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Abstract .  Ret inoic  acid  (R A),  v it am in  D and 
12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce 
HL‑60 cells to differentiate into granulocytes, monocytes 
and macrophages, respectively. Similar to RA and vitamin D, 
ascorbic acid also belongs to the vitamin family. High‑dose 
ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and 
induces a small fraction of HL‑60 cells to express the granu-
locyte marker, CD66b. In addition, ascorbic acid exerts an 
anti‑oxidative stress function. Oxidative stress is required 
for HL‑60 cell differentiation following treatment with TPA, 
however, the effect of ascorbic acid on HL‑60 cell differentia-
tion in combination with TPA treatment remains to be fully 
elucidated. The aim of the present study was to investigate the 
cellular effects of ascorbic acid treatment on TPA-differentiated 
HL-60 cells. TPA-differentiated HL-60 cells were used for 
this investigation, this study and the levels of cellular hydrogen 
peroxide (H2O2), caspase activity and ERK phosphorylation 
were determined following combined treatment with TPA 
and ascorbic acid. The results demonstrated that low‑dose 

ascorbic acid (5 µM) reduced the cellular levels of H2O2 and 
inhibited the differentiation of HL‑60 cells into macrophages 
following treatment with TPA. In addition, the results of the 
present study further demonstrated that low‑dose ascorbic acid 
inactivates the ERK phosphorylation pathway, which inhibited 
HL‑60 cell differentiation following treatment with TPA.

Introduction

HL‑60 cells, belonging to human leukemia cells, have been 
widely used for differentiation investigations. Previous studies 
have revealed that HL‑60 cells can be induced to differentiate 
into granulocytes, monocytes and macrophages by treating the 
cells with various agents, including retinoic acid (RA), dimethyl 
sulphoxide (DMSO), vitamin D and 12‑O‑tetradecanoyl 
phorbol‑13‑acetate (TPA) (1,2). Several previous studies have 
indicated that the mitogen‑activated protein kinase (MAPK) 
signaling pathways, c‑Jun N‑terminal kinase (JNK), p38 and 
extracellular signal‑regulated kinase (ERK), are important for 
HL‑60 cell differentiation (3‑7). RA and DMSO can induce 
HL‑60 cells to differentiate into granulocytes via the ERK 
phosphorylation signaling pathway (8‑10), vitamin D can induce 
HL‑60 cells to differentiate into monocytes via the EKR, JNK 
and p38 phosphorylation signaling pathways  (4,11,12) and 
TPA can induce HL‑60 cells to differentiate into macrophages 
via the ERK phosphorylation signaling pathway (13,14). In 
addition, previous studies have demonstrated that ERK5 
is associated with vitamin D‑differentiated HL‑60 cells, 
while ERK/1/2 is associated with TPA‑differentiated and 
RA‑differentiated HL‑60 cells (14‑17). These previous reports 
indicated that ERK5 phosphorylation is required to differen-
tiate HL‑60 cells into monocytes, while ERK1/2 is required to 
differentiate HL‑60 cells into granulocytes and macrophages.

The MAPK signaling pathways, protein kinase C 
(PKC) and oxidative stress may also be associated with 
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HL‑60 differentiation  (18‑21). The activation of PKC is 
observed in RA‑, vitamin D‑ and TPA‑differentiated HL‑60 
cells (13,14,22,23). However, oxidative stress can affect HL‑60 
cell differentiation. A previous study revealed that antioxi-
dants, catalase, superoxide dismutase and N‑acetyl cysteine 
increase the differentiation rate of vitamin D‑treated HL‑60 
cells (24). However, compared with vitamin D‑treated HL‑60 
cells, antioxidant inhibits cell differentiation in TPA‑treated 
HL‑60 cells  (25). Therefore, oxidative stress exerts a dual 
role to promote vitamin D‑differentiated cells and to inhibit 
TPA‑differentiated cells.

It is well known that RA and vitamin D can induce HL‑60 
cells to differentiate into granulocytes and monocytes, respec-
tively. As with RA and vitamin D, ascorbic acid is also a type of 
vitamin. Previous studies have demonstrated that ascorbic acid 
can activate the ERK signaling pathway to induce progenitor 
cell differentiation (26,27). Additionally, several studies have 
demonstrated that high‑doses of ascorbic acid (>100 µM) can 
activate a caspase cascade to promote radiation‑induced and 
etoposide‑induced apoptosis in HL‑60 cells (28,29). A previous 
study also demonstrated that high‑doses of ascorbic can induce 
HL‑60 cell apoptosis and induce a fraction of HL‑60 cells to 
express the granulocyte marker, CD 66b  (30). By contrast, 
low‑doses of ascorbic acid decreases levels of cellular H2O2 
and protects HL‑60 cells against X ray‑ and As2O3‑induced 
apoptosis  (31‑34). However, whether ascorbic acid affects 
TPA-differentiated HL-60 cells remains to be elucidated.

A previous study demonstrated that H2O2 may be a 
secondary messenger associated with cell differentiation (25). 
Several studies have demonstrated that ascorbic acid exerts 
anti‑oxidative stress functions (35‑38) and a previous study 
demonstrated that ascorbic acid decreases levels of cellular 
H2O2 (39). Previous studies have also reported that the ERK 
pathway is required for TPA‑differentiated HL‑60 cells (13,14).

Therefore, the aim of the present study was to deter-
mine the cellular effects of treatment with ascorbic acid on 
TPA-differentiated HL-60 cells.

Materials and methods

Chemicals. An MTT assay kit was purchased from Bio Basic 
Inc. (Markham, ON, Canada). TPA, ascorbic acid and luminol 
were purchased from Sigma‑Aldrich (St. Louis, MO, USA). 
Ac‑DEVD‑pNA, a Caspase‑3‑like substrate, Ac‑IETD‑pNA, 
a caspase‑8 substrate, and Ac‑LEHD‑pNA, a caspase‑9 
substrate, were purchased from Anaspec (San Jose, CA, USA). 
Fetal bovine serum, RPMI‑1640 media, non‑essential amino 
acid, L‑glutamine and penicillin/streptomycin were purchased 
from Gibco Life Technologies (Carlsbad, CA, USA). 

Cell line and cell culture. The HL‑60 cells were purchased 
from Bioresources Collection and Research Center (Hsin Chu, 
Taiwan) and were cultured in Dulbecco's modified Eagle's 
media, containing 10% fetal bovine serum, 2 mM L‑glutamine, 
100 IU/ml penicillin/streptomycin and 0.1 mM non‑essential 
amino acids. The cells were maintained in a humidified atmo-
sphere containing 5% CO2 at 37˚C.

Cell survival rate assay. A total of 3,000 cells were cultured 
in each well of a 96‑well culture dish. The survival rates of 

the cells in the control group (non‑ascorbic acid treated‑cells) 
and the experimental groups (5  µM and 5  mM  ascorbic 
acid‑treated cells) were determined for 96 h at 37˚C. Every 
24 h, the cells were treated using an MTT assay kit, according 
to the manufacturer's instructions. Following incubation for 
3 h, the absorbance (570 nm) was measured using a multi‑well 
enzyme‑linked immunosorbent assay reader (SpectraMax 
Paradigm Multi-Mode Microplate Reader; Molecular 
Devices, Sunnyvale, CA, USA). The cell survival rate was 
calculated using the following formula: Absorbanceexperimental 

group / Absorbancecontrol group x 100%.

Caspase activity assay. Caspase activities in the cells were 
determined using a substrate cleavage assay, as previous 
described  (40,41). Briefly, the cells were treated with 
lysis buffer, containing 50 mM Tris‑HCl, 120 mM NaCl, 
1 mM EDTA, 1% NP‑40 (pH 7.5) and protease inhibitors. 
The cell pellets were collected by centrifugation at 15,000 x g 
for 30  min at 4˚C and the quantity of protein was deter-
mined using a Bradford assay (Bio-Rad Laboratories, Inc., 
Hercules, CA, USA). Subsequently, 40 µl of the cell lysates 
(80 µg total protein) were prepared in 158 µl reaction buffer, 
containing 20% glycerol, 0.5 mM EDTA, 5 mM dithiothreitol, 
100 mM HEPES (pH 7.5) and 2 µl fluorogenic caspase substrate 
(Ac‑LEHD‑pNA, Ac‑DEVD‑pNA or Ac‑IETD‑pNA). The 
total solution was incubated at 37˚C in the dark. Following 
incubation for 6 h, fluorogenic substrate cleavage was deter-
mined at 405 nm using a FLx800™fluorescence microplate 
reader (Bio‑Tek Instruments, Inc., Winooski, VT, USA). The 
fold increase of caspase activity was calculated with the 
following formula: (Absorbanceexperimental group ‑ Absorbancecont

rol group) / Absorbancecontrol group.

Measurement of H2O2. The levels of H2O2 in the cells was 
determined using a lucigenin‑amplified method, as described 
previously (39,42,43). Briefly, the sample (200 µl, containing 
104 cells) was added to 0.2 mmol/l luminol solution (100 ml). 
The mixture was then analized using a chemiluminescence 
analyzing system (CLA‑FSI; Tohoku Electronic Industrial 
Co., Ltd., Sendal, Japan).

Observation of cell morphology and suspension cell counts. 
Undifferentiated HL‑60 cells grow as suspension cells and 
TPA‑differentiated HL‑60 cells (macrophages) grow as 
attached cells (14,44). The morphologies of the suspension 
cells and attached cells were observed under a phase‑contrast 
microscope (Olympus CK40, Olypmus Corporation, Tokyo, 
Japan; magnification, x200). The suspended cells located in 
the media were collected using a pipette, whereas the attached 
cells remained in the bottom of the culture dish. The cells in 
suspension were counted using a trypan blue exclusion assay 
(0.4% in PBS), as described previously (45). Briefly, the media 
containing the suspended cells were mixed with trypan blue 
and placed in a CBC Customized Logo Hemocytometer Blood 
Counting Chamber (VIC Science, Xixiang City, China). The 
number of cells were then counted under a light microscope 
(Olympus, CK40; Olympus Corporation).

Western blotting. The cells were treated with lysis buffer and 
centrifuged at 16,000 x g for 10 min at 4˚C. The proteins 
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were located in the supernatant layer and were collected, 
concentrated and determined using a Bradford assay (Bio‑Rad 
Laboratories, Inc.). Equal quantities of protein were separated 
on a 13.3% SDS‑polyacrylamide gel (GHE320 Mini-STD 
Vertical Gel Electrophoresis Tank; Genepure Technology, Co., 
Ltd, Taichung, Taiwan). Following separation, the proteins 
were transferred onto a polyvinylidene fluoride membrane 
(EMD Millipore, Billerica, MA, USA). The membranes 
were placed in phosphate‑buffered saline (PBS) containing 
5% non‑fat milk. Following incubation for 2 h at 25˚C, the 
membranes were washed with PBS. The membranes were 
further incubated in PBS buffer, containing 5% non‑fat milk 
with primary anti-human monoclonal antibodies to ERK (cat. 
no. 4965) and p-ERK (cat. no. 4370) (1:400; Cell Signaling 
Technology, Inc., Danvers, MA, USA) for 2  h at 25˚C. 
Following incubation, the membranes were washed with PBS 
and incubated with secondary mouse anti‑human antibodies 
(1:2,000; cat. no.  10702-MM01E‑50; Sino Biological Inc. 
Beijing, China) for 1 h at 25˚C. The proteins were detected 
using Western Lightning Chemiluminescence Reagent Plus 
(PerkinElmer, Waltham, MA, USA)

Statistical analysis. The data were calculated from four inde-
pendent experiments and are presented as the mean ± standard 
deviation. Student's t-test was used to analyze the statistical 
differences. P<0.05 was considered to indicate a statistically 
significant difference.

Results

High‑dose ascorbic acid inhibits HL‑60 cell growth, whereas 
a low‑dose does not. Previous studies have demonstrated that a 
high‑dose of ascorbic acid can increase radiation‑induced and 
etoposide‑induced apoptosis in HL‑60 cells (28,29). Similar to 
these studies, the present study demonstrated that a high‑dose 
(5 µM) of ascorbic acid inhibited cell growth in the HL‑60 
cells, whereas a low‑dose (5 µM) had no affect on the growth 
of the HL‑60 cells (Fig. 1). As shown in Fig. 1, the cell survival 
rate was <50% in the high‑dose ascorbic acid‑treated HL‑60 
cells at 72 h, however, the survival rate was >90% in the 
low‑dose ascorbic acid‑treated HL‑60 cells at 96 h. Whether 
ascorbic acid activates caspase death signals in the HL‑60 
cells was subsequently investigated. The results demonstrated 
that activation of caspase‑8, caspase‑9 and caspase‑3 occurred 
in the high‑dose ascorbic acid‑treated HL‑60 cells, but not 
in low‑dose ascorbic acid‑treated HL‑60 cells (Fig. 2). These 
findings indicated that a high‑dose of ascorbic acid exerted 
antitumor activities in the HL‑60 cells.

Low‑dose ascorbic acid reduces cellular levels of H2O2 in 
TPA‑treated HL‑60 cells. H2O2 is important in cell differ-
entiation  (25). The present study demonstrated that the 
levels of H2O2 increased in the TPA‑differentiated HL‑60 
cells, compared with the TPA-treated HL-60 cells (P<0.05; 
Fig. 3), which suggested that H2O2 may be associated with 
HL‑60 cells differentiation by TPA. Anti‑oxidative functions 
of ascorbic acid have been demonstrated (35‑38), therefore, 
the present study further determined whether ascorbic acid 
reduces the levels of H2O2 in TPA‑treated HL‑60 cells. The 
results revealed that a low‑dose of ascorbic acid inhibited the 

Figure 3. Determination of the levels of H2O2. The cellular H2O2 levels were 
counted in the control cells, TPA‑treated cells and TPA + ascorbic acid‑pre-
treated cells at 6 h. The H2O2 levels were measured using a lucigenin‑amplied 
method. The data was determined from four independent experiments and 
are presented as the mean ± standard deviation. *P<0.05, compared with the 
control. TPA, 12‑O‑tetradecanoyl phorbol‑13‑acetate.

Figure 1. Cell survival rates. The HL‑60 cells were treated with a high‑dose 
(5 mM) and a low‑dose (5 µM) of ascorbic acid for 96 h. The survival rates 
were determined using an MTT assay every 24 h. The data were determined 
from four independent experiments and are presented as the mean ± standard 
deviation.*P<0.05, compared with the high-dose group.

Figure 2. Analysis of caspase activity. The activities of caspase‑3, caspase‑8 
and caspase‑9 were examined in the low‑dose and high‑dose ascorbic 
acid‑treated HL‑60 cells at 72 h. The data was measured from four indepen-
dent experiments and are presented as the mean ± standard deviation.*P<0.05, 
compared with the low-dose group.
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increased levels of H2O2 levels the TPA‑treated HL‑60 cells 
(Fig. 3).

Pretreatment with ascorbic acid inhibits the differentiation 
of HL‑60 cells into macrophages following TPA treatment. 
As shown in Fig. 3, a low‑dose of ascorbic acid reduced the 
levels of H2O2 in the TPA‑treated HL‑60 cells. In addition, a 
previous study demonstrated that H2O2 may be an important 
messenger for cell differentiation (25). Therefore, whether 
low‑dose ascorbic acid inhibits the differentiation of HL‑60 
cells into macrophages treated with TPA was determined. 
Previous studies have revealed that TPA‑differentiated HL‑60 
cells (macrophages) are attached cells, whereas the undiffer-
entiated HL‑60 cells are suspensed (14,44). The present study 
assessed the morphology of the cells using a phase contrast 
microscope, and observed that the control HL‑60 cells were 
in suspension (Fig. 4A) and the TPA‑treated HL‑60 cells were 
attached (Fig. 4B). These data suggested that TPA induced the 
HL‑60 cells to differentiate into macrophages. In addition, 
suspended cells were observed in the TPA‑treated HL‑60 cells 
pretreated with ascorbic acid (Fig. 4C), whereas attached cells 
were observed in the TPA‑treated HL‑60 cells post‑treated 
with ascorbic acid (Fig. 4D). These data indicated that ascorbic 
acid pretreatment inhibited the TPA‑induced differentiation of 
HL‑60 cells into macrophages, however, post‑treatment did 
not inhibit the ability of TPA to induce HL‑60 cell differen-
tiation into macrophages. The number of cells in suspension 
were also quantified in the present study (Fig.  5). There 
were ~35,000 suspended cells in the control group and the 
TPA + ascorbic acid pretreatment group, however, very few 
suspended cells were observed in the TPA‑treated group and 
the TPA + ascorbic acid post‑treatment group, compared with 
the control group (P<0.05; Fig.5) Taken together, these results 

suggested that pretreatment with ascorbic acid inhibited the 
ability of TPA to induce the differentiation of HL‑60 cells into 
macrophages.

Ascorbic acid inhibits TPA‑induced HL‑60 cell differentia‑
tion via ERK phosphorylation. Previous studies have revealed 
that the induction of HL‑60 cells to differentiate into macro-
phages by TPA requires ERK phosphorylation (13,14). These 
studies demonstrated that the inhibition of p‑ERK inhibits 
TPA‑induced HL‑60 cell differentiation. In the present study, 

Figure 5. Numbers of cells in suspension. The number of (A)  control 
cells, (B) TPA‑treated cells, (C) TPA + ascorbic acid‑pretreated cells and 
(D) TPA + ascorbic acid‑post‑treated cells were quantified. Undifferentiated 
cells were considered suspended cells. The data were determined from four 
independent experiments and are presented as the mean ± standard deviation. 
*P<0.05, compared with the control group.

Figure 4. Undifferentiated HL‑60 cells and TPA‑differentiated HL‑60 cells (macrophages). Representative images of the (A) control cells, (B) TPA‑treated 
cells, (C) TPA + ascorbic acid‑pretreated cells and (D) TPA + ascorbic acid‑post‑treated cells (observed at 24 h). The undifferentiated HL‑60 cells are 
suspended cells (A and C) and the differentiated HL‑60 cells are attached cells (B and D). Magnification, x200. TPA, 12‑O‑tetradecanoyl phorbol‑13‑acetate.

  A   B

  C   D
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as shown in Figs. 4 and 5, pretreatment with ascorbic acid 
inhibited the differentiation of the HL‑60 cells into macro-
phages following TPA treatment. Whether pretreatment with 
ascorbic acid inhibited TPA‑differentiated HL‑60 cells via 
ERK phosphorylation was subsequently investigated, and 
western blotting revealed that TPA induced an increase in 
the protein expression of p‑ERK (Fig. 6; lane 2). In addition, 
pretreatment with ascorbic acid reduced the expression of 
p‑ERK in the TPA‑treated HL‑60 cells (Fig. 6; lane 3). This 
data suggested that ascorbic acid inhibited the ability of TPA 
to induce HL‑60 cell differentiation via ERK phosphorylation.

Discussion

Previous studies have demonstrated that TPA induces ERK 
phosphorylation, which in turn causes HL‑60 cells to differ-
entiate into macrophages (13,14). In addition, a previous study 
indicated that H2O2 accumulation is important for macrophage 
differentiation following TPA treatment  (25). Similar to 
previous findings, the present study demonstrated that TPA 
induced an increase in the levels of H2O2 and induced ERK phos-
phorylation (Figs. 3 and 6). These results suggested that TPA 
induced HL‑60 cells to differentiate into macrophages via the 
accumulation of H2O2 and phosphorylation of ERK. However, 
the association between H2O2 and the phosphorylation of ERK 
remains to be elucidated. The present study demonstrated that 
pretreatment with ascorbic acid reduced TPA‑induced H2O2 
accumulation (Fig. 3) and inhibited TPA‑induced HL‑60 cell 
differentiation into macrophages (Figs. 4 and 5). However, 
the data also revealed that post‑treatment with ascorbic acid 
did not have an inhibitory effect of TPA (Figs. 4 and 5). The 
results of the present study indicated H2O2 accumulation as 
an upstream signal, affecting HL‑60 cell differentiation by 
TPA at an early stage. In addition, several previous studies 
have demonstrated that H2O2 induces the phosphorylation of 
EKR in various types of cell (46‑48). Therefore, the present 
study indicated that TPA induced an increase in the levels 
of H2O2 initially, and subsequently induced the phosphoryla-
tion of ERK, leading to HL‑60 cell differentiation. However, 
pretreatment with ascorbic acid inhibited TPA‑induced H2O2 
accumulation at an early stage, preventing HL‑60 cell differ-
entiation.

The dual role of ascorbic acid in promoting cell death 
and preventing cell damage have been previously reported. 
Generally, a high‑dose of ascorbic acid induces cell 

cytotoxicity  (28,29), whereas a low‑dose of ascorbic acid 
protects cells against oxidative stress‑induced damage (32‑34). 
Similar to these studies, the present study demonstrated that a 
high‑dose of ascorbic acid inhibited cell growth and activated 
the caspase‑death pathway in the HL‑60 cells (Figs. 1 and 2). 
However, a low‑dose of ascorbic acid reduced TPA‑induced 
increases in H2O2 levels (Fig. 3). Therefore, high‑dose and 
low‑dose ascorbic acids exerted different mechanisms to 
affect cell growth. Previous studies have also reported that 
ascorbic acid induces ERK phosphorylation in various types 
of cell, including acute myeloid leukemia cells and human 
endothelial cells (49,50). By contrast, ascorbic acid inhibits 
ERK phosphorylation in human dermal fibroblasts (51). The 
present study demonstrated that a low‑dose of ascorbic acid 
inhibited the TPA‑induced phosphorylation of ERK (Fig. 6; 
lane 3). Therefore, it was hypothesized that ascorbic acid 
induces different signaling pathways to affect cell growth in a 
dose‑dependent and cell‑dependent manner.

Regarding the association between ascorbic acid and cell 
differentiation, several studies have demonstrated that ascorbic 
acid can promote cell differentiation in various types of cell, 
including periodontal ligament progenitor cells, osteoblastic 
cells and embryonic stem cells (26,27,52‑56). However, the 
present study demonstrated that low‑doses of ascorbic acid 
inhibited the HL‑60 cells from differentiating into macro-
phages following TPA treatment. The possible reason may 
be that TPA‑induced cell differentiation requires increases in 
cellular oxidative stress (25), while ascorbic acid can reduce 
cellular H2O2 levels to inhibit TPA‑treated cells. Another 
possible reason is that ascorbic acid induces a small fraction 
of HL‑60 cells to express the granulocyte marker, CD66b (30) 
and induces a small fraction of HL‑60 cells to differentiate 
into granulocytes, therefore, inhibiting the differentiation of 
HL‑60 cells into macrophages, induced by TPA.

In conclusion, the present study demonstrated for the first 
time, to the best of our knowledge, that low‑doses of ascorbic 
acid inhibited TPA‑treated HL‑60 cells from differentiating 
into macrophages by decreasing TPA‑induced levels of H2O2 
and ERK phosphorylation.
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