 0.14	 0.16
  Hardy‑Weinberg P	 0.8949	 0.6110

B, Hyper‑LDL‑cholesterolemia allele frequencies

			   P	 FDR	 Statistical
SNP	 Hyper‑LDL‑cholesterolemiaa	 Controlsa	 (allele)	 (allele)	 power (%)

rs599839			   0.0003	 0.004	 77.4
  AA	 1,023 (88.4)	 2,729 (84.1)
  AG	 129 (11.2)	 487 (15.0)
  GG	 5 (0.4)	 29 (0.9)
  G allele frequency	 0.06	 0.08
  Hardy‑Weinberg P	 0.6674	 0.1627
rs2075650			   0.0003	 0.004	 72.0
  AA	 763 (65.8)	 2,321 (71.2)
  AG	 351 (30.3)	 848 (26.0)
  GG	 46 (4.0)	 92 (2.8)
  G allele frequency	 0.19	 0.16
  Hardy‑Weinberg P	 0.4813	 0.1735

aNumbers in parentheses are percentages. Allele frequencies of each SNP were compared between subjects with (A) hypertriglyceridemia or 
with (B) hyper-LDL-cholesterolemia and corresponding controls by the χ2 test and an FDR<0.05 was considered statistically significant. Call 
rate of genotyping was (A) 99.1% for rs964184, 99.3% for rs4845625, 99.0% for 46522, 98.3% for 17514846, (B) 98.5% for 599839, or 98.9% 
for rs2075650. LDL, low density lipoprotein; FDR, false discovery rate; SNP, single nucleotide polymorphism.
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ides (24), suggesting that the IL6‑IL6R cascades are crucial in 
the metabolism of triglycerides. Observations from previous 
studies (22,23,25,26) and the present observations, therefore, 
demonstrated that rs4845625 of IL6R is a susceptibility locus 
for increased serum triglycerides levels.

The rs46522 of UBE2Z was significantly associated with 
hypertriglyceridemia. UBE2Z is located at position q21.32 on 
chromosome 17 and encodes an enzyme, which ubiquitinates 
proteins involved in signaling pathways and apoptosis (27). 
Although the biological mechanism by which rs46522 of 
UBE2Z modifies the serum triglyceride level remains to 
be elucidated, one possibility is the effect mediated by a 
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Table VI. Association between genotypes of SNPs and fasting 
serum concentrations of triglycerides or LDL‑cholesterol as 
determined using the Kruskal‑Wallis test.

A, Triglycerides

	 Serum	
Genotype of SNP	 concentration (mmol/l)	 P‑value

rs964184 (C→G)	
  CC	 1.49±1.03
  CG	 1.66±1.19a

  GG	 1.93±1.32a	 1.37x10‑12

rs4845625 (T→C)	
TT	 1.52±1.02
TC	 1.61±1.18a

CC	 1.61±1.10a	 0.0273
rs46522 (T→C)
TT	 1.53±1.02
TC	 1.68±1.27a

CC	 1.61±1.06	 0.0025
rs17514846 (C→A)	
CC	 1.61±1.16
CA	 1.56±1.08
AA	 1.37±0.77a	 0.0455

B, LDL‑cholesterol

	 Serum	
Genotype of SNP	 concentration (mmol/l)	 P‑value

rs599839 (A→G)	
AA	 3.15±0.93
AG	 3.01±0.87a

GG	 2.93±0.86	 0.0042
rs2075650 (A→G)	
AA	 3.09±0.90
AG	 3.20±0.97a

GG	 3.24±0.87a	 0.0005

aP‑value of <0.05 vs. corresponding wild‑type homozygotes. SNP, 
single nucleotide polymorphism; LDL, low density lipoprotein.
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polymorphism of the gastric inhibitory polypeptide gene, 
which is in linkage disequilibrium with the rs46522 (8) and 
was observed to affect plasma glucose and serum triglycerides 
levels (28).

The FURIN locus has been reported to be associated with 
hypertension (29) and formation of atherosclerotic plaques (30), 
however, not with hypertriglyceridemia. In the present study, 
logistic regression analysis with adjustment for covariates 
revealed no significant association between rs17514846 and 
hypertriglyceridemia. Although serum concentrations of 
triglycerides differed among genotypes of rs17514846 with 
a borderline significance, this SNP may not be a significant 
factor affecting the serum triglyceride levels.

Previous studies have demonstrated that rs599839 of 
PSRC1 is significantly associated with serum LDL‑cholesterol 
levels, wherein the minor G allele is associated with 
decreased serum LDL‑cholesterol (31‑35). The association of 
rs599839 with hyper‑LDL‑cholesterolemia with the G allele 
and its association with reduced LDL‑cholesterol levels in 
a Japanese population was also assessed. The rs599839 of 
PSRC1 is located in the cadherin EGF LAG seven‑pass 
G‑type receptor  2 (CELSR2)‑PSRC1‑sortilin 1 (SORT1) 
gene cluster in position p13.3 on chromosome 1. The primary 
role of CELSR2 or PSRC1 is contact‑mediated cell adhe-
sion (36) or microtubule destabilization (37), respectively, 
while SORT1 is important in lipid metabolism (38). SORT1, 
the higher expression of which is associated with the G 
allele of rs599839, is a multi‑ligand transmembrane receptor 
protein, which binds to a variety of ligands, including 
LDL‑receptor‑associated protein (39), lipoprotein lipase (40) 
and apolipoprotein A‑V  (41), and enhances the endocy-
tosis and intracellular degradation of LDL‑cholesterol. 
Considering that rs599839 is located in the 3'‑untranslated 
region of PSCR1, which is downstream of SORT1, the effect 
of rs599839 on LDL‑cholesterol may be mediated by an 
interaction with SORT1 (42).

The rs2075650 of TOMM40 was also associated with 
serum concentrations of LDL‑cholesterol. TOMM40 protein 
is localized to the mitochondrial outer membrane and is 
essential for the import and trafficking of proteins into 
the mitochondria (43). A genetic variant of TOMM40 was 
observed to be a risk factor for Alzheimer's disease through 
the increased deposition of β‑amyloid  (44). However, the 
underlying mechanism by which TOMM40 affects serum 
LDL‑cholesterol levels remains to be elucidated. The 
rs2075650 is located in close proximity to the apolipopro-
tein E (APOE) locus. The SNPs of TOMM40 are in strong 
linkage disequilibrium with the C allele of rs429358 of APOE, 
which increases the plasma LDL‑cholesterol levels (45,46). 
Therefore, the effect of rs2075650 on LDL‑cholesterol may be 
attributable to linkage disequilibrium with the polymorphism 
of APOE (47,48).

In conclusion, the present study indicated that rs964184 of 
ZPR1, rs4845625 of IL6R and rs46522 of UBE2Z were suscep-
tibility loci for hypertriglyceridemia, and that rs599839 of 
PSRC1 and rs2075650 of TOMM40 were such loci for 
hyper‑LDL‑cholesterolemia in Japanese individuals. Further 
studies are required to confirm the present findings in other 
ethnic groups and to elucidate the functional relevance of 
these genes or SNPs to the pathogenesis of dyslipidemia.
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