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Abstract. Oxidative stress can alter the expression level of 
microRNAs (miRNAs) and has a role in oxidative damage 
generated by reactive oxygen species (ROS). While previous 
studies have demonstrated that miR‑146a, miR‑21 and 
miR‑150 are essential for ROS production in heart disease, the 
role of these miRNAs in spinal cord injuries has not yet been 
examined. The present study focused on examining the role of 
miR‑146a, miR‑21 and miR‑150 during H2O2 stimulation in rat 
neuronal spinal cord (RN‑sc) cells. RN‑sc cells were treated 
with H2O2, and cells were harvested for reverse transcription 
quantitative polymerase chain reaction (RT‑qPCR) to detect 
the expression levels of miR‑146a, miR‑21 and miR‑150. The 
results demonstrated that miR‑146a, miR‑21 and miR‑150 
expression was upregulated during H2O2 treatment. T-cell 
death and apoptosis were investigated using an MTT assay 
and flow cytometric analysis, respectively. Following miR‑21 
silencing, H2O2‑induced cell death and apoptosis were reduced 
in RN‑sc cells, while miR‑150 silencing had no effect. Further-
more, Smad7 was identified as a direct target of miR‑21 using a 
Luciferase reporter assay, RT-qPCR and western blot analysis. 
In addition, while H2O2 downregulated Smad7 protein expres-
sion, this was reversed by inhibiting miR‑21 expression. Based 
on previous studies, it was predicted that miR‑21 has a role in 
ROS production through regulating Smad7 in rat spinal cord 
neurons.

Introduction

Reactive oxygen species (ROS) are oxygen‑derived radicals 
and include members such as the highly reactive superoxide 
(O2

‑), hydroxyl (OH‑) and peroxyl (RO2‑), as well as non‑radi-
cals, including hydrogen peroxide (H2O2) and peroxynitrite 
(ONOO‑). In healthy individuals, ROS and antioxidants 
remain in balance; however, an ROS overabundance results 
in oxidative stress. Previous studies have demonstrated 
that oxidative stress can alter microRNA (miRNA) expres-
sion. miRNAs are non‑coding RNAs, ~22 nucleotide (nt) 
in length, that are evolutionarily conserved and function 
as sequence‑specific regulators of gene expression through 
translational repression and/or transcriptional cleavage (1‑6). 
In addition, miRNAs have a role in cellular oxidative damage 
caused by ROS (7,8).

The association between miRNAs and ROS has been 
investigated in various diseases, including cancer, vascular 
diseases and cardiometabolic diseases  (9‑11). UV, H2O2, 
ionizing radiation and anticancer drugs that produce ROS are 
known to modulate miRNA expression (12‑14). Numerous 
studies have focused on miRNA profiling following oxidative 
stress exposure in various tissues and have demonstrated the 
importance of miRNA modulation in the cellular response 
to a redox imbalance  (10). The interaction between ROS 
and miRNAs remains to be elucidated, with certain studies 
suggesting that miRNA expression levels could be regulated 
by ROS, including miR‑17‑92  (15), while others suggest 
that miRNAs, including miR‑34a and miR‑23b, are able 
to modulate ROS production (8,16). Additionally, miR‑23b 
can either inhibit or promote ROS during transcriptional 
regulatory processes, thus causing an anti‑ or pro‑oxidant 
effect (16).

Spinal cord injuries (SCI) are one of the most debilitating 
pathologies and lead to huge rehabilitation challenges (17,18). 
SCI is a comprehensive consequence of a primary mechanical 
insult followed by a sequence of progressive secondary 
pathophysiological events, with experimental evidence 
indicating that ROS are important mediators of secondary 
damage (19‑22). Furthermore, increased ROS levels can cause 
oxidative damage leading to neuronal death and neurological 
dysfunction (23‑25) in uninjured rat spinal cords. Therefore, 
finding a regulator to reduce ROS damage of the central 
nervous system may reduce secondary SCI.
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The present study aimed to investigate the expression of 
miR‑146a, miR‑21 and miR‑150 in H2O2‑stimulated rat spinal 
cord neurons (RN-sc). In addition, the present study assessed 
whether inhibition of miR‑21 and miR‑150 affects cell prolif-
eration and apoptosis.

Materials and methods

Cell culture. RN‑sc cells (ScienCell Research Laboratories, 
San Diego, CA, USA) isolated from the E14 rat spinal cord 
were and cultured in neuronal medium (ScienCell Research 
Laboratories; cat. no. 1521).

H2O2 treatment, miRNA mimics synthesis and transfection. 
RN‑scs were seeded in 6‑well plates, treated 24 h post‑seeding 
with 100 mM H2O2 for 6 h and harvested for quantitative 
polymerase chain reaction (qPCR). Cells were plated to 50% 
confluency and transfected with 200 nM miR‑150, miR‑21 
mimic or negative control (NC; Guangzhou RiboBio Co., Ltd., 
Guangzhou, China) using HiPerFect HTS Reagent (Qiagen, 
Valencia, CA, USA) according to the manufacturer's instruc-
tions. Cells were exposed to 50 mM H2O2 24 h post‑transfection 
for varying lengths of time and harvested for further experi-
mentation. For the MTT assay, RN‑sc cells were pre‑treated 
with anti‑sense‑miR‑21 or anti‑sense‑miR‑150 mimics for 
24 h prior to exposure to 50 µM H2O2 for 0, 2, 4 or 6 days. For 
flow cytometric analysis, RN‑sc cells were pre‑treated with 
anti‑sense‑miR‑21 or anti‑sense‑miR‑150 mimics for 24 h, 
stimulated with a high concentration of H2O2 (200 µM) for 
12 h and harvested for flow cytometric analysis

Reverse transcription (RT)‑qPCR. Total RNA was extracted 
using TRIzol reagent and reverse transcribed to cDNA using 
stem loop RT primers specific to miR‑146a, miR‑150 or 
miR‑21 (Guangzhou RiboBio Co., Ltd., Guangzhou, China). 
The following PCR primer sequences were used: Smad, 
forward 5'‑TTTTGAGGTGTGGTGGGT‑3' and reverse 
5'‑GAGGCAGTAAGACAGGGATGA‑3'. All reactions 
were performed using SYBR Green mix (Takara Bio Inc., 
Shiga, Japan) under the following PCR conditions: 94˚C for 
5 min, 40 cycles of 94˚C for 30 sec, 55˚C for 30 sec and a 
final incubation at 72˚C for 20 sec, with fluorescence detected 
following each cycle and continuously traced using an Applied 
Biosystems 7500  system (Applied Biosystems; Thermo 
Fisher Scientific, Waltham, MA, USA). Relative expression 
levels were calculated as ratios normalized to β‑actin. All 
experimentation was performed in triplicate with the results 
expressed as the mean ± standard deviation.

Cell proliferation assay. Cell proliferation was monitored 
using the MTT assay kit (Promega Corporation, Madison, 
WI, USA) according to the manufacturer's instructions. Rat 
spinal neurons cells were seeded at 1x103 per well in 96‑well 
plates 24 h post‑transfection, with the cellular proliferation 
assay performed on days 0, 2, 4 and 6. To perform the assay, 
10 µl MTT reagent was added to each well and the plate was 
incubated for 4 h at 37˚C. Prior to the end of the incubation 
period, the absorbance was measured at 570 nm using a Vmax 
microplate spectrophotometer (Molecular Devices, Sunnyvale, 
CA, USA), with each sample assayed in triplicate.

Cell apoptosis assay. Rat spinal neuron cells were harvested 
48 h post‑transfection, with 1x106 cells (500 µl) added into 
FACS tubes, mixed with 25 ng/ml Annexin V‑fluorescein 
isothiocyanate and 10 mg/ml propidium iodide and incubated 
for 15 min at room temperature in the dark. The cells were then 
immediately analyzed by flow cytometry on a BD Accuri™ C6 
flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA).

Western blot analysis. RN‑sc cells (2x106) were collected and 
washed twice with ice‑cold phosphate‑buffered saline. The 
cell pellets were suspended in RIPA lysis buffer, incubated on 
ice for 40 min and the lysates were centrifuged at 12,000 x g 
for 15 min at 4˚C. Proteins were isolated by 10% sodium 
dodecyl sulfate polyacrylamide gel electrophoresis and trans-
ferred onto a polyvinylidene fluoride membrane. Membranes 
were blocked for 1 h at 37˚C with 5% non-fat milk and incu-
bated with rabbit anti-human Smad7 monoclonal antibody 
(1:1,000; cat no. ab124890; Abcam, Cambridge, MA, USA) or 
rabbit anti-human β-actin monoclonal antibody (1:2,000; cat 
no. ab119716; Abcam). Following washing with Tris‑buffered 
saline with 0.5% Tween 20 (TBST), the membrane was incu-
bated with horseradish peroxidase-conjugated goat anti-rabbit 
immunoglobulin G (H+L) secondary antibody (1:10,000, cat 
no. ab97080; Abcam) at room temperature for 40 min, washed 
again with TBST and imaged with enhanced chemilumines-
cence captured on X‑ray films.

Plasmid construction and luciferase reporter assay. To 
construct a luciferase reporter vector, the wild‑type 3' untrans-
lated region (UTR) and mutant 3'UTR of Smad7 containing 
putative binding sites for miR‑21 were subcloned into the 
psi‑CHECK‑2 vector. For the luciferase reporter assay, 
293T cells (Cell Bank of the Chinese Academy of Sciences, 
Shanghai, China) were plated at 5x104 cells per well in 24 well 
plates. On the following day, psiCHECK‑2 luciferase vectors 
containing the 3'UTR of Smad7 and the miR‑21 mimic or the 
negative control oligonucleotides were transfected into cells 
using Lipofectamine 2000 (Invitrogen Life Technologies, 
Carlsbad, CA, USA). The luciferase assay was performed 
48 h post‑transfection using the dual luciferase reporter assay 
system (Promega Corporation) according to the manufac-
turer's instructions.

Statistical analysis. Statistical analysis was performed using 
SPSS 13.0 software (SPSS, Inc., Chicago, IL, USA). All 
numerical data were analyzed using Student's t‑test. P<0.05 
was considered to indicate a statistically significant difference.

Results

Effect of H2O2 on miR‑146a, miR‑21 and miR‑150 expres‑
sion in RN‑sc cells. To investigate the possibility of miRNAs 
modulating reactive oxygen injury, the expression levels 
of miR‑146a, miR‑21 and miR‑150 were monitored during 
H2O2 exposure. The results demonstrated that the expres-
sion of miR‑146a, miR‑150 and miR‑21 was upregulated 
4.1‑fold, 8.4‑fold and 9.2‑fold, respectively, during H2O2 

treatment relative to the control samples (Fig. 1). Based on 
these findings, miR‑21 and miR‑150 were selected for further 
evaluation.
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Effect of miR‑21 and miR‑150 on cell proliferation during H2O2 
treatment. To verify whether decreasing miR‑21 and miR‑150 
has an effect on cellular proliferation following H2O2 treat-
ment, RN‑sc cells were pre-treated with anti-sense‑miR‑21 or 
anti-sense‑miR‑150 mimics for 24 h, stimulated with 50 µM 
H2O2 for 6 days and harvested for MTT assays at different 

Figure 1. Effect of H2O2 on miR‑146a, miR‑21 and miR‑150 expression in 
rat neuronal spinal cord cells. Cells were treated with the vehicle or H2O2 
(100 µM) for 6 h. miRNA levels were determined by quantitative polymerase 
chain reaction, with data presented as the mean ± standard deviation. *P<0.05 
compared with control group. miR, microRNA.

Figure 2. Effect of miR‑21 and miR‑150 on cellular proliferation during 
H2O2 treatment. RN‑sc cells pre-treated with anti-sense‑miR‑21 or 
anti‑sense‑miR‑150 mimics for 24 h prior to exposure with 50 µM H2O2 for 
6 days. The cells were harvested for MTT assays, with the OD determined 
to assess cellular proliferation at days 0, 2, 4 and 6. Effect of (A) miR‑21 
and (B) miR‑150 on cellular proliferation. Values are expressed as the 
mean ± standard deviation. *P<0.05 vs. NC + H2O2 group. miR, microRNA; 
OD, optical density; NC, negative control. 

Figure 3. Effect of miR‑21 and miR‑150 on cellular apoptosis during 
H2O2 treatment. rat neuronal spinal cord cells were pre-treated with 
anti-sense‑miR‑21 or anti-sense‑miR‑150 mimics for 24 h, stimulated with 
a high concentration of H2O2 (200 µM) for 12 h and harvested for flow cyto-
metric analysis with Annexin FITC/PI staining. Images depict (A) the effect 
of the NC on cell apoptosis; (B) the effect of miR‑21 on cell apoptosis; (C) the 
effect of miR‑150 on cell apoptosis and (D) the extent of apoptosis among 
different experimental groups. The apoptotic ratio combined the early apop-
tosis percentage plus late apoptosis percentage, with values expressed as the 
mean ± standard deviation. *P<0.05 vs. NC + H2O2 group. miR, microRNA; 
FITC, fluorescein isothiocyanate; PI, propidium iodide; NC, negative control.
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time points. The results demonstrated that pre-treatment with 
the anti-sense‑miR‑21 mimic could reduce H2O2‑induced 
inhibition of cellular proliferation (Fig.  2A), while the 
anti-sense‑miR‑150 mimic pre-treatment had no pronounced 
effect (Fig. 2B).

Effect of miR‑21 and miR‑150 on cell apoptosis during H2O2 
treatment. To verify whether a decrease in miR‑21 and miR‑150 
affects apoptosis following H2O2 treatment, RN‑sc cells were 
pre-treated with anti-sense‑miR‑21 or anti-sense‑miR‑150 
mimics for 24 h and stimulated with a high concentration 
of H2O2 (200  µM) for 12  h. Subsequently, the cells were 
harvested for flow cytometric analysis. The results demon-
strated that anti-sense‑miR‑21 mimic pre-treatment markedly 
reduced H2O2‑induced cellular apoptosis relative to the control 
samples (Fig. 3A, B and D), while anti-sense‑miR‑150 mimic 
pre-treatment reduced apoptosis to a lesser extent than 
anti-sense-miR-21 pre-treatment (Fig. 3A, C and D).

Smad7 is a direct target of miR‑21 under H2O2 treat‑
ment. The above results demonstrated that miR‑21, but 
not miR‑150, could regulate proliferation and apoptosis 
during H2O2 treatment in RN‑sc cells. To understand the 

mechanisms by which miR‑21 affects cellular apoptosis and 
proliferation, several computational methods on MIRANDA 
(http://www.microrna.org) were employed to identify miR‑21 
targets in rats. Among the predicted targets, Smad7 was of 
particular interest (Fig. 4A). To assess whether Smad7 was 
a direct target of miR‑21, a luciferase reporter assay was 
performed. Luciferase inhibition was observed following 
transfection with the wild‑type Smad7 3'‑UTR, while no 
inhibition was noted in the presence of the mut‑type Smad7 
3'UTR (Fig. 4B). Subsequently, the effect of miR‑21 over-
expression on Smad7 mRNA and protein expression was 
examined. Although miR‑21 overexpression did not cause 
degradation of Smad7 mRNA (Fig. 4C), it did reduce the 
activity of the luciferase reporter gene fused to the wild‑type 
Smad7 3'‑UTR, thus indicating that miR‑21 targets Smad7 
through translational inhibition. In support of these results, a 
clear reduction in the levels of endogenous Smad7 protein in 
miR‑21‑overexpressing RN‑sc cells was observed (Fig. 4D).

To further establish interactions between miR‑21 and 
Smad7 during H2O2 treatment, Smad7 mRNA and protein 
expression was monitored in the presence and absence of an 
anti-sense miR‑21 mimic and H2O2. While H2O2 had no effect 
on Smad7 mRNA expression, Smad7 protein expression was 

Figure 4. Smad7 is a direct target of miR‑21. (A) Predicted duplex formation between the Smad7 3'UTR and miR‑21. (B) Luciferase activity of the wild‑type 
(UTR‑WT) or mutant (UTR‑mut.) SMAD7 3'UTR reporter gene in 293T cells infected with miR‑21 or negative control mimics. (C) qPCR of Smad7 in RN‑sc 
cells infected with miR‑21 or the negative control mimic. Data were normalized to the level of GAPDH mRNA. (D) Western blot analysis of Smad7 in RN‑sc cells 
infected with miR‑21 or the negative control mimics. (E) qPCR of Smad7 in RN‑sc cells treated with H2O2 with or without an anti-sense miR‑21 mimic. Data were 
normalized to the level of GAPDH mRNA. (F) Western blot analysis of Smad7 in RN‑sc cells treated with H2O2 in the presence or absence of an anti-sense miR‑21 
mimic. *P<0.05. miR, microRNA; 3'UTR, 3' untranslated region; WT, wild type; qPCR, quantitative polymerase chain reaction; RN‑sc, rat neuronal spinal cord.

  A   B

  C

  D

  E

  F



MOLECULAR MEDICINE REPORTS  12:  7011-7016,  2015 7015

downregulated (Fig. 4E and F), and this effect was reversed 
when miR‑21 expression was inhibited (Fig. 4F).

Discussion

In the present study, it was found that H2O2 could clearly alter 
the expression level of miR‑21 and miR‑150 in RN‑sc cells. 
Previous studies examining cardiac myocytes found that 
miR‑150 and miR‑21 expression was upregulated following 
H2O2 treatment and that miR‑150 and miR‑21 silencing 
could decrease H2O2‑induced cardiac cell death and apop-
tosis (26,27). Another study found that ROS promote gastric 
carcinogenesis via upregulating miR‑21 expression, which 
in turn downregulates the expression of programmed cell 
death protein 4 (PDCD4) (28). In a previous study examining 
cardiac myocytes, H2O2‑mediated upregulation of miR‑21 was 
confirmed by qPCR, with H2O2‑induced cardiac cell death 
and apoptosis increased by a miR‑21 inhibitor and decreased 
by pre‑miR‑21 (27). Based on these results, it was proposed 
that miR‑21 and miR‑150 may have a role in oxidative stress 
damage in rat spinal cord neurons.

To assess the potential role of miR‑21 and miR‑150 in 
H2O2‑mediated SCI in rat neurons, miR‑21 and miR‑150 
expression was modulated via targeted inhibition. Notably, 
downregulation of miR‑21 expression inhibited H2O2‑mediated 
apoptosis and proliferative inhibition in RN‑sc cells, while 
downregulation of miR‑150 had no effect. These results 
suggest that miR‑21 downregulation has a protective effect in 
H2O2‑mediated apoptosis and proliferative inhibition.

It is clear that miRNAs downregulate the expression 
of target genes by either inducing mRNA degradation or 
inhibiting mRNA translation. In lung squamous carci-
nomas, miR‑21 simultaneously regulates multiple pathways 
that enhance cell proliferation, apoptosis and tumor inva-
siveness by targeting phosphatase and tensin homolog, 
reversion‑inducing cysteine‑rich protein with Kazal motifs and 
B‑cell lymphoma‑2 (29). In addition, PDCD4 is an important 
target gene of miR‑21 and miR‑21‑PDCD4 signaling has been 
demonstrated to be involved in the regulation of ROS‑induced 
physiological processes (30). However, the exact mechanisms 
of a given miRNA can remain elusive due to their numerous 
target genes and potential differences in the role of each 
target gene. In the present study, Smad7 was identified as a 
new target of miR‑21 in rat spinal cord neurons. Furthermore, 
Smad7 protein level could be inhibited by H2O2, with this 
effect reversed following the suppression of miR‑21 expres-
sion. Another study also noted inhibition of Smad7 expression 
following H2O2 exposure and demonstrated that Smad7 
inhibited ROS production in angiotensin II‑induced cardiac 
fibroblasts (31). Therefore, it was predicted that miR‑21 may be 
important in ROS production through the regulation of Smad7 
in rat spinal cord neurons.

In conclusion, the present study demonstrated that H2O2 

could upregulate the expression of miR‑21 and downregulate 
the expression of Smad7. Additionally, Smad7 is a target gene 
of miR‑21 and it was predicted that miR‑21 may be important 
in ROS production through Smad7 regulation in rat spinal 
cord neurons. Future studies are required to further examine 
the association between SCI, ROS, miR‑21 and Smad7 
in vivo.
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