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Abstract. Molecular biologists have identified a number 
of genes and microRNAs (miRs) associated with chronic 
myelogenous leukemia (CML). However, their under-
lying mechanisms in CML remain unclear. In the present 
study, three regulatory networks of genes and miRs were 
constructed to elucidate the underlying mechanisms of CML. 
The first network was the experimentally validated network 
of miRs and genes. The second was the dysregulatory 
network of CML, consisting of dysregulated genes and miRs, 
contributing to the pathogenesis of CML. The third was the 
CML‑associated network, consisting of CML‑associated 
genes and miRs. In addition to dysregulated genes and miRs, 
the associated network includes non‑dysregulated genes and 
miRs that contribute to prevention, diagnosis, metastasis and 
therapy of CML. Key pathways were extracted and compared 
to distinguish the similarities and differences between 
dysregulatory nodes among the three networks. V-myb avian 
myeloblastosis viral oncogene homolog and miR‑155 were 
observed to form a feedback loop module in the dysregula-
tory network. Regulation of the dysregulatory network may 
present as a strategy for gene therapy of CML. The current 
study provides an improved understanding of the molecular 
mechanisms of, and a potential treatment strategy for, CML.

Introduction

Chronic myelogenous leukemia (CML) is the most 
common type of malignant cancer of the myeloproliferative 
neoplasms. CML accounts for ~20% of all cases of leukemia 
in the global population (1). Numerous previous studies (2-4) 
demonstrated that genes and microRNAs (miRs) have various 
roles in CML. Dysregulated genes and miRs are important in 
the pathogenesis of CML, for example, the tumor protein 63 
(TP63) mutation may function as a gene alteration and, thus, 
be responsible for the development of CML (5). Furthermore, 
downregulation of miR‑10a may increase upstream stimula-
tory factor 2 expression levels and contribute to the increase 
in cell proliferation in CML (6). Genes and miRs that are 
associated with CML, but are non‑dysregulated also have a 
role in CML, for example, runt‑related transcription factor 3 
(RUNX3) is involved in CML persistence despite imatinib 
treatment (7) and miR‑30a may inhibit the effectiveness of 
imatinib‑mediated apoptosis in CML (8).

Gene regulatory factors are predominantly transcrip-
tion factors (TFs) and microRNAs (miRs), which control 
the expression of genomic information in multicellular 
genomes  (9). TFs are proteins that bind to specific DNA 
sequences, controlling the encoding of genetic information 
from DNA to messenger RNA (10). TFs, alone or with other 
proteins, regulate gene expression by activation or suppres-
sion. miR is a small non‑coding RNA molecule (~22 nt in 
length), which functions in post‑transcriptional regulation 
of gene expression and is also involved in transcriptional 
regulation (11). miRs regulate gene expression via silencing 
or target degradation and affect various cancer processes, 
including proliferation, differentiation and apoptosis.

miRs target thousands of genes, called target genes, and 
these are important for investigating the biological function 
of miRs. There are many methods to evaluate the regula-
tory associations between miRs and their target genes, such 
as microRNA.org  (12), TargetScan  (13) and PicTar  (14). 
There are also experimentally validated databases, such as 
TarBase (15) miRTarBase (16) and miRecords (17), which 
provide abundant data to evaluate the associations between 
miRs and genes.
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miRs may be encoded in the DNA sequence of a gene, 
known as a host gene. During the transcription process, miRs 
and their host gene are transcribed simultaneously (18). The 
host gene and its intronic miR are often involved in the same 
biological processes (19). The two perform certain functions 
and are involved in signaling pathways (20).

The onset of CML may result from numerous dysregulated 
genes and miRs. Many genes (21) and miRs (22) associated 
with CML have been identified; however, the underlying 
mechanisms in CML remain unclear. The present study 
focused on the network of TFs, miRs, and their target and 
host genes, to establish the key pathways of CML and partly 
indicate their control mechanisms in CML. Experimentally 
validated regulatory associations (TFs➝miRs, miRs➝target 
genes, and host genes➝miRs) were collected from known 
databases (15-17,23). Dysregulated genes and miRs, as well 
as CML‑associated genes and miRs were collected from 
known databases and the PubMed database (http://www.
ncbi.nlm.nih.gov/pubmed/). To further investigate the tran-
scription process of CML, TFs were selected by the P‑Match 
method  (24) and considered as CML‑associated genes. 
Three networks were constructed to demonstrate the regula-
tory mechanism of CML. The first network is the network 
of miRs and genes from experimentally validated data. The 
second network is the dysregulatory network, which consists 
of dysregulatory data (genes and miRs) and their regula-
tory associations from the first network. The third is the 
CML‑associated network, which consists of CML‑associated 
data (genes and miRs) with their regulatory associations 
from the first network. In the current study, regulatory asso-
ciations are referred to as pathways. To allow comparison of 
the similarities and differences distinguishing the key path-
ways in CML, the dysregulated gene and miR pathways, and 
predicted TFs were extracted from the three networks sepa-
rately. These pathways of dysregulated genes and miRs may 
be particularly important in the development of CML (25), as 
the dysregulatory network contributes to the pathogenesis of 
CML (with regard to genes and miRs) while the associated 
network describes the regulatory mechanisms of CML.

Materials and methods

Material collection and data processing. An experimen-
tally validated dataset of miRs and their target genes 
were collected from Tarbase version 5.0 (15), miRTarBase 
version 3.5 (16) and miRecords version 4 (17). The National 
Center for Biotechnology Information (NCBI) gene database  
(http://www.ncbi.nlm.nih.gov/gene/) was used to unify offi-
cial symbols of miRs and genes. This dataset was designated 
as set U1. An experimentally validated dataset between TFs 
and miRs was collected from TransmiR version 1.2 (23). This 
dataset was designated as set U2. A dataset of host genes and 
their miRs was collected from the NCBI gene database, and 
this dataset was designated as set U3.

In the present study, the dysregulated genes include 
genes with mutations, abnormal expression and single 
nucleotide polymorphisms, and inactivated, overex-
pressed, underexpressed, downregulated, upregulated and 
differentially expressed genes. The dataset of dysregu-
lated genes was collected from Cancer Genetics Web 

(http://www.cancerindex.org/geneweb/index.html), the 
KEGG pathway database  (26) and the PubMed database. 
CML‑associated genes include dysregulated genes, and 
genes associated with prevention and radial therapy (27,28). 
A dataset of CML‑associated genes was collected from the 
GeneCards database (29), the PubMed database and included 
dysregulated genes. To improve understanding of the tran-
scriptional network involving TFs, miRs and targets genes, 
predicted TFs were extracted using the P‑Match method (24). 
These TFs are suggested as CML‑associated genes. In the 
present study, TFs that appear in TransmiR were focused on. 
Promoter region sequences (1,000 nt) of target genes that 
are targeted by dysregulated miRs were downloaded from 
University of California, Santa Cruz, Genome Browser (30). 
The P‑Match method was used to identify TF binding sites 
(TFBSs) in the 1,000‑nt promoter region sequences and the 
TFBSs were mapped onto the 1,000‑nt promoter region of 
target genes; the corresponding TFs were obtained using 
these TFBSs. Matrix libraries of P‑Match data, in addition to 
sets of known TF‑binding sites collected in TRANSFAC® (31) 
enabled the identification of a large variety of TF binding 
sites. The vertebrate matrix was used with restricted high 
quality criterion for the matrix. The dataset of dysregulated 
genes was designated as set U4 and the associated genes were 
designated as set U5.

Dysregulated miRs include deletions, mutations, and 
differential, overexpressed, low expression, and down‑ and 
upregulated miRs. The dataset of dysregulated miRs was 
collected from the PubMed database. This dataset was desig-
nated as set U6. The associated miRs are involved in various 
CML processes and include dysregulated and non‑dysregu-
lated miRs. The dataset of associated miRs were collected 
from the PubMed database and the HMDD database 2.0 (32). 
This dataset was designated as set U7.

Construction of the three networks. Experimentally validated, 
dysregulatory and associated networks were constructed. 
Regulatory associations of TFs, miRs, target and host genes 
were extracted from sets U1, U2 and U3, these nodes were 
combined and their associations used to construct the experi-
mentally validated network. Dysregulated genes and miRs 
were extracted from sets U4 and U6, and mapped onto the 
experimentally validated network. These genes, miRs and 
host genes, as well as their associations, were constructed 
into the dysregulatory network using the above data and 
other dysregulated data (genes and miRs), which do not have 
regulatory associations with other genes and miRs.

A similar method was used to construct the associated 
network. Associated genes and miRs were extracted from 
sets U5 and U6, and were mapped onto an experimentally 
validated network. These genes, miRs, host genes and their 
associations were extracted, and the associated network was 
constructed using the above data and other associated data 
(genes and miRs), which do not have regulatory associations 
with other genes and miRs.

Results

Dysregulatory network of CML. Dysregulated miRs and 
genes may result in the onset of CML. Fig. 1 presents the 
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dysregulatory network of CML. This network includes 
31 genes, 20 miRs, 50 of their regulatory associations, 89 
single nodes (genes) and four single nodes (miRs). Fig. 1 
presents various types of regulatory associations between 
miRs and genes: One miR may target one or numerous genes, 
one TF may regulate one or numerous miRs, several TFs may 
regulate one or numerous miRs and numerous miRs may 
target one or numerous genes. This dysregulatory network 
partly demonstrates the regulatory mechanism of CML.

Certain features of host genes and their miRs are 
presented in Fig. 1. A host gene includes one miR, which 
targets a number of genes; for example, MIR181A1 host 
gene (MIR181A1HG) includes miR‑181a‑1 that targets B‑cell 
CLL/lymphoma 2 (BCL2). One host gene may include many 
miRs with targets. One miR may be located in various 
genes, for example, transmembrane protein 42 and kinesin 
family member 15 include miR‑564. Fig. 1 presents a host 
gene that includes multiple miRs that alone or together 
target a number of genes. A notable host gene, MIR17HG, 
contains six miRs, miR‑20a, miR‑17, miR‑92a‑1, miR‑18a, 
miR‑19a and miR‑19b‑1. Of these, three, miR‑20a, miR‑17 
and miR‑92a‑1, target six genes, chemoikine (C-X-C 
motif) ligand 8 (CXCL8), mitogen‑activated protein kinase 
(MAPK)  9, TP63, retinoblastoma (RB) 1, RUNX1 and 
BCL2. The six miRs are regulated by signal transducer and 
activator of transcription 5B (STAT5B). miR‑19a, miR‑18a 
and miR‑19b‑1 do not target any dysregulated genes. In the 
present study, 10 dysregulated genes are host genes, however, 
their miRs are not associated with dysregulation in CML, 
for example, RUNX1 includes miR‑802 that is not associated 

with dysregulation in CML. Although certain host genes are 
not associated with dysregulation they may be involved in 
CML.

Associated network of CML. There are numerous genes 
and miRs in the CML‑associated network, as presented 
in Fig. 2, which demonstrates a portion of the associated 
network in CML. Similarities and differences between the 
dysregulatory network and the associated network could not 
be clearly observed, thus a subnetwork was used to examine 
the two networks. As presented in Fig. 3, the larger nodes 
represent dysregulated data (genes and miRs), while the 
smaller nodes represent non‑dysregulated data (genes and 
miRs). Fig. 3 demonstrates the associated network including 
additional TFs, miRs, target genes and their additional 
pathways, such as the TP53➝miR‑29a➝protein phosphatase, 
Mg2+/Mn2+ dependent, 1D (PPM1D) pathway. TP53 is a 
dysregulated gene in CML, while miR‑29a and PPM1D are 
non‑dysregulated. In another pathway, Spi‑1 proto‑oncogene 
(SPI1)➝miR‑155➝Fli‑1 proto‑oncogene, ETS transcrip-
tion factor (FLI1), SPI1 and miR‑155 have dysregulatory 
expression, while FLI1 is a non‑dysregulated gene in CML. 
The associated network extends the dysregulatory network 
and these novel pathways may contribute to tumor growth, 
migration, development, or prevention, diagnosis and other 
processes in CML.

Transcriptional network of predicted TFs. Analysis of 
11 dysregulated miRs that are regulated by predicted TFs was 
conducted. Fig. 4 presents six predicted TFs that regulate nine 

Figure 1. Dysregulatory network of chronic myelogenous leukemia. TMEM42, transmembrane protein 42; KIF15, kinesin family member 15; STAT5B, signal 
transducer and activator of transcription 5B; MIR17HG, miR-17-92 cluster host gene; RUNX1, runt‑related transcription factor 1; RB1, retinoblastoma 1; 
NKX2‑5, NK2 homeobox 5; IL8, interleukin‑8; TP63, tumor protein 63; MIR181A1HG, MIR181A1 host gene; MAPK9, mitogen-activated protein kinase 9; 
TP53, tumor protein 53; KRAS, Kirsten rat sarcoma viral oncogene homolog; BCL2, B-cell CLL/lymphoma 2; SPI1, Spi‑1 proto‑oncogene.
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dysregulated miRs, which, in turn, target nine dysregulated 
target genes in CML. Interferon regulatory factor 1 (IRF1) (33), 
paired box 5 (PAX5) (2), RUNX1 (34) and nuclear factor of kappa 
light polypeptide gene enhancer in B‑cells 1 (NFKB1) (35) have 
been experimentally validated in CML. The present study 
focuses on NFKB1, which regulates four miRs, miR‑21, miR‑17, 
miR‑146a and miR‑155. NFKB1 regulates miR‑17, which 
targets CXCL8, RUNX1, BCL2, retinoblastoma 1 (RB1) and 
mitogen‑activated kinase 9 (MAPK9). E2F transcription factor 1 
and NK2 homeobox 5 (NKX2‑5) co‑regulate miR‑18a, which 
targets Kirsten rat sarcoma viral oncogene homolog (KRAS). 
In addition, Fig. 4 demonstrates that a dysregulated miR may 
be regulated by various TFs, a target gene may be targeted by 
numerous dysregulated miRs and a TF may indirectly affect 
other genes via certain dysregulated miRs, such as miR‑155, 
which is regulated by v‑rel avian reticuloendotheliosis viral 
oncogene homolog A (RELA) encoding p65, NFKB1 and IRF1. 
Three miRs, miR‑451a, miR‑20a and miR‑17 target BCL2. 
NKX2‑5 regulates miR‑17 and miR‑20a, which target RUNX1.

Regulatory pathways of dysregulated genes. To improve 
understanding of regulatory pathways, regulatory pathways 

of dysregulated genes and miRs, and predicted TFs were 
extracted and compared according to their predecessors (a 
node preceding the current one in a pathway) and successors 
(a node following the current one in a pathway).

V‑myb avian myeloblastosis viral oncogene homolog 
(MYB) served as an example of a dysregulated gene. Table I 
indicates MYB, its predecessors and successors in the three 
networks. Three miRs target MYB, which regulates miR‑155 
in the dysregulatory network and the association network. 
Ten miRs target MYB, which regulates three miRs in the 
experimentally validated network. miR‑155 and MYB form 
a feedback loop (FBL) module in the dysregulatory network. 
The FBL module is a specific pathway, in which a TF regu-
lates an miR that targets the TF.

Regulatory pathways of dysregulated miRs. The pathways of 
each dysregulated miR were extracted and compared using 
the same method as for the dysregulated genes. Table II pres-
ents miR‑20a, and its predecessors and successors in the three 
networks. STAT5B regulates miR‑20a that targets four genes 
in the dysregulatory network. Seven TFs regulate miR‑20a 
that targets 15 genes in the associated network. There are 

Table II. Regulatory associations between miR‑20a and genes.

Network	 miR‑20a regulating genes	 miR‑20a targeted genes

Dysregulatory	 STAT5B	 BCL2, RUNX1, MAPK9, RB1
Associated	 CCND1, E2F1,	 CCND1, BCL2, RUNX1, HIF1A,
	 ESR1, MYC, NKX2‑5,	 CDKN1A, E2F1, E2F3,
	 SPI1, STAT5B	 MYC, NRAS, MAPK9, PTEN,
		  RB1, TGFBR2, THBS1, VEGFA
Validated	 CCND1, E2F1, MYC,	 CDKN1A, E2F1, MUC17,
	 MYCN, NKX2‑5, TLX1,	 E2F3, HIF1A, MYC,
	 TLX3, ESR1, STAT5B, SPI1	 SMAD4, APP, MEF2D,
		  RB1, NRAS, PTEN,
		  MAPK9, RBL1, RBL2,
		  CCND1, BMPR2, BNIP2,
		  TGFBR2, WEE1, THBS1,
		  VEGFA, MAP3K12, BCL2,
		  RUNX1, CCND2

miR, microRNA; STAT5B, signal transducer and activator of transcription 5B; E2F1, E2F transcription factor 1; NKX2‑5, NK2 homeobox 5; 
SPI1, Spi‑1 proto‑oncogene; BCL2, B-cell CLL/lymphoma 2; RUNX1, runt‑related transcription factor 1; MAPK9, mitogen‑activated protein 
kinase 9; RB1, retinoblastoma 1.
 

Table I. Regulatory associations between miRs and MYB.

Network	 MYB targeting miRs	 MYB regulated miRs

Dysregulatory	 miR‑150, mir‑155, mir‑424	 miR‑155
Associated	 miR‑150, mir‑155, mir‑424	 miR‑155
Validated	 mir-107, miR‑150, miR‑155, miR‑15a,	 miR‑15a, miR‑155, miR‑148a
	 miR‑16‑1, miR‑16‑2, miR‑34a, miR‑34b,
	 miR‑34c, miR‑424

miR, microRNA; MYB, v‑myb avian myeloblastosis viral oncogene homolog.
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10 TFs, which regulate miR‑20a that targets 26 genes in the 
experimentally validated network.

Regulatory pathways of predicted TFs. The same method was 
used to extract and compare the pathways of each predicted 
TF. E2F1 and NFKB1, as well as three dysregulated miRs, 
form three FBL modules. Notably, IRF1 and RUNX1 are 
dysregulated genes in CML whereas NFKB1 and PAX5 are 
associated with CML.

Table III presents NFKB1, and its predecessors and succes-
sors. Dysregulated miR (miR‑146a) targets NFKB1, which, 
in turn, regulates four dysregulated miRs. miR‑146a targets 
NFKB1, which, in turn, regulates four miRs in the associated 
network. Nine miRs target NFKB1, which regulates 24 miRs 
in the experimentally validated network. miR‑146a and 
NFKB1 form an FBL module; NFKB1 is an associated gene 
in CML and miR‑146a is a dysregulated miR.

Discussion

In the present study, the regulatory network consisted of 
dysregulated genes and miRs, termed a CML dysregulated 
expression network. In this network, certain dysregulated 
genes and miRs are involved in the occurrence of CML (5,6). 
Therefore, these dysregulated genes and miRs as well as their 
associations may contribute to the pathogenesis of CML.

In the current study, significant pathways of dysregulated 
genes and miRs were observed in CML, such as miR‑17➝BCL2, 
IRF1➝miR‑155 and miR‑150➝MYB➝miR‑155. These path-
ways may exert key biological functions in CML and may be 
involved in the development of CML. Certain pathways have 
been observed to influence processes in CML, for example, 
miR‑150➝MYB contributes to Bcr‑Abl‑mediated transforma-
tion in CML (25). Certain pathways have not been observed in 
CML, however, as they influence specific processes of other 

Table III. Regulatory associations between miRs and NFKB1.

Network	 NFKB1 targeting miRs	 NFKB1 regulated miRs

Dysregulatory	 miR‑146a	 miR‑146a, miR‑155, miR‑17, miR‑21
Associated	 miR‑146a	 miR‑146a, miR‑155, miR‑17, miR‑21
Validated	 let‑7a‑1, let‑7a‑2, let‑7a‑3,	 miR‑16‑1, miR‑16‑2, miR‑199a‑2, miR‑21, 
	 miR‑146a, miR‑146b, miR‑15a	 miR‑214, miR‑224, miR‑29a, miR‑29b‑1,
	 miR‑9‑1, miR‑9‑2, miR‑9‑3	 miR‑29b‑2, miR‑29c, miR‑34a, miR‑365,
		  miR‑448, miR‑9‑1, miR‑9‑2, miR‑9‑3

miR, microRNA; NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1.
 

Figure 2. A subnet of associated network in chronic myelogenous leukemia. miR, microRNA; RELA, v-rel avian reticuloendotheliosis viral oncogene 
homolog A; FLI1, Fli‑1 proto‑oncogene, ETS transcription factor; IRF1, interferon regulatory factor 1; EGFR, epidermal growth factor receptor; TP53, 
tumor protein 53; MYB, v‑myb avian myeloblastosis viral oncogene homolog; SPI1, Spi‑1 proto‑oncogene; RB1, retinoblastoma 1; PAX5, paired box 5; IL8, 
interleukin‑8; NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1; E2F1, E2F transcription factor 1; KRAS, Kirsten rat sarcoma viral 
oncogene homolog; NKX2‑5, NK2 homeobox 5; BCL2, B-cell CLL/lymphoma 2; TP63, tumor protein p63; BCL2L11, BCL2‑like 11.
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types of cancer, their biological functions may contribute to 
CML. For example, miR‑19a➝BCL2‑like 11 in T cell acute 
lymphoblastic leukemia  (36) or epidermal growth factor 

receptor➝miR‑21 in age‑ and mutagen‑associated changes in 
colon cancer stem‑like cells (37). The remaining pathways 
that have not been identified in cancers may function in CML, 

Figure 3. Similarities and differences between dysregulatory network and associated network in chronic myelogenous leukemia. miR, microRNA; MYB, v‑myb 
avian myeloblastosis viral oncogene homolog; FLI1, Fli‑1 proto‑oncogene, ETS transcription factor; KRAS, Kirsten rat sarcoma viral oncogene homolog; SPI1, 
Spi‑1 proto‑oncogene; NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1; IL8, interleukin‑8; BCL2, B-cell CLL/lymphoma 2; RB1, 
retinoblastoma 1; TP53, tumor protein 53; PPM1D, protein phosphatase, Mg2+/Mn2+ dependent, 1D.

Figure 4. Regulatory associations of predicted transcriptional network in chronic myelogenous leukemia. RELA, v‑rel avian reticuloendotheliosis viral onco-
gene homolog A; IRF1, interferon regulatory factor 1; E2F1, E2F transcription factor 1; NKX2‑5, NK2 homeobox 5; KRAS, Kirsten rat sarcoma viral oncogene 
homolog; TP63, tumor protein 63; RB1, retinoblastoma 1; MAPK9, mitogen‑activated protein kinase 9; BCL2, B-cell CLL/lymphoma 2; RUNX1, runt‑related 
transcription factor 1; IL8, interleukin‑8.
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for example IRF1➝miR‑155. For the pathways of predicted 
TFs, certain pathways have been determined in other types of 
carcinoma, for example NKX2‑5➝miR‑17‑92 where the TFs 
concomitantly reduce E2F1, thereby enhancing survival of 
leukemic T cells (38).

In the dysregulated network, genes and miRs exhibit 
dysregulated expression. If this dysregulated expression 
pattern was to revert to a normal expression pattern, CML 
may not occur. Regulation of the dysregulated network may 
be an efficient gene therapy strategy for the treatment of CML. 
Future studies will focus on the signaling pathways composed 
of dysregulated genes and miRs, and explore how these path-
ways function in CML.
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