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Abstract. Obstructive sleep apnea (OSA) is a chronic condition 
characterized by chronic intermittent hypoxia (IH) and 
subsequent reoxygenation (ROX). The gastrointestinal system, 
which is particularly sensitive to tissue hypoxia and reduced 
perfusion, is likely to be affected by OSA. A rat model of IH 
was used to analyze oxidative stress-associated genes and 
tight junction proteins by reverse transcription-quantitative 
polymerase chain reaction. Subsequently, altered morphology 
of the duodenal mucosa and elevated Chiu scores were 
observed in the IH-exposed rats. In addition, IH exposure 
resulted in upregulation of the nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase subunits, NADPH 
oxidase 2 and p22phox, in the small intestine, and upregulation 
of transcription factors, including hypoxia-inducible factor-1, 
nuclear factor-κB and activator protein-1. Furthermore, 
the mRNA expression levels of intestinal tight junction 
(TJ)-related proteins, claudin-1 and claudin-4, were decreased 
in the IH-exposed group, as compared with in the control 
group. In conclusion, the present study demonstrated that 
OSA, which is characterized by IH and ROX, may lead to 
disruption of the duodenum. The mechanism underlying the 

effects of OSA on duodenal morphology may be associated 
with increased oxidative stress and activation of transcription 
factors, subsequently inducing intestinal TJ disruption and 
intestinal injury.

Introduction

Obstructive sleep apnea (OSA) is a breathing disorder that 
is characterized by repetitive episodes of complete or partial 
upper airway obstruction during sleep, which leads to 
intermittent reduction or complete blockage of airflow (1). The 
prevalence of OSA is 3-7% in men and 2-5% in women (1). 
Repetitive OSA results in chronic intermittent hypoxia 
(IH), which is followed by reoxygenation (ROX), and is 
characterized by frequent decreases in blood O2 saturation. 
The clinical symptoms of sleep apnea were reported as early 
as the 19th century (2); however, it was not until the 1980s that 
researchers began to investigate and understand OSA (3).

OSA has been associated with numerous comorbidities, 
including cardiovascular alterations, diabetes and 
depression (4). Although efforts have been made to comprehend 
the consequences of OSA and the underlying state of IH, there 
may be more problems or comorbidities associated with OSA 
than originally expected. The gastrointestinal system is likely 
to be affected by OSA, since the gastrointestinal epithelium is 
particularly sensitive to tissue hypoxia and reduced perfusion. 
Furthermore, a clinical study involving 35,480 patients 
indicated sleep apnea as an independent risk factor for gastric 
and duodenal ulcer bleeding (5), thus suggesting that OSA 
may compromise the gastrointestinal system; however, the 
underlying mechanism is not well understood. Therefore, the 
present study hypothesized that IH, a characteristic of OSA, 
may induce intestinal injury.

Integrity of the intestinal epithelium is essential for normal 
physiological function and the prevention of disease, since it 
restricts the free passage of toxic and infectious molecules 
from the gut lumen whilst allowing selective paracellular 
absorption of nutritive material. The major determinants of 
intestinal barrier function are the intercellular tight junctions 
(TJs), which are located in the uppermost region of the lateral 
membranes of epithelial and endothelial cells (6). Several TJ 
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compounds have been identified, including the transmembrane 
proteins occludin and claudins, and the peripheral membrane 
proteins zonula occludens (ZOs) (7). Claudins are considered 
integral proteins of TJs that regulate size selectivity of the TJ 
barrier. Occludin is thought to be the primary sealing protein of 
the epithelial intercellular space, whereas ZOs are the critical 
scaffold proteins that link transmembrane TJ components to 
the intracellular actin cytoskeleton (8).

Growing evidence from cellular and animal models, and 
population surveys of OSA, has demonstrated that exposure 
to IH is associated with the activation of oxidative stress and 
inflammatory processes (9). IH induces the accumulation 
of reactive oxygen species (ROS), which initiates oxidative 
stress-sensitive signaling pathways and inf lammatory 
processes. Various transcription factors and inflammatory 
mediators implicated in this process have previously been 
identified (10). Among these, much attention has been focused 
on hypoxia-inducible factor-1 (HIF-1), nuclear factor-κB 
(NF-κB) and activator protein-1 (AP-1). The transcription factor 
HIF-1 is the main regulator of oxygen homeostasis and serves a 
key role in the response to hypoxia in most tissues (11). NF-κB 
and AP-1 are transcription factors implicated in inflammatory 
processes. Once they are activated, several target genes are 
transcribed, triggering an inflammatory cascade. A previous 
study suggested that the expression and function of TJs are 
affected by proinflammatory cytokines and intracellular 
signaling molecules (12). Therefore, it is essential to identify 
whether IH has an effect on the intestinal gene expression of 
transcription factors and inflammatory mediators, and whether 
it induces TJ disruption via activation of oxidative stress and 
inflammatory processes.

In the present study, a rat model was developed to mimic the 
recurrent IH and subsequent ROX experienced by patients with 
OSA. It was hypothesized that this pathological environment 
may result in activation of oxidative stress and inflammatory 
processes in the duodenum, subsequently compromising 
intestinal barrier function by disrupting TJs.

Materials and methods

Ethics statement. Rats were used in strict accordance with the 
protocol approved by the Animal Care Committee of Tianjin 
Medical University General Hospital (Tianjin, China).

Animals and treatments. Male Wistar rats (180±20 g; n=30; 
6-weeks-old) were purchased from the Model Animal Center 
of Radiological Medicine Research Institute, China Academy 
of Medical Science (Tianjin, China). Rats were housed in 
standard laboratory cages (n=5/cage) at 22˚C with a 12 h 
light/dark cycle and free access to food and water. The rats 
were randomly divided into two groups (n=15/group) matched 
for body weight: The IH-exposed group and the control group. 
Rats in the IH-exposed group were exposed to IH for 8 h/day 
during the rodent diurnal sleep period, between 9 AM and 
5 PM, repeatedly for 7 days/week for 8 consecutive weeks, in 
a specialized plexiglas chamber (dimensions 30x20x20 cm), 
as previously described (13). Pure nitrogen and compressed 
air were flushed into the chamber in turn to maintain an IH 
cycle. Each cycle of IH lasted 120 sec, the first 30 sec being the 
hypoxic phase and the following 90 sec the ROX phase (during 

which the nitrogen was replaced with clean air). Gas flow was 
regulated by timer-controlled solenoid valves and an O2 flow 
meter. The O2 and CO2 concentrations were continuously 
monitored by an O2 and CO2 concentration monitor (Hamilton 
Medical AG, Bonaduz, Switzerland). The control rats 
underwent an identical protocol; however, the nitrogen source 
was replaced with a clean air source.

Histological analysis. Following treatment, rats were 
anesthetized by intraperitoneal injection of 30 mg/kg 
pentobarbital sodium (Sigma-Aldrich, St. Louis, MO, USA), 
and the duodenum was excised and rinsed in ice-cold 
phosphate-buffered saline (pH 7.4). The duodenal tissues were 
subsequently fixed in 10% neutral buffered formalin for 24 h, 
were paraffin-embedded, cut into 5 µm sections, and were 
processed for hematoxylin and eosin (H&E) staining (Solarbio 
Science & Technology Co., Ltd., Beijing, China). The stained 
sections were analyzed, and images of the representative fields 
were captured using an Olympus BX53 microscope (Olympus 
Corporation, Tokyo, Japan). Morphological injury of the 
duodenal mucosa was assessed using the Chiu histological 
injury scoring system for intestinal villi. The numerical 
scores were as follows: 0, normal mucosa; 1, development 
of subepithelial Gruenhagen's space and vacuolization at 
the apex of the villi; 2, extension of the subepithelial space 
with moderate lifting of the epithelial layer from the lamina 
propria; 3, massive subepithelial lifting down the sides of villi; 
4, epithelial lifting and vacuolization from the tip to the lower 
portion of villi; and 5, mucosal hemorrhage, ulceration and 
disintegration of the lamina propria (14). Two independent and 
blinded researchers performed the histological scoring.

Total RNA isolation. TRIzol® reagent (Invitrogen; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) was used to 
extract RNA from homogenized duodenal tissues, according 
to the manufacturer's protocol. Extract yield and quality were 
determined by measuring the absorbance at 260 and 280 nm 
using a MaestroNano Micro-volume Spectrophotometer 
(Maestrogen, Inc., Las Vegas, NV, USA). The absorbance ratio 
of 260:280 nm was between 1.8 and 2.0.

Reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR). mRNA (3 µg) was reverse transcribed 
into cDNA with an oligo (dT) primer for 1 h at 50˚C using 
the TIANScript RT kit (Tiangen Biotech Co., Ltd., Beijing, 
China), according to the manufacturer's protocol. RT-qPCR 
was performed using iQ SYBR Green Supermix (#1708880; 
Bio-Rad Laboratories, Inc., Hercules, CA, USA) with a reaction 
volume of 20 µl, according to the manufacturer's protocol. 
Gene-specific primers were designed using the Primer-Quest 
SM software (sg.idtdna.com/Primerquest/Home/Index; 
Integrated DNA Technologies, Inc., Coralville, IA, USA), 
and were commercially produced by BGI Tech (BGI Tech 
Solutions Co., Ltd., Shenzhen, China). Primer sequences are 
listed in Table I. DNA amplification was carried out using a 
CFX96 Touch Real-Time PCR Detection system (Bio-Rad 
Laboratories, Inc.) with the following reaction conditions: 
Initial heating cycle at 95˚C for 2 min; followed by 40 cycles 
alternating between denaturation at 95˚C for 25 sec, primer 
annealing at 60˚C for 25 sec, and extension at 72˚C for 20 sec. 
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A final extension step at 72˚C for 10 min was conducted. 
The housekeeping gene, glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), was used as an internal control. 
Melting curves were used to identity the amplicons. Relative 
mRNA expression levels of the target genes were calculated 
using the 2-ΔΔCq method, and were normalized to the levels of 
GAPDH in the same sample (15).

Statist ical analysis. Results are presented as the 
mean ± standard error of the mean and experiments were 
repeated three times. The data were analyzed using SPSS 
software, version 13.0 (SPSS, Inc., Chicago, IL, USA) 
and differences between paired groups were analyzed 
using Student's t-test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Exposure to IH results in damage to the duodenal epithelium. 
Hypoxia is known to lead to inflammation; in order to 
assess whether IH contributes toward injury to the duodenal 
epithelium, duodenal morphology was examined. Evaluation 
of the H&E-stained sections revealed morphological 
alterations to the duodenal mucosa in response to IH exposure 
(Fig. 1A and B). High-power images of the general epithelial 
structures of the duodenum from the control or IH-exposed 
rats were captured (Fig. 1C and D). The histological images 
of the duodenal specimens from the control rats (Fig. 1A) 
exhibited normal-appearing mucosal villi with consistent 
mucosa, as compared with the IH-exposed rats (Fig. 1B). 
IH-exposed rats exhibited disintegration of the mucosal villi 
and infiltration of inflammatory cells (Fig. 1B). Furthermore, 
necrosis and superficial ulceration were detected in the 
mucosa of certain IH-exposed rats (data not shown). The 
villous injury score of the IH-exposed rats (mean injury 
score, 4.00±0.63) was markedly higher compared with the 
control rats (mean injury score, 0.67±0.58; Fig. 1E). These 
findings suggest that exposure to IH may result in marked 
pathophysiological alterations in duodenal tissue.

IH exposure induces activation of oxidative stress and 
transcription factor expression. A previous study indicated 
that recurrent hypoxia and ROX cycles increase the production 
of ROS in OSA (16). Nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase serves a key role in oxidative 
stress and is an enzyme involved in the production of ROS (9). 
To examine whether IH affects NADPH oxidase activity in 
the intestine, and if so, whether NADPH oxidase activation 
contributes to the expression of IH-induced transcription 
factors, the expression levels of NADPH oxidase subunit 
genes were measured in the IH-exposed and control rats. 
There was a significant increase in the mRNA expression 
levels of the NADPH oxidase subunits NADPH oxidase 2 
(Nox2) (Fig. 2A; P=0.003) and p22phox (Fig. 2B; P=0.005) 
in the IH-exposed rats. These data suggest an overexpression 
of NADPH oxidase in the IH-exposed rats. Therefore, it may 
be hypothesized that NADPH oxidase is a major source of 
ROS in the IH-exposed duodenum, and that upregulation of 
NADPH oxidase results in increased ROS, thereby mediating 
the onset of oxidative stress.

HIF-1 is a heterodimeric protein that is composed of an 
O2-regulated HIF-1α subunit and a constitutively expressed 
HIF-1β subunit. Hypoxia induces upregulation of HIF-1, and 
the activity of HIF-1 is primarily determined by the HIF-1α 
subunit. To examine whether IH activated HIF-1, the mRNA 
expression levels of HIF-1α were assessed. Compared with 
the control group, a significant increase in the mRNA 
expression levels of HIF-1α was detected in the IH group 
(Fig. 2C; P=0.014).

AP-1 is a protein complex formed by the protein products 
of immediate early genes, including c-fos and c-jun. 
Activation of AP-1 is usually indirect and represented by 
c-fos mRNA expression levels. The mRNA expression levels 
of c-fos (Fig. 2D; P=0.033) were significantly increased in 
the IH-exposed rats. In addition, an increase in the mRNA 
expression levels of NF-κB was detected in the duodenum 
of the IH-exposed rats (Fig. 2E; P=0.07). These data 
indicate that IH may activate transcription factors in the 
duodenum.

Table I. DNA primer sequences for reverse transcription-quantitative polymerase chain reaction.

Gene Forward primer Reverse primer

GAPDH 5'-TGGAGTCTACTGGCGTCTTC-3' 5'-TTCACACCCATCACAAACATG-3'
Nox2 5'-GGCTGTGAATGAGGGACTC-3' 5'-CCAGTGCTGACCCAAGAAG-3'
p22phox 5'-AAGTACCTGACCGCTGTGG-3' 5'-AGGTAGATCACACTGGCAATG-3'
HIF-1α 5'-AAGAAACCGCCTATGACGTG-3' 5'-CCACCTCTTTTTGCAAGCAT-3'
NF-κB 5'-AGCCCTATGCCTTTTCAACAT-3' 5'-CACTCCTGGGTCTGTGTTGTT-3'
c-fos 5'-CGAAGGGAAAGGAATAAGA-3' 5'-GTCCAGGGAGGTCACAGA-3'
Claudin-1 5'-TGTCCACCATTGGCATGAAG-3' 5'-GCCACTAATGTCGCCAGACC-3'
Claudin-2 5'-ACAGCACTGGCATCACCCA-3' 5'-GCGAGGACATTGCACTGGAT-3'
Claudin-4 5'-AAGGCCAAGGTCATGATCACAG-3' 5'-GAAGTCGCGGATGACGTTGT-3'
Occludin 5'-CTACTCCTCCAACGGCAAAG-3' 5'-AGTCATCCACGGACAAGGTC-3'
ZO-1 5'-ATTCAGTTCGCTCCCATGAC-3' 5'-GCTGTGGAGACTGTGTGGAA-3'

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Nox2, nicotinamide adenine dinucleotide phosphate-oxidase; HIF-1α, hypoxia-induc-
ible factor-1α; NF-κB, nuclear factor-κB; ZO-1, zona occludens-1.
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IH exposure selectively regulates the mRNA expression 
levels of TJ proteins. Due to the key function of TJ proteins 
in the integrity of intestinal mucosa, the present study 
examined whether IH exposure regulated TJ components 
in the duodenum, including claudin-1, -2, -4, occludin and 
ZO-1. RT-qPCR demonstrated that the mRNA expression 
levels of claudin-1 (Fig. 3A) and claudin-4 (Fig. 3B) were 
significantly reduced by IH exposure compared with the 
control group (P<0.01 and P<0.05, respectively). However, no 
significant alterations were detected in claudin-2, occludin 
or ZO-1 mRNA expression (Fig. 3C-E; P>0.05). These data 
suggest that IH exposure selectively loosens TJ proteins of the 
intestinal luminal cells to increase intestinal permeability, 
which subsequently leads to a breach in the mucosal barrier 
during IH.

Discussion

The present study used a rat model to provide evidence that IH 
exposure, the hallmark feature of OSA, may lead to disruption 
in the duodenum. In addition, increased mRNA expression 
levels of oxidative stress-related genes and transcription factors 
were detected in the duodenum following exposure to IH.

IH and subsequent ROX are characteristics of OSA, which is 
similar to ischemia/reperfusion (I/R) injury. Although no direct 
study has observed intestinal injury in OSA, it has previously 
been reported that intestinal damage occurs following I/R 
injury (17). Intestinal morphological injury alongside a raised 
Chiu score has been observed in response to I/R injury (17). 
In addition, functional studies of intestinal barrier function 
have demonstrated that intestinal permeability increases 
following I/R injury (18,19). Conversely, no previous studies 
have reported a direct link between IH and intestinal injury. 
The present study demonstrated that the intestinal mucosa 
was significantly compromised following IH exposure, as 

evidenced by morphological alterations to intestinal structures 
and elevated Chiu scores. It may therefore be hypothesized 
that these changes increase mucosal permeability, leading to 
intestinal barrier dysfunction.

IH-induced oxidative stress represents a pathological 
link between OSA and resultant multiple organ injury. 
A previous study demonstrated that IH induces severe 
oxidative stress in the myocardium, brain, carotid body, 
adrenal gland and liver in animal models (20). Excess 
ROS may lead to radical-induced oxidation and damage, 
serving as key activator for transcription factors and 
inflammatory pathways (11). Cell culture and animal model 
studies have demonstrated that HIF-1 is activated by IH 
exposure (21,22), due to the increased generation of ROS 
via activated NADPH oxidase and the resultant changes in 
intracellular Ca2+ (23). The present study demonstrated that 
HIF-1α mRNA expression was upregulated in the duodenum 
following IH exposure. A previous study demonstrated the 
feed-forward interactions between HIF-1 and ROS under IH 
conditions (24). IH may activate HIF-1 via a ROS-dependent 
manner, whereas antioxidants prevent HIF-1 activation (25). 
Conversely, HIF-1 is required for IH-induced ROS generation, 
that is, IH elevates ROS levels in wild-type mice, but not in 
HIF-1α‑deficient mice (26). These results suggested that IH 
may initially induce an increase in ROS levels by activating 
NADPH oxidase, which upregulates HIF-1α, and once HIF-1 
is activated, it may further promote increases in ROS.

NF-κB and AP-1 are transcription factors, which have 
been investigated in IH. The classical NF-κB pathway is 
thought to be activated by ROS. Previous studies have reported 
that IH induces activation of NF-κB and upregulation of 
NF-κB-dependent genes (26), which is mediated via activation 
of p38 mitogen-activated protein (MAP) kinase (27). In 
addition, increased protein and mRNA expression levels of 
c-fos have been detected in animal and cell models following 

Figure 1. Disrupted duodenal epithelium in IH-exposed rats. The duodenum was collected from (A) control and (B) IH-exposed (8 weeks exposure) rats. 
An equivalent area of duodenal tissue was excised from the control or IH-exposed rats, and the tissues were fixed and stained with hematoxylin and eosin. 
(C and D) High-power view of general duodenal epithelial structures from the control and IH-exposed rats, respectively. (E) Mean villous injury scores of the 
control and IH-exposed rats. Data are presented as the mean ± standard error of the mean. *P<0.05 vs. control. IH, intermittent hypoxia.

  E

  B  A

  C   D
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exposure to IH (28), thus suggesting that AP-1 serves an 
important role in IH.

TJs are important for maintaining integrity of the intestinal 
barrier (29). Disruption of TJs and increased paracellular 
permeability serve a role in the pathogenesis of several 
intestinal diseases (30). Furthermore, TJ proteins may be 

influenced by numerous transcription factors, including 
HIF-1. A previous study on HIF-1β knockdown cells detected 
significantly reduced levels of claudin-1, which subsequently 
led to increased intestinal permeability (31). However, the 
roles of HIF-1α in the regulation of barrier integrity seem 
controversial. In addition, HIF-1 has been identified as a 

Figure 3. mRNA expression levels of tight junction proteins in the rat duodenum following IH exposure. The duodenal mRNA expression levels of (A) claudin-1, 
(B) claudin-4, (C) claudin-2, (D) occludin and (E) ZO-1 in the control and IH-exposed rats were determined using reverse transcription-quantitative polymerase 
chain reaction analysis, and were normalized to glyceraldehyde 3-phosphate dehydrogenase levels. Data are presented as the mean ± standard error of the 
mean. *P<0.05 and **P<0.01 vs, the control rats. IH, intermittent hypoxia; ZO-1, zona occludens-1.

  A   B   C

  D   E

Figure 2. Expression of oxidative stress-related genes and transcription factors in the rat duodenum following IH exposure. mRNA expression levels of 
(A) Nox2, (B) p22phox, (C) HIF-1α, (D) c-fos and (E) NF-κB were determined using reverse transcription-quantitative polymerase chain reaction analysis 
of duodenal tissue from control and IH-exposed rats. The mRNA expression levels were normalized to glyceraldehyde 3-phosphate dehydrogenase levels. 
Data are presented as the mean ± standard error of the mean. *P<0.05 and **P<0.01 vs. the control rats. IH, intermittent hypoxia; Nox2, nicotinamide adenine 
dinucleotide phosphate oxidase 2; HIF-1α, hypoxia-inducible factor-1α; NF-κB, nuclear factor κB.

  A   B   C

  D   E
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factor associated with barrier protection under hypoxic 
conditions (32). The present study demonstrated that HIF-1 
may serve a gut-injurious role in IH-induced intestinal injury, 
since the expression of TJ-related proteins was upregulated.

The NF-κB signaling pathway has a role in intestinal 
epithelial homeostasis and repair (29), and disruption 
or anomalous activation of NF-κB may exaggerate the 
inflammatory response (33). A previous cell culture study 
demonstrated that TNF-α induced downregulation of 
claudin-1, -2, -4, and occludin, which could be partially 
alleviated via pharmacological inhibition of NF-κB (34). 
Furthermore, the NF-κB signaling pathway has been reported 
to mediate increased expression of myosin light chain kinase, 
which induces opening of intestinal TJ proteins, thus resulting 
in TJ barrier breakdown (35). Activation of NF-κB may also 
mediate claudin-1 internalization and increase paracellular 
permeability (36). Furthermore, NF-κB associates with AP-1 
to induce redistribution of intestinal TJ permeability via 
increased MAP kinase phosphorylation (37) and interleukin-6 
secretion (38). Taken together, these data demonstrate that 
NF-κB and AP-1 may disrupt intestinal epithelium by regulating 
TJ components.

Increasing evidence has illustrated the association between 
hypoxia and gastrointestinal disease (39,40). The absorptive 
and barrier functions of the intestinal epithelium may be 
physiologically regulated by the availability of oxygen (39). 
It is well known that hypoxia may induce inflammation, and 
conversely, inflamed lesions often become severely hypoxic (41). 
In addition, hypoxia influences innate and adaptive immunity 
via activation of HIF-1α (42). Therefore, it may be suggested 
that hypoxia is a significant component of the inflammatory 
microenvironment within the intestinal mucosa (40).

The present study has certain limitations. Constrained to 
the experimental technique, the present study failed to detect 
ROS accumulation directly. In addition, future experiments 
that analyze the expression levels of proteins associated with 
intestinal TJs and transcription factors by western blotting or 
immunohistochemistry are required.

In conclusion, the major observation of the present study 
is that OSA, characterized by IH and subsequent ROX, may 
cause disruption of the duodenum. The mechanism underlying 
the effects of OSA on duodenal morphology is associated 
with increased oxidative stress and activation of transcription 
factors, which may subsequently induce intestinal TJ disruption 
and intestinal injury. These data may provide a novel insight 
into the clinical treatment of patients with OSA, but intestinal 
complications should be kept in mind and caution taken to avoid 
these.
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