
MOLECULAR MEDICINE REPORTS  13:  461-468,  2016

Abstract. Breast cancer urgently requires improved thera-
peutic strategies. In the current study, a Pvp53 plasmid that 
co‑expressed p53 and short‑interfering RNA against vascular 
endothelial growth factor (si‑VEGF) was developed to replace 
single plasmid transfections. Whether Pvp53 exhibited 
improved anti‑tumor effects in breast cancer MDA‑MB‑231 
cells was investigated in the present study. Pvp53 significantly 
reduced the Bcl‑2/Bax ratio and increased the expression of 
cleaved caspase‑3 and 8. Compared with p53 and si‑VEGF 
single transfections, the Pvp53 co‑expression plasmid signifi-
cantly increased the proportion of apoptotic cells and inhibited 
cell motility and proliferation. These results indicated that the 
Pvp53 co‑expression plasmid has greater inhibitory effects on 
breast cancer MDA‑MB‑231 cells than single plasmids.

Introduction

Breast cancer is the predominant malignant tumor amongst 
women (1). Although China has a low incidence of breast cancer 
compared with Europe and North America, incidence has 
increased in recent years whilst the age of onset has reduced (2). 
The World Health Organization notes breast cancer as a 
serious threat to women's health (3). Breast cancer metastasis 
is a key factor that affects the prognosis and clinical outcomes 
for patients, therefore effective control of tumor invasion and 
metastasis is critical to improve the prognosis for patients with 
breast cancer. Multiple studies (4-6) have demonstrated that the 
occurrence and development of breast cancer involves the inac-
tivation of tumor suppressor genes and mutations in oncogenes. 

Furthermore, aberrant regulation of cellular apoptosis serves an 
important role in carcinogenesis (7).

For tumors to develop, an adequate supply of nutrients 
and oxygen is required (8). However, as the tumors continue 
to grow, nutrient and oxygen consumption requirements 
increase, while the supply begins to decline. At this point, 
the tumor requires new blood vessels to maintain its 
growth. Vascular endothelial growth factor (VEGF) is the 
most important factor in vascular regulation (9). In tumor 
development, hypoxia activates hypoxia inducible factor 1α 
(HIF‑1α) and VEGF to induce neovascularization  (10). 
VEGF is required for the regeneration of blood vessels in 
embryos and in adults following injury (11). High expression 
levels of VEGF have been demonstrated to be negatively 
correlated with the patient survival rate in a variety of solid 
tumors (12,13).

p53 is the most frequent tumor suppressor gene mutated 
in human cancers (14). However, in approximately 50‑60% 
of the tumors harboring p53 mutations, recovery of wild‑type 
p53 expression suppresses tumor growth and metastasis (15). 
A previous study demonstrated that during hypoxia, p53 has 
a dual‑directional regulatory function for VEGF. In the early 
stages of hypoxia, p53 and HIF‑1α interactions promote the 
expression of VEGF, however, during long‑term hypoxia, p53 
exerts an inhibitory effect on VEGF (16). Agani et al  (17) 
observed that in Hep3B human hepatoblastoma and RKO colon 
cancer cell cells, the activation of endogenous p53 and exog-
enous p53 did not impact VEGF mRNA levels. However, 
studies have proposed that wild‑type p53 inhibits VEGF tran-
scription in vitro (18). p53 acts via specific regulatory protein 1 
and v‑src sarcoma viral oncogene homolog kinase to achieve 
its inhibitory effect on VEGF, thus influencing the formation 
of blood vessels (17‑19). Although a cross‑talk between p53 
and VEGF has been suggested, the underlying mechanisms 
remain to be fully elucidated.

Gene therapy has received increased attention however, 
due to the complexity of tumors, single gene treatment 
strategies are not optional. Therefore, in the present study, a 
co‑expression plasmid for double gene therapy in tumor cells 
was investigated. Wild‑type p53 and VEGF short‑interfering 
RNA (si‑VEGF) plasmids were used alone and in combina-
tion in MDA‑MB‑231 cells, with the effects and underlying 
mechanisms investigated.
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Materials and methods

Cell culture and plasmids. MDA‑MB‑231 breast cancer 
cells (Chinese Academy of Sciences Cell Bank, Shanghai, 
China) were cultured in Dulbecco's modified Eagle's medium 
with 10%  (v/v) fetal bovine serum (FBS; GE Healthcare 
Life Sciences, Logan, UT, USA) in 95% air and 5% CO2 at 
37˚C. The eukaryotic expression vectors (Jilin University, 
Jilin, China) pcDNA3.1‑p53 (p53), pGCsiRNA‑VEGF 
(si‑VEGF), pcDNA3.1‑p53/U6 siRNA‑VEGF (Pvp53) and 
pGCsiRNA‑scramble (si‑scramble; scramble siRNA sequence 
as a negative control) were used in these experiments. The 
MDA-MB-231 cells were plated into 24-well culture plates 
(4x104 cells/well). Plasmids were then transfected into cells  
using Lipofectamine®  2000 (Invitrogen; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA). After 48 h, the cell 
morphology of all groups was observed using light micros-
copy (Oympus BX41‑PHD‑P11; Olympus Corporation, Tokyo, 
Japan).

3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide 
(MTT) assays. Transfected MDA‑MB‑231 cells were plated 
into 96‑well flat bottom microplates (8x103 cells/well). At 
24, 48 and 72 h, MTT (5 mg/ml; Sangon Biotech Co., Ltd., 
Shanghai, China) was added to each well and the cells were 
incubated at 37˚C for 4 h. The medium was then removed 
and 200 µl dimethyl sulfoxide (Sangon Biotech Co., Ltd.) was 
added to dissolve the reduced formazan product. The plates 
were read in an enzyme‑linked immunosorbent assay reader 
(Bio‑Rad Laboratories, Inc., Hercules, CA, USA) at 490 nm. 
The proliferation inhibition rate was calculated according to 
the absorbance values.

Scratch wound assay. A scratch wound was made by scraping 
the monolayer of transfected cells across the cover glass with 
a sterile cell lifter (3008; Corning, Inc., Corning, NY, USA). 
Following wounding, the culture medium supplemented with 
10% FBS was replaced with culture medium supplemented 
with 2% FBS, in order to maintain cell survival but prevent 
proliferation. Cells were then allowed to migrate for 48 h. 
Cell migration was evaluated by measuring the size of the 
scratch‑wound 48 h following wounding using an Oympus 
BX41‑PHD‑P11 microscope.

Flow cytometric analysis (FCM). Transfected MDA‑MB‑231 
cells were washed three times with phosphate‑buffered saline 
(Sangon Biotech Co., Ltd.). The cells were resuspended in 
400 µl DNA binding buffer (Beckman Coulter Inc., Brea, CA, 
USA). Subsequently, 5 µl annexin V fluorescein isothiocyanate 
and 10 µl propidium iodide (Beckman Coulter Inc.) were added 
and the samples were incubated for 15 min and 10 min at room 
temperature in the dark, respectively. The apoptotic rate was 
measured by FCM using an Epics‑XL‑MCL flow cytometer 
(Beckman Coulter, Inc.).

Reverse transcription‑polymerase chain reaction (RT‑PCR). 
For RT‑PCR analysis, total RNA from cells was extracted using 
Invitrogen TRIzol reagent (Thermo Fisher Scientific, Inc.). A 
total of 5 µg total RNA (purified following DNase I treatment; 
Thermo Fisher Scientific, Inc.) from each sample was reverse 

transcribed to complementary cDNA using SMART® MMLV 
Reverse Transcriptase kit (cat. no. 639523; Takara Bio, Inc., Otsu, 
Japan). The resultant cDNAs (100 ng) were used in the PCR 
with the gene‑specific primers of interest (Table I). PCR was 
conducted using 2X EasyTaq PCR SuperMix (cat. no. AS111‑02; 
Beijing Transgen Biotech Co., Ltd., Beijing, China). The reaction 
conditions are shown in Table II. Primer concentrations for each 
gene were obtained by performing a series of pre‑experiments. 
PCR products were separated by agarose gel (Invitrogen; 
Thermo Fisher Scientific, Inc.) electrophoresis and visualized 
by ethidium bromide staining.

Western blot analysis. Cells were harvested and lysed with 
lysis buffer (Takara Bio, Inc.). Following centrifugation at 
12,000 x g for 20 min at 4˚C, the protein content of the super-
natants was determined using Bradford reagent (Bio‑Rad 
Laboratories, Inc.). A total of 30 µg protein from each sample 
was separated by 12% polyacrylamide gel (Sangon Biotech 
Co., Ltd.) electrophoresis and transferred to polyvinylidene 
fluoride membranes (Invitrogen) as described previously (3,4). 
The following antibodies were used for western blot analysis: 
Rabbit polyclonal anti‑β‑actin (1:3,000; cat. no. AP0060), rabbit 
polyclonal anti‑p21 (1:500; cat. no. BS1269), rabbit polyclonal 
anti‑Bax (1:500; cat. no. BS2538), rabbit polyclonal anti‑Bcl‑2 
(1:500; cat. no. BS1511) and rabbit polyclonal anti‑p53 (1:500; 
cat. no. BS1273); Bioworld Technology, Inc., St. Louis Park, MN, 
USA), rabbit polyclonal cleaved caspase‑3 (1:1,000; cat. no. 9661; 
Cell Signaling Technology, Inc., Danvers, MA, USA), rabbit 
polyclonal anti‑caspase 8 (1:200; cat. no. sc‑7890) and rabbit 
polyclonal anti‑cleaved caspase‑8 (1:200; cat. no. sc‑7890) Santa 
Cruz Biotechnology, Inc., Dallas, TX, USA), rabbit polyclonal 
anti‑VEGF (1:1,000; cat. no. 19003‑1‑AP; ProteinTech Group, 
Inc., Chicago, IL, USA), mouse monoclonal anti‑matrix metal-
loproteinase‑2 (MMP‑2; 1:200; cat. no. sc‑13594; Santa Cruz 
Biotechnology, Inc.), mouse monoclonal anti‑MMP‑9 (1:200; 
cat. no. sc‑21733) and anti‑rabbit (1:1,000; cat. no. sc‑2054) 
and anti‑mouse (1:1,000; cat. no. sc‑2005) IgG (Santa Cruz 
Biotechnology, Inc.). Proteins were detected using an enhanced 
chemiluminescence kit (cat. no. 120702-74; Advansta, Inc., 
Menio Park, CA, USA).

Statistical analysis. Data are presented as the mean ± standard 
deviation. Statistical comparisons of data were performed 
using analysis of variance to determine statistical significance. 
Statistical analyses were conducted using SPSS 11.0 (SPSS, 
Inc., Chicago, IL, USA). P<0.05 was considered to indicate a 
statistically significant difference.

Results

p53 and VEGF gene and protein expression in MDA‑MB‑231 
cells transfected with the Pvp53 co‑expression plasmid. 
The expression of the p53 and VEGF genes and proteins 
in MDA‑MB‑231 cells transfected with Pvp53 plasmid for 
48 h was examined by RT‑PCR and western blot analysis. 
p53 mRNA expression was significantly increased in cells 
transfected with p53 alone and Pvp53, whilst VEGF mRNA 
expression was reduced in cells transfected with si‑VEGF 
and Pvp53 plasmids. In addition, VEGF mRNA expression 
in Pvp53‑transfected cells was reduced compared with the 
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si‑VEGF plasmid alone (Fig. 1A and B). This result suggests 
that p53 is able to inhibit the expression of VEGF and is 
consistent with previous studies (18). The western blot results 
of p53 and VEGF expression were consistent with the mRNA 
results (Fig. 1C and D). To examine p53 function, the protein 
expression of p21 was measured. The protein expression of 
p21 was increased in cells transfected with p53 and Pvp53 
plasmids, however was not altered in cells treated with the 
si‑VEGF plasmid (Fig. 1C and D).

Cell morphology and survival in Pvp53‑transfected cells. The 
cell morphology of transfected cells was investigated using 
light microscopy. Compared with the control, 48 h following 
transfection, the cells of the three transfection groups (p53, 
si‑VEGF and Pvp53) were observed to be rounded, with an 
irregular shape and exhibiting refractive index variation. The 
alterations were greatest in cells transfected with the Pvp53 
plasmid (Fig. 1E). The MTT assay indicated that all three 
plasmids inhibited the growth of MDA‑MB‑231 cells and the 
survival rate of the cells was reduced in a time‑dependent 
manner. The Pvp53 plasmid exerted the greatest inhibitory 
effect on cell survival (Fig. 1F, Table III).

Effects of Pvp53 co‑expression plasmid on wound‑induced 
migration of MDA‑MB‑231 cells. To examine cell motility, a 
scratch‑wound assay was used. A scratch was introduced into 
the confluent monolayer, and the movement of cells into the 
injured area was monitored by microscopy (Fig. 2A). A signifi-
cant reduction in the motility of the cells in the Pvp53 group 
was observed at 48 h compared with the p53 and si‑VEGF 
groups.

To investigate the mechanisms involved in the inhibition of 
motility following transfection, the protein expression levels 

of MMP‑2 and MMP‑9 were measured. The three transfec-
tion groups exhibited reduced levels of MMP‑2 and MMP‑9, 
however Pvp53 demonstrated the greatest reduction in MMP2 
and MMP‑9 expression levels (Fig. 2B and C).

Effects of Pvp53 on cell apoptosis and associated mechanisms. 
To evaluate apoptosis in MDA‑MB‑231 cells transfected 
with Pvp53, cell apoptosis was measured by FCM. The right 
upper quadrant indicates late apoptosis, and the right lower 
quadrant indicates early apoptosis. Early apoptosis and late 
apoptosis were used to define the apoptotic rate. Quantitative 
analysis using FCM demonstrated the apoptotic rate of the 
control and si-scramble groups were 1.6% and 1.8%, respec-
tively. The apoptotic rate of the si-VEGF group, p53 group 
and Pvp53 group were 14.9%, 19.3% and 24.0%, respectively. 
Compared with the control group and si-Scramble group, 
the apoptotic rates of the si-VEGF, p53 and Pvp53 groups 
significantly increased, and the highest apoptotic rates were 
observed in the Pvp53 group (Fig. 3A).

To determine the potential mechanisms underpin-
ning the inhibition of cell growth, the expression levels of 
apoptosis‑associated proteins were examined. Plasmid trans-
fections resulted in a significant increase in the expression 
levels of Bax, cleaved caspase‑3 and 8 and Bax, and in addition 
reduced expression of Bcl‑2 was observed (Fig. 3B‑F).

Discussion

Maintenance of homeostasis is an essential process for cell 
survival. Cells are required to respond to an ever‑changing 
environment to maintain homeostasis, and the tumor 
suppressor p53 is a vital component in the response to stressors 
such as DNA damage, oncogene activity and hypoxia (20).

Table I. Primer sequences for reverse transcription‑polymerase chain reaction.

Gene	 Forward primer sequence	 Reverse primer sequence

GAPDH	 5'‑GGGTGATGCTGGTGCTGAGTATGT‑3'	 5'‑AAGAATGGGAGTTGCTGTTGAAGTC‑3'
p53	 5'‑CCTCCTCAGCATCTTATCCG‑3'	 5'‑CACAAACACGCACCTCAAA‑3'
VEGF	 5'‑GAGGGCAGAATCATCACGAA‑3'	 5'‑GGCTCCAGGGCATTAGACA‑3'
Bcl‑2	 5'‑GACTTCGCCGAGATGTCCAGC‑3'	 5'‑TGTGGCCCAGATAGGCACCC‑3'
Bax	 5'‑GGCCCACCAGCTCTGAGCAGA‑3'	 5'‑GCCACGTGGGGGTCCCAAAGT‑3'

GAPDH, glyceraldehyde 3‑phosphate dehydrogenase; VEGF, vascular endothelial growth factor.

Table II. Polymerase chain reaction thermocycling conditions.

Gene	 Denaturation	 Annealing	 Extension	 Cycle no.

GAPDH	 94˚C 30 sec	 56˚C, 45 sec	 72˚C, 45 sec	 25
p53	 94˚C 30 sec	 56˚C, 45 sec	 72˚C, 45 sec	 28
VEGF	 94˚C 30 sec	 55˚C, 30 sec	 72˚C, 30 sec	 30
Bcl-2	 94˚C 30 sec	 60˚C, 45 sec	 72˚C, 45 sec	 30
Bax	 94˚C 30 sec	 56˚C, 45 sec	 72˚C, 45 sec	 30

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; VEGF, vascular endothelial growth factor.
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p53 and VEGF serve important roles in tumorigenesis. 
Previous studies have confirmed an association between 
p53 and VEGF, with p53 serving a role in the regulation of 
VEGF (16,21,22). In the current study, the Pvp53 plasmid was 
constructed to silence the expression of VEGF, while inducing 
high expression levels of wild‑type p53. In the p53 plasmid 
group, expression of VEGF was reduced, and compared with 
the si‑VEGF plasmid, the VEGF silencing phenomenon was 
more overt in the Pvp53 group (Fig. 1A‑D). This indicates that 
p53 is able to inhibit expression of VEGF, which is consistent 
with the observations of Farhang Ghahremani et al (18).

The tumor suppressor gene p53, termed the ‘‘guardian of 
the genome’’, serves an essential role in preserving genomic 
stability by preventing genome mutations  (23). The major 
function of p53 involves the blockage of cell cycle progres-
sion in response to DNA damage (24), however the majority 
of tumors possess p53 mutations (13). Breast tumors with p53 
mutations are predominantly classified into basal‑like or the 
HER2‑amplified subgroup, while the luminal subgroup of 
breast cancers almost exclusively expresses wild‑type p53 (13). 
Typically, mutant p53 is stably expressed and accumulates 
in cells, with mutations in p53 able to alter the function of 

  A   B
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  F

Figure 1. Effects on cell morphology and survival by Pvp53 transfection. (A and B) Expression of p53 and VEGF mRNA was measured using reverse 
transcription‑polymerase chain reaction. (C and D) Protein expression levels of p53 and VEGF were measured by western blotting. M, marker; lane 1, control; 
lane 2, si‑scramble; lane 3, si‑VEGF; lane 4, p53; lane 5, Pvp53. (E) Images of cell morphology (magnification, x200). (F) Inhibitory rate on cell proliferation 
at different time points. Data are presented as the mean ± standard deviation obtained from three independent experiments. aP<0.05 vs. control or si‑scramble 
group; bP<0.05 vs. si‑VEGF group; cP<0.05 vs. p53 group. VEGF, vascular endothelial growth factor; si, short interfering RNA; GAPDH, glyceraldehyde 
3‑phosphate dehydrogenase.
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the p53 protein, and some mutations resulting in oncogenic 
activity (20). Previous studies have demonstrated that mutant 
p53 has the potential ability to induce tumorigenesis, predomi-
nantly through the inhibition of transcription, which inactivates 
additional tumor‑suppressor genes (25‑28). Mutations in p53 
are diverse and alter the core molecular pathways involved in 
drug responses (29). Types of p53 mutations, widely termed 
gain of function mutations, convert the protein from a tumor 
suppressor to an oncogene (20).

The p53 protein is a multifunctional protein that is able to 
induce DNA damage and apoptosis, and has an important role 
in controlling cellular responses to numerous stress signals (30). 

p53 is post‑translationally modified and degraded by prote-
ases, and is normally expressed at low levels and is unable to 
bind specifically to DNA (30). Under conditions of stress, p53 
accumulates via multiple mechanisms, including enhanced trans-
lation, reduced proteolytic degradation and post‑translational 
modification (30). p53 activates the expression of pro‑apoptotic 
proteins by transcriptional regulation, and indirectly acts on the 
mitochondrial pathway to induce apoptosis (31). Furthermore, 
p53 additionally promotes apoptosis by activating pro‑apoptotic 
proteins (Bax, Bak) in a transcription‑dependent manner, by 
binding to apoptosis‑inhibiting proteins (Bcl‑2, Bcl‑XL) or by 
acting directly on the outer mitochondrial membrane, resulting 

Figure 2. Effects of Pvp53 transfection on the wound‑induced migration of MDA‑MB‑231 cells. (A) Scratch‑wound assay. (B and C) Protein expression 
levels of MMP‑2 and MMP‑9 were measured by western blotting. Lane 1, control; lane 2, si‑scramble; lane 3, si‑VEGF; lane 4, p53; lane 5, Pvp53. aP<0.05 vs. 
control or si‑scramble group; bP<0.05 vs. si‑VEGF group; cP<0.05 vs. p53 group. MMP, matrix metalloproteinase; si, short interfering RNA; VEGF, vascular 
endothelial growth factor.

  B   C

  A

Table III. Inhibitory rate of cell proliferation.

		  Time (h)
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Group	 24	 48	 72

Control	 0.0±0.0	 0.0±1.5	 0.0±3.0
si‑scramble	 1.6±2.3	 1.7±4.7	 5.8±2.4
si‑VEGF	 24.3±1.0a	 39.7±3.1a	 42.4±8.5a

p53	 23.7±5.1a	 41.6±2.5a	 40.2±3.4a

Pvp53	 31.8±4.3a,b,c	 52.0±2.4a,b,c	 63.9±4.1a,b,c

aP<0.05 vs. control or si‑scramble; bP<0.05 vs. si‑VEGF; cP<0.05 vs. p53. VEGF, vascular endothelial growth factor; si, short interfering RNA; 
VEGF, vascular endothelial growth factor.
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Figure 3. Effects of Pvp53 transfection on cell apoptosis. (A) Flow cytometric analysis of apoptotic cells using annexin V‑fluorescein isothiocyanate and propidium 
iodide staining at 48 h following transfection. (B and C) Expression levels of Bcl‑2/Bax mRNA were measured using reverse transcription‑polymerase chain 
reaction. Protein expression levels of (D and E) Bcl‑2/Bax, (F and G) Cas8, c‑Cas8 and c‑Cas3 were measured using western blotting. M, marker; lane 1, control; 
lane 2, si‑scramble; lane 3, si‑VEGF; lane 4, p53; lane 5, Pvp53. aP<0.05 vs. control or si‑scramble group; bP<0.05 vs. si‑VEGF group; cP<0.05 vs. p53 group. si, short 
interfering RNA; VEGF, vascular endothelial growth factor; GAPDH, glyceraldehyde 3‑phosphate dehydrogenase; Cas, caspase; c‑Cas, cleaved‑Cas.

  A

  B   C

  D   E

  F   G
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in permeability alterations and promoting apoptosis (31). The 
current study indicated that compared with p53 and si‑VEGF 
single plasmid transfections, the Pvp53 co‑expression plasmid 
significantly reduced the ratio of Bcl‑2/Bax, and increased the 
expression of cleaved caspase‑3 and 8, thereby promoting breast 
cancer cell apoptosis (Fig. 3). This result suggests that Pvp53 is 
able to activate the caspase pathway, indicating a pro‑apoptotic 
function.

One of the hallmark cancer cell phenotypic alterations 
is angiogenesis. Tumor growth and metastasis is dependent 
upon the formation of new blood vessels, and tumor‑derived 
VEGF serves an important role in the formation of new 
blood vessels (32‑34). Numerous studies (35-37) have demon-
strated that high expression of VEGF is observed in almost 
all malignant tumors, however normal tissues do not express 
VEGF or express only minimal levels. In addition, previous 
studies have demonstrated an association between the expres-
sion of VEGF and gastric carcinogenesis, development and 
prognosis (38‑40). VEGF is able to induce the proliferation 
of endothelial cells, enhance vascular permeability and alter 
the state of the extracellular matrix in addition to the expres-
sion of genes  (13). Studies have indicated that wild‑type 
p53 is able to inhibit VEGF expression, tumor growth and 
metastasis (13,41,42). Mutant p53 increases the expression of 
VEGF, thereby promoting tumor angiogenesis, growth and 
metastasis (43). p53 is able to transactivate pro‑apoptotic and 
cell cycle arresting genes (44). The p53 downstream gene, 
p21, is a universal inhibitor of cyclin‑dependent kinases 
(CDK), and belongs to the CIP/KIP family of CDK inhibi-
tors (45). Furthermore, p21 possess additional functions, such 
as inducing apoptosis or enhancing the apoptotic response 
to chemotherapeutic agents  (46‑48). In addition, p21 is 
a inhibitor of VEGF and angiogenesis (16). In the current 
study, compared with the si‑VEGF plasmid group, the p53 
plasmid group exhibited downregulation of VEGF expres-
sion, indicating that p53 has a suppressive effect on VEGF, 
which may be associated with the high expression of p21 
(Fig. 1C and D). These results demonstrate that p53 has a 
role in the regulation of VEGF expression, and thus part of 
its antitumor effect may be achieved by inhibiting the expres-
sion of VEGF.

To investigate the effect and mechanism of the Pvp53 
plasmid on tumor cells, the alterations in cell migration were 
investigated. In a variety of tumor cells that highly express 
MMPs, it has been observed that the basement membrane 
is degraded and that certain growth factors involved in 
tumor development are activated (31). In the current study, 
the scratch‑wound assay indicated that Pvp53 significantly 
inhibited the migration of MDA‑MB‑231 cells. Compared 
with the si‑VEGF and p53 single gene transfection group, the 
Pvp53 co‑expression group markedly affected the expres-
sion of MMP‑2 and MMP‑9 (Fig. 2). These results indicate 
that p53 and VEGF are able to regulate the expression of 
MMPs. In addition, Pvp53 is able to inhibit the migration of 
MDA‑MB‑231 cells by inhibiting the expression of MMP‑2 
and MMP‑9, with the expression of MMPs being inversely 
proportional to the expression of p53, which was directly 
proportional to VEGF.

In conclusion, compared with the single gene approaches, 
the Pvp53 co‑expression plasmid exhibited an enhanced 

inhibitory effect on the proliferation and migration of 
MDA‑MB‑231 cells, and possessed greater pro‑apoptotic 
ability.
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