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Abstract. Platelet activation is important in hyperten-
sion‑induced cardiac inflammation and fibrosis. P‑selectin 
expression significantly (P<0.05) increases when platelets 
are activated during hypertension. Although P‑selectin 
recruits leukocytes to sites of inflammation, the role of 
P‑selectin in cardiac inflammation and fibrosis remains to be 
elucidated. The present study aimed to investigate whether 
platelet‑derived P‑selectin promotes hypertensive cardiac 
inflammation and fibrosis. P‑selectin knockout (P‑sel KO) 
mice and wild‑type (WT) C57BL/6 littermates were infused 
with angiotensin II (Ang II) at 1,500 ng/kg/min for 7 days and 
then cross‑transplanted with platelets originating from either 
WT or P‑sel KO mice. P‑selectin expression was increased 
in the myocardium and plasma of hypertensive mice, and the 
P‑sel KO mice exhibited significantly (P<0.05) reduced cardiac 
fibrosis. The fibrotic areas were markedly smaller in the hearts 
of P‑sel KO mice compared with WT mice, as assessed by 
Masson's trichrome staining. In addition, α‑smooth muscle 
actin and transforming growth factor β1 (TGF‑β1) expression 
levels were decreased in the P‑sel KO mice, as assessed by 
immunohistochemistry. Following platelet transplantation 
into P‑sel KO mice, the number of Mac‑2 (galectin‑3)‑ and 
TGF‑β1‑positive cells was increased in mice that received WT 
platelets compared with those that received P‑sel KO platelets, 
and the mRNA expression levels of collagen I and TGF‑β1 

were also increased. The results from the present study suggest 
that activated platelets secrete P‑selectin to promote cardiac 
inflammation and fibrosis in Ang II‑induced hypertension.

Introduction

Hypertension is a common clinical condition that is 
associated with high morbidity and mortality. The character-
istics of hypertension‑associated cardiac remodeling include 
inflammation, hypertrophy and fibrosis. Cardiac function 
deteriorates as the fibrosis progresses, ultimately resulting in 
heart failure (1). As inflammatory cells, platelets are involved 
in the physiological and pathological processes of numerous 
cardiovascular diseases. Following activation, platelets 
promote cardiac inflammation and fibrosis in conditions of 
angiotensin II (Ang II)‑induced hypertension, and these effects 
may be prevented by a purinergic receptor P2Y12 antagonist 
that inhibits platelet activation (2). However, the mechanisms 
that underlie the role of platelet activation in initiating this 
process remain to be elucidated.

Platelets are generally known as central mediators in throm-
bosis and platelets are key in inflammation and immunity (3). 
Platelets interact with various types of leukocytes, including 
monocytes and neutrophils, to induce a systemic inflamma-
tory response (3,4). Upon activation, platelets alter their shape 
and gene expression pattern, expressing specific adhesion 
molecules (including P‑selectin, cluster of differentiation 40L, 
glycoprotein  IIb and tumor necrosis factor superfamily 
member 14) (4), and secreting numerous inflammatory cyto-
kines and chemokines [including interleukin (IL)‑1, platelet 
factor 4 and chemokine (C‑C motif) ligand 5] (5). P‑selectin is a 
key adhesion molecule, it binds to its receptor P‑selectin glyco-
protein ligand‑1 (PSGL‑1), which is expressed on the surface 
of blood monocytes, and mediates monocyte recruitment to 
sites of inflammation. The monocytes become activated, and 
release numerous inflammatory mediators (including mono-
cyte chemoattractant protein‑1, tumor necrosis factor‑α, IL‑1β 
and IL‑6), which in turn stimulate platelets to secrete more 
activating factors (3). This activation loop repeats and amplifies 
the inflammatory response. The present study hypothesized 
that P‑selectin secreted by activated platelets may be involved 
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in the inflammatory response associated with Ang II‑induced 
hypertensive cardiac inflammation and fibrosis.

Materials and methods

Ethics statement. The animals used in the present study were 
bred and maintained in the Laboratory of Animal Experiments 
of Shanxi Medical University. The mice were fed a standard diet 
and were used in accordance with the US National Institutes of 
Health Guide for the Care and Use of Laboratory Animals (6). 
The present study was approved by the Institutional Animal 
Care and Use Committee of Shanxi Medical University.

Animal models. Male P‑sel knockout (KO) mice and wild‑type 
(WT) C57BL/6 littermates (age, 8 weeks; weight, 23‑25 g; 
Jackson Laboratory, Sacramento, CA, USA) were used for the 
experiments in the present study. The mice were maintained 
under conditions of 50% relative humidity, a 12/12 h light/dark 
cycle and 22˚C, housed separately with ad libitum access to food 
and water. The mice were randomized into groups (10 mice/group 
in P‑selectin expression experiemtns, 6 mice/group in all other 
experiments) that were subjected to different experimental 
conditions. A sodium pentobarbital (50 mg/kg; Beijing Solarbio 
Science & Technology Co., Ltd., Beijing, China) solution was 
delivered intraperitoneally to anesthetize the animals. Ang II 
(Sigma‑Aldrich, St. Louis, MO, USA) was dissolved in a 0.01 N 
acetic acid saline solution (Tianjin Chemical Experiment Plant, 
Tianjin, China), and osmotic minipumps (Alzet Model 1007D; 
DURECT Corporation, Cupertino, CA, USA) infused with 
Ang II or vehicle were inserted subcutaneously into the back of 
the mice to deliver Ang II at a release rate of 1,500 ng/kg/min 
for 7 days. All the treatments were well tolerated by the mice.

Blood pressure measurement. Systolic blood pressure (SBP) 
data were collected using a computerized mouse tail‑cuff 
system (BP‑98A; Softron Co., Ltd., Tokyo, Japan). SBP 
was measured prior to the initiation of the experiment and 
on days 4‑7 of the Ang II infusion period. The mean of ten 
repeated values was calculated for each analysis point.

Echocardiography. The mice were anesthetized using 
isoflurane inhalation (Sigma‑Aldrich). Cardiac function was 
analyzed using the Vevo  770 system (VisualSonics, Inc., 
Toronto, ON, Canada). The heart images were acquired in 
2D mode in the parasternal short‑axis view. The echocardio-
graphic parameters were acquired in triplicate in M‑mode for 
all the mice.

Soluble P‑selectin enzyme‑linked immunosorbent assay 
(ELISA). The concentration of plasma, which was obtained 
by centrifugation (1760  x  g; 10  min; 4˚C) of soluble 
P‑selectin was measured using a mouse P‑selectin ELISA kit 
(ELM-Pselectin) obtained from RayBiotech, Inc. (Norcross, 
GA, USA) according to the manufacturer's protocols. The 
optical densities were read at a wavelength of 450 nm using 
an ultraviolet spectrophotometer (Varian Cary® 50; Agilent 
Technologies, Inc., Santa Clara, CA, USA).

Bleeding time measurement. The tail transection method was 
used to measure the bleeding time (7). Briefly, to record the 

maximum bleeding time in 900 sec, the end of bleeding was 
considered as the terminal point. Furthermore, the bleeding 
time was continuously recorded when a new arrest lasting 
>30  sec occurred and when the bleeding restarted within 
30 sec.

Platelet isolation. Whole blood was collected from the hearts 
of anesthetized donor mice and mixed with acid citrate dextrose 
(ACD; Sigma‑Aldrich) at a 9:1 ratio. The ACD‑anticoagulated 
blood was centrifuged at 200 x g for 7 min at room tempera-
ture to obtain platelet‑rich plasma (PRP). The PRP was 
centrifuged at 180 x g for a further 5 min at room tempera-
ture. The platelets were washed, centrifuged at 850 x g for 
12 min at room temperature, and resuspended in suspension 
buffer (minimal essential medium; Gibco; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) containing 10% fetal calf 
serum (10099-141; Gibco; Thermo Fisher Scientific, Inc.) and 
300 ng/ml prostaglandin I2 (N5160; Sigma‑Aldrich) at a final 
concentration of 1x108 platelets/ml.

Platelet transplantation. The 8‑week‑old male recipient mice 
were immunosuppressed using intraperitoneal busulfan, 
which also reduced platelet count, for 5 days (40 mg/kg/day; 
Sigma‑Aldrich). The bleeding time of the recipients was 
recorded as described above. The day prior to the operation, 
donor mouse blood samples (8 ml) from the inner canthus 
were collected. A complete blood cell count of the blood 
samples collected in EDTA‑containing tubes was performed 
using an automatic cell counter, and 1.5 ml (108/ml) platelets 
were injected into the recipient mice via the tail vein (8).

The division of the group in platelet transplantation. The 
mice were divided into 5 groups of 6 mice, as follows: i) WT 
recipient mice transplanted with WT platelets and infused 
with Ang II (WT‑WT, positive control); ii) P‑sel KO recipient 
mice transplanted with WT platelets and infused with Ang II 
(KO‑WT, to assess the role of platelet‑derived P‑selectin); 
iii)  WT recipient mice transplanted with P‑sel KO plate-
lets and infused with Ang II (WT‑KO, to assess the role of 
endothelium‑derived P‑selectin); iv) P‑sel KO recipient mice 
transplanted with P‑sel KO platelets and infused with Ang II 
(KO‑KO, positive control); 5) WT recipient mice transplanted 
with WT platelets and infused with saline (WT‑WT', negative 
control).

Tissue and histology preparation. All the mice were 
sacrificed on day 7 with pentobarbital, and the hearts were 
collected, washed with a heparin‑containing saline solution 
(Sigma‑Aldrich), fixed in 10% formalin (Sigma‑Aldrich), and 
embedded in paraffin (Sigma‑Aldrich). The paraffin‑embedded 
fixed tissues were then cut into 5‑µm‑thick sections, placed 
on polylysine‑coated glass slides (HL-H05-2; Nantong Hailun 
Bio-Medical Apparatus Manufacturing Co., Ltd., Haimen, 
China) and stained with hematoxylin (Sigma‑Aldrich) and 
Masson's trichrome reagent (Beijin Solarbio Science & 
Technology Co., Ltd.). The fibrotic areas were quantitated as 
the ratio of the area that had stained blue to the total section area 
using the NIS‑Elements analysis program (Nikon Corporation, 
Tokyo, Japan). Immunohistochemistry was performed using a 
standard procedure as previously described (2). The sections 
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were incubated overnight at 4˚C with antibodies against trans-
forming growth factor β1 (TGF‑β1; rabbit polyclonal; sc‑146; 
1:200; Santa Cruz Biotechnology, Inc., CA, USA), α‑smooth 
muscle actin (α‑SMA; rabbit polyclonal; ab66133; 1:300; 
Abcam, Cambridge, MA, USA), and Mac‑2 (galectin‑3; rabbit 
polyclonal; sc‑20157; 1:200; Santa Cruz Biotechnology, Inc.). 
The images were captured using a microscope equipped with 
a camera (ECLIPSE 80i/90i, Nikon Corporation).

RNA extraction and reverse transcription‑quantitative 
polymerase chain reaction (qPCR) analysis. Total RNA was 
extracted from heart tissue in the 3D peptide hydrogel using 
TRIzol according to the manufacturer's protocols (Invitrogen; 
Thermo Fisher Scientific, Inc.). RNA was quantified using 
the NanoDrop  2000 spectrophotometer (Thermo Fisher 
Scientific, Inc.). DNase  I (18068‑015; Invitrogen; Thermo 
Fisher Scientific, Inc.) was then applied to 2 µg RNA prior 
to reverse‑transcription with MMLV reverse transcriptase 
from the SuperScript® III First‑Strand Synthesis System and 
oligo (dT) primers (Invitrogen; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's instructions. qPCR reactions 
were performed on an iQ5 Real‑Time PCR Detection system 
(Bio‑Rad Laboratories, Inc., Hercules, CA, USA) using SYBR 
Green I (Takara Bio, Inc., Otsu, Japan) with GAPDH serving 
as a control. The cycling conditions were as follows: 95˚C 
for 2 min, followed by 35 cycles of 95˚C for 30 sec and 60˚C 
for 30 sec. The following primers (9) were used to amplify 
the fragments: Sense, 5'‑GAG​CGG​AGA​GTAC​TGG​ATC​
G‑3' and antisense, 5'‑TAC​TCG​AAC​GGG​AAT​CCA​TC‑3' for 
collagen I; sense, 5'‑GCC​CTG​GAC​ACC​AAC​TATT​GC‑3' and 
antisense, 5'‑GGA​GCG​CAC​GAT​CAT​GTT​GG‑3' for TGF‑β1; 
sense, 5'‑GCA​AAC​AGG​AAT​ACG​ACG​AAGC‑3' and anti-
sense, 5'‑GCT​TTG​GGC​AGGA​ATGA​TTTG‑3' for α‑SMA; 
and sense, 5'‑CCT​GGA​GAA​ACC​TGC​CAA​GTA​TGA‑3' and 
antisense, 5'‑AAG​CAG​GAA​TGAG​AAG​AGG​CTG​AG‑3' for 
GAPDH. The experiments were repeated 3 times. The quanti-
fication cycle values (Cq values) were used to calculate the fold 
differences using the 2‑ΔΔCq method (10).

Western blotting analysis. Protein was extracted from the 
heart tissue and analyzed by western blotting as previously 
described (11). In brief, fresh hearts were lysed with radioim-
munoprecipitation assay lysis buffer and 1 mM phenylmethane 
sulfonyl fluoride (Wuhan Boster Biological Technology, Ltd., 
Wuhan, China). Protein samples (60 µg) were separated by 
10% sodium dodecyl sulfate-polyacrylimide gel electropho-
resis (100 mV, 90 min). Nonspecific proteins were blocked 
by incubating the membrane with 5% non‑fat dried milk in 
Tris‑buffered saline containing 0.1% Tween 20 for 1 h at 
room temperature with agitation. Proteins were transferred 
from the gel to nitrocellulose membranes, which were 
incubated overnight at 4˚C with primary antibodies against 
GAPDH (rabbit polyclonal; CW0101M; 1:5,000; Beijing 
ComWin Biotech Co., Ltd., Beijing, China), α‑SMA (1:1,000; 
Abcam), or TGF‑β1 (1:1,000; Santa Cruz Biotechnology, 
Inc.). They were then incubated at room temperature for 
1 h with mouse anti‑rabbit HRP‑conjugated IgG secondary 
antibodies (sc‑2357; 1:5,000; Santa Cruz Biotechnology, 
Inc.). Images were captured and quantified using a Bio‑Rad 
ChemiDoc XRS system (Bio‑Rad Laboratories, Inc.) with 

Image Lab software, version 2.2 (Bio‑Rad Laboratories, Inc.), 
and protein expression levels were normalized to GAPDH 
expression.

Statistical analyses. The unpaired Student's t‑test was 
utilized to compare two groups and analysis of variance 

Figure 1. P‑selectin expression levels were increased by Ang  II in the 
myocardium and plasma. (A) Western blotting analysis and enzyme‑linked 
immunosorbent assay of P‑selectin expression levels in the myocardium 
and plasma of mice, respectively (n=10/group) following saline or Ang II 
infusion. (B) Systolic blood pressure and cardiac ejection fraction following 
Ang II infusion. The data are presented as the mean ± standard error of the 
mean. *P<0.01; **P<0.001 vs. saline. Ang II, angiotensin II; WT, wild‑type.
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  B
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was performed to compare several groups of animals from 
the transplant experiments. The Mann‑Whitney U test was 
applied to analyze the bleeding time data. SPSS version 17.0 
(SPSS, Inc., Chicago, IL, USA) was used to analyze the data. 
The data are presented as the mean ± standard error of the 
mean and P<0.05 was considered to indicate a statistically 
significant difference. 

Results

Increased P‑selectin expression levels were observed in the 
myocardium and plasma of Ang  II‑induced hypertensive 
mice. To investigate the regulation of P‑selectin expression 
in Ang  II‑induced hypertension, WT mice were infused 

with Ang II at a dose of 1,500 ng/kg/min for 7 days (12,13). 
P‑selectin expression was assessed by western blotting of 
protein from myocardial samples and by ELISA for plasma 
samples. P‑selectin expression levels were markedly increased 
in the myocardium and significantly increased in plasma 
samples following Ang  II infusion compared with saline 
infusion (P<0.01; Fig. 1A). The SBP was elevated in the WT 
and P‑sel KO groups following Ang II infusion compared 
with saline infusion (P<0.001). However, no differences in the 
SBP were observed between the WT and P‑sel KO mice. The 
left ventricular ejection fraction in the two groups (Fig. 1B) 
remained unchanged following Ang  II infusion. Thus, 
P‑selectin deficiency did not influence SBP or cardiac function 
after 7 days of Ang II infusion.

Figure 2. P‑selectin deficiency decreases Ang II‑induced cardiac fibrosis and inflammation. (A) Cardiac fibrosis in WT and P‑sel KO mice following saline 
or Ang II infusion (n=6/group). At day 7, Masson's trichrome‑stained heart sections were analyzed and the fibrotic area was quantified. Scale bars: 500 µm 
(top), 100 µm (bottom). Immunohistochemical staining and quantification of α‑SMA and TGF‑β1 in the hearts. (B) Western blotting analysis demonstrated 
the protein expression levels of α‑SMA and TGF‑β1. Scale bars: 50 µm. The data are presented as the mean ± standard error of the mean (n=6/group). 
*P<0.01 vs. saline; **P<0.05 vs. Ang II. α‑SMA, alpha‑smooth muscle actin; TGF‑β1, transforming growth factor β1; WT, wild‑type; KO, knockout; Ang II, 
angiotensin II.
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P‑selectin deficiency decreases cardiac fibrosis. P‑sel KO mice 
were used to examine the effect of P‑selectin on Ang II‑induced 
cardiac fibrosis, as assessed using Masson's trichrome staining. 
Compared with saline infusion, the fibrotic areas were signifi-
cantly (P<0.05) larger in the WTP‑sel KO hearts following 
Ang  II infusion (Fig. 2A). TGF‑β1 is an important signal 
transduction molecule in cardiac fibrosis (14,15), and α‑SMA 
increases during the differentiation of fibroblasts into myofi-
broblasts. TGF‑β1 and α‑SMA levels were markedly higher 

in WT hearts compared with P‑sel KO hearts following Ang 
II infusion, as indicated by immunohistochemistry (Fig. 2A) 
and by western blotting (Fig. 2B). Thus, P‑selectin is critical in 
cardiac fibrosis in response to Ang II infusion.

Platelet‑secreted P‑selectin is important in the response to 
Ang II stimulation. A platelet cross‑transplantation system 
was used to determine whether P‑selectin predominantly 
originates from platelets in hypertension‑associated cardiac 

Figure 3. P‑selectin produced by platelets and endothelial cells affects cardiac fibrosis in Ang II‑infused mice. (A) Hematoxylin and eosin staining, immu-
nohistochemical staining, and quantification of Mac‑2 and TGF‑β1 were performed in each group. Among the mice that received a platelet transplantation, 
the WT‑WT group demonstrated the most marked level of fibrosis, and the number of inflammatory cells in the KO‑WT and WT‑KO groups was similar. 
(B) Reverse transcription‑quantitative polymerase chain reaction analysis of collagen I and TGF‑β1 mRNA expression levels in each group. Scale bars: 50 µm. 
The data are presented as the mean ± standard error of the mean (n=6/group). *P<0.05, KO‑WT vs. WT‑WT control; **P<0.05, WT‑KO vs. WT‑WT control. 
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inflammation and fibrosis. Platelets [1.5 ml (108/ml)] were 
injected into the tail vein of the recipient mice, which were 
treated with busulfan for 5  days. A marked difference in 
cardiac fibrosis was observed between the KO‑WT and KO‑KO 
groups, in addition to between the WT‑KO and KO‑KO groups. 
As presented in Fig. 3A, more inflammatory cells infiltrated 
the hearts of Ang II‑infused KO‑WT and WT‑KO mice than 
those of Ang II‑infused KO‑KO mice. Immunohistochemistry 
demonstrated that the levels of TGF‑β1 and the number of 
Mac‑2‑positive macrophages in the KO‑WT and WT‑KO mice 
were significantly (P<0.05) lower compared with the WT‑WT 
mice infused with Ang II (Fig. 3A), but significantly greater 
(P<0.05) compared with the KO‑KO mice. qPCR analysis 
demonstrated that P‑selectin deficiency decreased TGF‑β1 
and collagen I expression (Fig. 3B). Thus, platelet‑derived 
P‑selectin increased Ang II‑induced cardiac inflammation and 
fibrosis. However, endothelial cell‑derived P‑selectin is also 
involved in hypertension‑associated cardiac inflammation and 
fibrosis.

Discussion

There is accumulating evidence that P‑selectin is a key cytokine 
in cardiovascular disease (16). A clinical trial demonstrated 
that P‑selectin levels were markedly higher in the plasma of 
hypertensive patients (17). The results in the current study are 
consistent with this clinical observation. The plasma levels of 
P‑selectin in WT mice infused with Ang II were significantly 
higher than those in the control group (P<0.01). In addi-
tion, myocardial P‑selectin expression was increased in the 
Ang II‑infused group. Thus, Ang II may stimulate the secre-
tion of P‑selectin, which exists in a soluble form in the plasma 
and heart. Following Ang II infusion, P‑selectin expression 
was induced by the type 1 angiotensin  II (AT1) receptor, 

and this upregulation may be inhibited by the AT1 receptor 
blocker, valsartan, in hypertensive patients (18). However, the 
source of soluble P‑selectin remains to be elucidated. Plasma 
soluble P‑selectin levels were associated with plasma platelet 
count and platelet‑associated protein expression. However, 
in a previous study, no association was observed between 
the expression levels of P‑selectin and von Willebrand factor 
(vWF), which is a marker of activated endothelial cells (19). It 
was identified that vWF was stored in Weibl‑Palade bodies in 
the endothelial cells, and was secreted into the plasma once the 
endothelial cells were activated (19). Thus, the majority of the 
soluble P‑selectin was likely secreted by platelets.

Larsson et al (20) observed elevated blood pressure and 
platelet activation following injection of Ang II into healthy 
volunteers. Reciprocal activation between platelets and 
leukocytes promotes the secondary capture of leukocytes (21). 
Selectin is the predominant leukocyte adhesion molecule. 
Wang et al (22) demonstrated that impaired leukocyte adhesion 
in P‑sel KO mice was ameliorated by the binding of soluble 
P‑selectin and its ligand, PSGL‑1. Myocardial P‑selectin 
expression may be mediated by adhesive leukocytes in the 
blood. Activated leukocytes express PSGL‑1, which binds to 
P‑selectin expressed on endothelial cells or platelet surfaces. 
These leukocytes then invade cardiac tissue through gaps 
between endothelial cells to exert pro‑inflammatory effects.

Fig.  4 summarizes the signaling pathways involved in 
the present study. Platelet activation in response to Ang II 
was recently reported to be an early event that stimulates 
platelet‑leukocyte conjugation and inf lammatory cell 
recruitment into the heart, resulting in cardiac fibrosis (2). 
However, the mechanism by which platelets mediate 
inflammation remained to be elucidated. Results from the 
present study demonstrate direct evidence that P‑selectin, a 
marker of platelet activation, is involved in Ang II‑induced 

Figure 4. Platelet activation and endothelial dysfunction. Platelets are activated and endothelial function is impaired in Ang II‑induced hypertension. P‑selectin 
levels increase in plasma and activated platelets recruit monocytes. Activated platelets interact with PSGL‑1 expressed by monocyte via P‑selectin. Thus, 
platelets induce monocyte differentiation into macrophages. Macrophages secrete numerous cytokines and elicit fibroblast differentiation into myofibroblasts, 
resulting in cardiac inflammation and fibrosis. 
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hypertension‑associated cardiac inflammation and fibrosis. 
Western blotting and immunohistochemistry demonstrated 
that the expression levels of the profibrotic cytokine, TGF‑β1, 
and the fibroblast differentiation marker, α‑SMA, was 
decreased in the P‑sel KO mice, suggesting that P‑selectin is 
key in cardiac fibrosis following Ang II infusion. Consistently, 
the number of Mac‑2‑positive inflammatory cells, which are 
upregulated under inflammatory conditions, were markedly 
reduced in the P‑sel KO mice (KO‑KO vs. WT‑WT), indi-
cating that P‑selectin deficiency decreased Ang II‑induced 
cardiac inflammation. However, cardiac function was not 
affected after 7 days of Ang II infusion in the P‑sel KO mice, 
which was consistent with previous studies demonstrating 
that cathepsin S, intercellular adhesion molecule 1 and IL‑6 
deficiencies did not alter the Ang II‑induced elevated blood 
pressure and cardiac dysfunction  (11,23). A 4‑week‑long 
Ang II infusion period induced cardiac hypertrophy, remod-
eling and dysfunction in mice (24,25), whereas short‑term 
Ang II infusion (7 days) may induce cardiac inflammation but 
is insufficient to result in cardiac dysfunction. The focus of the 
current study was to investigate the role of platelet P‑selectin 
in the early stage of hypertensive cardiac inflammation and 
fibrosis, thus, a short‑term Ang II infusion animal model was 
selected.

Clinical and animal studies have reported platelet acti-
vation and inflammation in hypertensive mice  (26) and 
patients (27‑29). Injection of Ang II may induce platelet activa-
tion in humans and mice (16,26). The binding of P‑selectin to 
PSGL‑1 mediates platelet‑leukocyte conjugation in early‑stage 
myocardial infarction, resulting in cardiac inflammation and 
remodeling (30). In a previous study on the murine cutaneous 
Arthus reaction, platelets regulated leukocyte recruitment 
in a P‑selectin/PSGL‑1 interaction‑dependent manner (31). 
Numerous studies have illustrated that circulating platelet 
activation and platelet‑leukocyte conjugation are key inflam-
matory mediators. P‑selectin‑deficient conditions may be 
rescued with WT platelets. In the present study, using platelet 
cross‑transplantation demonstrated that the P‑selectin involved 
in Ang II‑induced hypertension‑associated cardiac inflamma-
tion and fibrosis predominantly originated from platelets. The 
KO‑WT group (injection of activated WT platelets) exhibited 
increased inflammatory cells and fibrotic tissue compared 
with the KO‑KO group (injection of P‑sel KO platelets) but the 
fibrotic tissue was reduced compared with the WT‑WT group.

Monocyte recruitment is regulated by activated platelets 
and platelet‑derived P‑selectin in response to Ang II‑induced 
hypertension. Monocytes are recruited into the cardiac 
tissue, where they transform into macrophages, which secrete 
numerous cytokines and elicit fibroblast differentiation into 
myofibroblasts within the myocardial infarction area (32‑34). 
The activated myofibroblasts release an abundance of extracel-
lular matrix proteins, including collagen I/III and fibronectin, 
thus inducing cardiac fibrosis (35‑37).

The WT‑KO group, which predominantly demonstrated 
the effects of endothelial cell‑derived P‑selectin, exhibited a 
similar trend to the KO‑WT group. This suggests that in addi-
tion to platelets, endothelial cells and endothelial cell‑derived 
P‑selectin affects the hypertension‑associated cardiac fibrosis. 
The Ang II‑induced elevated blood pressure resulted in platelet 
activation and endothelial dysfunction, leading to P‑selectin 

secretion into the plasma. Similarly, in atherosclerosis, 
platelet‑ and endothelial cell‑derived P‑selectin promote the 
progression of atherosclerotic lesion development (8).

In conclusion, P‑selectin expression levels were increased 
in myocardium and plasma samples from Ang  II‑infused 
mice, and P‑selectin deficiency reduced cardiac inflammation 
and fibrosis. P‑selectin produced by activated platelets and 
by endothelial cells during Ang II stimulation resulted in the 
development of hypertension‑associated cardiac inflammation 
and fibrosis.
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