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Notch signaling in cerebrovascular diseases (Review)
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Abstract. The Notch signaling pathway is a crucial regulator of
numerous fundamental cellular processes. Increasing evidence
suggests that Notch signaling is involved in inflammation and
oxidative stress, and thus in the progress of cerebrovascular
diseases. In addition, Notch signaling in cerebrovascular
diseases is associated with apoptosis, angiogenesis and the
function of blood-brain barrier. Despite the contradictory
results obtained to date as to whether Notch signaling is
harmful or beneficial, the regulation of Notch signaling may
provide a novel strategy for the treatment of cerebrovascular
diseases.
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1. Introduction

Cerebrovascular diseases occur following acute cerebrovascular
events whereby the arteries of the brain are blocked or a brain
blood vessel ruptures. Poor blood flow to the brain subsequently
results in cell death. There are three primary types of cerebro-
vascular diseases: Ischemic stroke, hemorrhagic stroke and
transient ischemic attack (TTA). The high incidence of cerebro-
vascular diseases worldwide is largely due to failed management
and prevention of modifiable risk factors, particularly in isch-
emic stroke, which accounts for >85% of total cerebrovascular
diseases. Cerebrovascular diseases more commonly affect
people who are overweight, aged =55, have a unhealthy lifestyle
(limited exercise, heavy drinking, use of illicit drugs, smoking
or poor work/life balance), and who have a family history of
stroke, hypertension, moyamoya, vasculitis, arterial dissection
or venous occlusive disease (1-6). Cerebrovascular disease is the
leading cause of mortality and chronic disability in China, and
the third leading cause of mortality and the leading cause of
chronic disability in the USA (7,8).

Notch signaling is a major intercellular communication
pathway, whichishighly conserved inthe majority of multicellular
organisms. Notch signaling is a crucial regulator of numerous
fundamental cellular processes, including proliferation, stem
cell maintenance and differentiation, during embryonic develop-
ment in vertebrate and invertebrate organisms (9-11). In addition,
Notch signaling is involved in cell differentiation, proliferation,
inflammation (12), oxidative stress and apoptosis in a variety
of cell types in adults (10,13). The primary mechanisms under-
lying the Notch signaling pathway in cerebrovascular disease
have been well-established by extensive investigation (10,14,15),
and include enhancing inflammation (16-18), increasing oxida-
tive stress (19), promoting apoptosis (20) and mediating adult
subventricular zone neural progenitor cell proliferation and
differentiation following stroke (21). It has been demonstrated
that activation of the Notch signaling pathway exacerbates
ischemic brain damage, whereas inhibiting the Notch signaling
pathway decreases the infarct size and improves the functional
outcome in a mouse model of stroke (18,22).

The present review discusses the role of the Notch signaling
pathway in the pathogenesis of cerebrovascular diseases. It
primarily focuses on the association between Notch signaling
and neuroinflammation, oxidative stress and apoptosis in
cerebrovascular diseases. An overview is provided for the
proposed pathogenic mechanism underlying Notch signaling
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in stroke via regulation of angiogenesis and the function of the
blood-brain barrier (BBB). Finally, the efficacy of regulating
Notch signaling as a novel therapeutic intervention for cere-
brovascular diseases is considered.

2. Notch signaling pathway

The Notch gene, discovered in the wings of Drosophila mela-
nogaster by Thomas Hunt Morgan in 1917 (23), is crucial for
the regulation of various physiological processes (24,25).
The Notch signaling pathway, comprised of Notch receptors
(Notchl, Notch2, Notch3 and Notch4), Notch ligand and the
transcription factor, CBF1/Suppressor of Hairless/LAG-1 (CSL)
protein, is critical for numerous fundamental cellular processes,
including proliferation, differentiation and survival, during
embryonic and adult development (26-30). These effects are
mediated by the transmembrane ligand-induced release of the
Notch intracellular domain (NICD) and the interaction of this
fragment with the CSL family of transcription factors within the
nucleus (25,27,31). The Notch receptors are expressed on cell
membrane surfaces, and thus can be cleaved by a disintegrin and
metalloproteinase (ADAM) 17 or -10 and a presenilin-depen-
dent y-secretase complex. The cleaved NICD translocates to
the nucleus, where it interacts with the ubiquitous transcription
factor CSL and recruits co-activator mastermind-like proteins
and therefore activates downstream target genes (32-34). In
addition, CSL may inhibit the expression of target genes by
forming transcription complexes in the absence of NICD.
Extensive evidence has revealed that the Notch signaling
pathway is closely associated with the function and structure of
the nervous system. In the central nervous system (CNS), the
Notch signaling pathway regulates the normal development of
neural progenitor cells, neurons, oligodendrocytes and astro-
cytes (35,36). Numerous diseases of the nervous system are
associated with Notch mutations, including sporadic Alzheimer's
disease (37,38), Down syndrome (39,40), Pick's disease (38) and
cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL) (41-44). The
molecular and cellular mechanisms underlying the degeneration
of brain cells affected by cerebrovascular disease are complex,
involving bioenergetic failure, acidosis, excitotoxicity, oxidative
stress and inflammation, and resulting in necrotic or apoptotic
cell death (45,46). Various signaling pathways are involved,
including Notch. For example, in cerebral ischemia, the activa-
tion of Notch regulates nerve damage repair, inflammation and
angiogenesis in the vascular ischemic area via regulating prolif-
eration and development of neuronal precursor cells, mediating
the release of inflammatory factors and promoting angiogen-
esis (47-50). Studies in vitro and in vivo have demonstrated
that blood vessel angiogenesis, endothelial cell proliferation,
and artery and vein differentiation are regulated by the Notch
signaling pathway (51-53). Enhancing Notch signaling activity
promotes arteriogenesis via vascular smooth muscle cell (VSMC)
proliferation in the ischemic brain following stroke (51,54,55).

3.Notchsignaling and neuroinflammationin cerebrovascular
diseases

Inflammation is a complex cascade that protects the body
from infection and injury. Similarly, neuroinflammation is a
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response to neurological damage and may be divided into acute
and chronic process. A variety of inflammatory cytokines
take part in the neuroinflammation. Evidence indicates that
acute neuroinflammation is beneficial to damage repair in the
nervous system, whereas chronic neuroinflammation aggra-
vates the pathological events occurring in the brain (56-59).
In addition, neuroinflammation has been demonstrated to be
crucial for the pathogenesis of cerebrovascular diseases (56).
Various studies have revealed that the activation of Notch
signaling promotes the neuroinflammatory response associ-
ated with cerebrovascular diseases (Fig. 1) (18,22,60).

Notch signaling and cytokines. Previous studies have demon-
strated that cerebral ischemia initiates an inflammatory
response in the brain associated with the release of a variety
of inflammatory cytokines, including tumor necrosis factor-o
(TNF-a), interleukin (IL)-1p, and IL-6 (55,61,62). Macrophages
treated with Toll-like receptor (TLR) 3 or -4 agonists increase
their production of interferon (IFN)-f3, TNF-a, IL-12 and IL.-23.
Activation of glial cells and their release of neurotoxic factors
enhance inflammation in cerebrovascular disease. In addition,
activated glial cells increase the expression of inflammatory
cytokines in cerebral ischemia, including TNF-a., IL-1f, IL-6,
transforming growth factor 3 (TGF-p) and IL-8.

Notch signaling is evolutionarily conserved and critical for
the development and homeostasis of various tissues. Activation
of Notch signaling promotes macrophage polarization to the
IFN-y-producing M1 (inflammatory) subtype (63). Inhibition
of Notch signaling by y-secretase inhibitors (GSI) reduces
nuclear factor-xB (NF-«B) activity and suppresses inflamma-
tory responses. Previous studies have demonstrated that GSI
significantly decreases peptidoglycan and poly (I:C)-induced
secretion of M1 (TNF-a, IL-6, IFN-y and IL-1a) and the
anti-inflammatory subtype M2 (IL-10) cytokines (63,64).
Notch signaling is activated in response to TLR ligands, thus
amplifying the inflammatory response by enhancing NF-kB
signaling. Activation of Notch signaling has been revealed to be
involved in the sustained activation of NF-kB and the resulting
enhancement of inflammatory responses (65). It is becoming
apparent that Notch signaling is central to chronic inflammatory
events involved in the pathogenesis of cerebrovascular diseases,
and Notch may therefore provide a novel target for therapeutic
strategies (15,16,18-20,22,63,65). An ischemic stroke rat model
induced by a 90-min occlusion of the right middle cerebral
artery demonstrated that inhibiting Notch activation with N-[N-
(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl
ester (DAPT) limited NICD release, and production of IL-6
and IL-1f in the ischemic penumbral cortex (18). Notch
mutations may result in a predisposition to stroke and cere-
brovascular atherosclerosis, and Notch mutations may also be
involved in inflammation process, as genes encoded by Notch
mutations include the IL-1 receptor and paraoxonase-1 (66).

Notch signaling and inflammatory mediators. Inflammatory
mediators from plasma or cells, exert their effects via binding
to specific receptors on target cells. Mediators may have one or
numerous target cell types, and may even have varying effects
in distinct cell and tissue types. It has been demonstrated that
Notch signaling may reprogram mitochondrial metabolism for
proinflammatory macrophage activation, inducing the release
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Table I. Potential role of Notch signaling in stroke via inflammatory mediators.
Mediator Source Potential role in stroke References
Histamine and Mast cells, platelets Enhancing vascular leakage, regulating cell 74-76
serotonin proliferation and differentiation
Bradykinin Plasma substrate Enhancing vascular leakage and pain 77
C3a Plasma protein via liver Enhancing vascular leakage and the formation 78
of opsonic fragment (C3b)
C5a Macrophages Enhancing vascular leakage, chemotaxis and 79
leukocyte adhesion and activation
Prostaglandins Mast cells from membrane Potentiating other mediators, vasodilation, pain 80,81
phospholipids and fever
Leukotriene B4 Leukocytes Leukocyte adhesion and activation 82
Oxygen metabolites Leukocytes Endothelial damage and tissue damage 22.83-85
IL-1 and TNF-a Macrophages, other Acute phase reactions, enhancing vascular 18,65,68,
leakage and endothelial and tissue damage 86-89
Chemokines Leukocytes, others Leukocyte activation, enhancing vascular leakage 90-92
and endothelial and tissue damage
Nitric oxide Macrophages, endothelium Vasodilation and cytotoxicity 71

C, complement component; IL-1, interleukin-1; TNF-a, tumor necrosis factor o.

in cerebrovascular diseases

Figure 1. Potential underlying mechanisms by which the activation of Notch signaling may contribute to the pathogenesis of neuroinflammation in cerebro-

vascular diseases.

of inflammatory mediators (67). Nitric oxide (NO), which
is produced by cells that express NO synthase (NOS), is a
prevalent inflammatory mediator that may inhibit the activity
of Notchl signaling (68,69). A previous study indicates that
inducible NOS (iNOS) is directly involved in the generation
of NO and the inhibition of Notchl signaling, and that NO
inhibits the binding of Notchl-IC and CSL protein tran-
scriptional complexes to a specific target sequence (69). The
dysfunction of Notch signaling pathway increases the vulner-
ability of neurons and interacts with NF-kB to enhance the
inflammatory response following cerebral ischemia (70,71).
Numerous signaling pathways involved in neurodegenerative
disorders are activated in response to reactive oxygen species
(ROS), which induce apoptosis and increase NICD release and
the expression of hairy and enhancer of split-1 (HES-1) in cere-
bral ischemia (71-73). The potential role of Notch signaling in
stroke via inflammatory mediators is summarized in Table I.

Notch signaling and glial cells (microglia and astrocytes).
Microglia are mononuclear phagocytes with various func-
tions in the CNS, with the stage and function of microglia
indicated by morphological characteristics. The phagocytic
function of microglia is critical for the removal of hematoma
and other debris; however, they additionally produce inflam-
matory mediators (93). Microglia are typically classified into
three forms: Ameboid, ramified and activated. Microglia, as
the resident immune cells of the CNS, continually sample
the environment. Under normal conditions, they exist in a
ramified form and phagocytose debris (94). Previous studies
indicate that Notch signaling may regulate the different forms
of microglia under different conditions (71,95-97). Notch
signaling damages neurons by activating microglial cells and
stimulating the infiltration of proinflammatory leukocytes (98).
Following stroke, microglia are activated, become amoeboid
and release inflammatory cytokines (M1 subtype). However,
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microglia may be differentially activated, subsequently
limiting inflammation and destroy tissue debris through
phagocytosis (M2 subtype) (63,99). Microglia secrete various
inflammatory molecules, including IL-1, IL-6, IFN-y and
TNF-a (22). Furthermore, Notch signaling may be involved
in regulating microglia activation following hypoxia, partially
via the TLR4/Myeloid differentiation primary response
gene 88/TNF receptor associated factor 6/NF-kB signaling
pathway (71,100). A model of focal ischemic stroke using mice
transgenic for antisense Notch or wild-type mice treated with
GSI demonstrated that inhibiting Notch activation reduced
brain cell damage and improved functional outcome. This
suggests that Notch activation exacerbates brain damage and
functional outcome in ischemic stroke (98). Therefore, Notch
signaling may be a potential target for inhibition of microglia
activation implicated in brain damage (101).

Notch signaling and neuroinflammation in cerebrovascular
diseases. Various studies have indicated that Notch activa-
tion induces NF-kB-mediated expression of proinflammatory
genes in hypoxic astrocytes (102). Notch signaling regulates the
activation state of microglia, thus contributing to the control of
inflammatory reactions in the CNS (18,96). Notch-1 signaling
is activated in hypoxic astrocytes, verified by increased NICD
and HES-1, regulating astrocytic proliferation and activa-
tion via the suppression of the vascular endothelial growth
factor (VEGF) or NF-«B signaling pathways. Dysregulation
of Notch may exert effects following stroke via the activa-
tion of microglia and astrocytes (63,72,87,103). NF-kB is
crucial in promoting ischemic brain damage following stroke.
Activation of NF-xB induces the expression of proinflam-
matory cytokines, the adhesion and migration of leukocytes,
thus increasing the inflammatory response (102). The Notchl
signaling pathway regulates the NF-kB signaling pathway
via Jaggedl and inhibitor of kB a (IxkBa). The dysfunc-
tion of the Notch signaling pathway occurs with NF-xB
following cerebral ischemia via activating microglia to
produce inflammatory mediators (71,101,104). In addition,
Notch activation enhances postischemic inflammation by
directly modulating the microglial innate response (22,104).
In rats with cerebral ischemia and in activated BV-2 microglia,
Notch signaling induces the migration and morphological
transformation of activated microglia (16). An ischemic rat
model using middle-cerebral-artery occlusion demonstrated
that Notch-Jagged signaling is involved in dysfunction of
astrocyte-associated capillary network (103).

4. Notch signaling and oxidative stress in cerebrovascular
diseases

Oxidative stress is broadly defined as a disturbance in
the balance between ROS production and antioxidant
defenses (105-107). In this state, abnormal levels of ROS,
including free radicals (hydroxyl, nitric acid and superoxide)
and non-radicals (hydrogen peroxide and lipid peroxide)
result in oxidative damage to cells or tissue (105,108-111). The
oxidation state is the sum of all redox processes producing
ROS, reactive nitrogen species and other reactive intermedi-
ates (106,108,112-114). ROS are crucial for physiological
processes, including apoptosis, regulation of neurotransmitters
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and chemotaxis (114-116). ROS may destroy cell function and
promote injury to cellular lipids, nucleic acids and proteins,
thus inducing apoptosis. Oxidative stress is associated with
the pathological process of atherosclerosis, diabetes, neuro-
degenerative disorders including Alzheimer's disease and
Parkinson's disease (117,118), hypertension (119,120), cardio-
vascular diseases (121) and cerebrovascular diseases (122,123).
These diseases may promote the production of ROS (105,107).

Oxidative stress and cerebrovascular diseases. Oxidative
stress is involved in the pathogenesis of ischemic and hemor-
rhagic stroke (124-130) and appears to be a typical feature
in diverse models of cerebrovascular disease. Additionally,
oxidative stress may be involved in the pathogenesis of acute
ischemic stroke (131-136). Oxidative stress regulates cerebral
blood flow and controls permeability of the BBB (115,137).
A high quantities of superoxide, NO and peroxides are
generated during cerebral ischemia/reperfusion, and cellular
macromolecules are destroyed by oxygen radicals, resulting
in apoptosis (138-142). Oxygen radicals activate matrix metal-
loproteinases, resulting in the degradation of collagen and
laminin proteins in the basilar membrane, and destroying the
integrity of the vessel wall (143). In addition, ROS may induce
cell death through oxidative modification and fragmenta-
tion of DNA mediated by nucleate endonuclease (144-146).
Furthermore, oxidative stress promotes transmigration of
neutrophilic granulocytes from peripheral blood to the CNS
and the release of enzymes that degrade the blood vessel
basement membrane, resulting in increased permeability of
blood vessels (147-149). Oxidative stress may result in the
dysregulation of endothelial cell function, caused by hyper-
glycemia, dyslipidemia and hyperinsulinemia, leading to
impaired vasoregulation, inflammation and altered BBB func-
tion (150-152). The described pathological processes result
in cerebral parenchymal hemorrhage, vasogenic brain edema
and neutrophil infiltration, thus, aggravating cerebral ischemic
injury (142,153,154).

Notch signaling and oxidative stress in cerebrovascular
diseases. Studies have revealed that oxidative stress may
activate multiple signaling pathways associated with cell
death; the Notch signaling pathway is closely associated with
oxidative stress following cerebral ischemia, suggesting that
dysregulation of Notch signaling contributes to the occur-
rence of oxidative stress (Fig. 2) (155-158). Notch activation
results in cell proliferation and metastasis, accompanied by a
decrease in B-cell lymphoma-2 (Bcl-2) associated protein X
(Bax), Bcl-2 antagonist/killer, cytochrome ¢ and caspase-3 and
p53 expression and an increase in Bcl-2 expression (159). It
has been reported that inhibiting Notch signaling abrogated
cerebral ischemia/reperfusion injury via inhibiting oxidative
stress (68,160,161). Inhibiting the Notch signaling pathway
attenuates endothelial oxidative stress injury (158), suggesting
that Notch inhibition protects against cerebrovascular
diseases via decreasing oxidative stress-induced endothelial
injury (158). A mutation in Notch3 has been associated with
mitochondrial disease, in which oxidative stress caused by
chronic hypoxia results in cerebral arteriopathy (162).
Ischemia/reperfusion injury increases the oxidative stress
levels in tissue. The role of the Notch signaling pathway in the
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Oxidativ

e stress

in cerebrovascular disease

Figure 2. Potential underlying mechanisms by which activation of Notch signaling may contribute to the pathogenesis of oxidative stress in cerebrovascular

diseases. ROS, reactive oxygen species; RNS, reactive nitrogen species.

oxidative stress-associated pathogenesis of cerebrovascular
diseases has been researched extensively (163). Further inves-
tigations to elucidate the underlying molecular mechanisms
of the Notch signaling pathway in cerebrovascular disease
may uncover potential drug targets for the treatment of
Notch-associated diseases. However, decreasing the activity of
Notchl increases the production of superoxide anion, iNOS,
NO, nitrotyrosine and phosphatase and tensin homolog deleted
on chromosome 10 in mice subjected to ischemia/reperfusion
injury, whereas the phosphorylation levels of NOS and protein
kinase B (Akt) are decreased (68,163,164). As the inhibition or
activation of Notch signaling may be beneficial for the treat-
ment of cerebrovascular diseases, Notch signaling may exert
distinct functions under different conditions. Therefore, further
studies are required to elucidate the mechanisms underlying
the role of Notch signaling in cerebrovascular diseases.

5. Notch signaling and apoptosis in cerebrovascular
diseases

Programmed cell death by apoptosis is crucial for the
development of multicellular organisms, and defects in apop-
tosis are associated with a wide variety of diseases (165).
Inappropriate apoptosis results in tissue atrophy, whereas a
failure of apoptosis, as occurs in cancer, leads to uncontrolled
cell proliferation. Certain factors, including Fas receptors
and caspases, induce apoptosis, whereas others, including
certain Bcl-2 family members, suppress it (166). Apoptosis is
induced by either the extrinsic or intrinsic pathways (167,168).
Extrinsic stimuli include the binding of ligands to cell surface
death receptors, hormones, TNF-a, growth factors, NO and
cytokines (169-171). Intrinsic signals result from cellular
stress, including heat, radiation, nutrient deprivation and viral
infection. The expression of pro- and anti-apoptotic proteins,
the strength of the stimulus and the cell cycle stage all alter the
response of the cell to the extrinsic or intrinsic trigger (172,173).

Apoptosis and cerebrovascular diseases. In vivo and in vitro
studies suggest that apoptosis is critical for the pathogenesis
of cerebrovascular diseases (174-179). Increased expression of

apoptotic proteins, including phosphorylated (p)-Arabidopsis
serine/threonine kinase 1 (ASK1), p-c-Jun N-terminal kinase
(JNK), p-p38, cleaved caspase-3 and cytochrome c in the
ischemic penumbra has been observed following stroke (177).
Studies have reported that the inhibition of apoptosis may
prevent the development of cerebral ischemia/reperfusion
injury (166,180-185). Thioredoxin-1 (Trx1) small interfering
RNA increases ASKI1 activation in response to apoptotic
stress, Trx1 may therefore be anti-apoptotic and suppress
cerebral ischemia/reperfusion injury (186-188), potentially via
inhibition of the ASK1-JNK/p38 signaling pathway.

Notch signaling and apoptosis. Notch is involved in various
physiological processes, via NICD translocation into the
nucleus and binding to target genes (189-191), including
apoptosis (172). During apoptosis of tumor cells, microRNA
(miR)-100 was demonstrated to mediate Notch signaling (192).
A previous study demonstrated that a Notch cis-regulatory
element is responsive to loss and gain of Drosophila p53 (Dp53)
function and that overexpression of Dp53 upregulates Notch
mRNA and protein expression levels (165). Dp53-induced
Notch activation and proliferation was revealed to occur even
when apoptosis was inhibited, and Dp53 may have a dual role
in regulating cell death and proliferation gene networks, to
control the balance between apoptosis and proliferation (165).
In addition, Notch may be important in the apoptosis- and
drug-resistance of chronic lymphocytic leukemia cells.
Notch signaling has a cardioprotective effect by regulating
apoptosis via inhibiting Bcl-2 and the activation of caspase-3
and -9. Furthermore, the Notch signaling pathway mediates
high-glucose-induced podocyte apoptosis via the Bcl-2 and
pS3 pathways (193-195). It has been reported that miR-34c
overexpression increases the expression of anti-apoptotic
Bcl-2, and decreases the expression of pro-apoptotic Bax and
cleaved caspase-3 via targeting of Notchl and Jaggged1 (193).

Notch signaling and apoptosis in cerebrovascular diseases.
The Notch signaling pathway leads to apoptosis of nerve cells
and glia. Cell death in the brain following stroke is the result
of an alteration in the balance between pro- and anti-apoptotic



Notch signaling

Apoptosis

Figure 3. Potential association between apoptosis and Notch signaling
following stroke. MAPK, mitogen-activated protein kinase; NICD, Notch
intracellular domain; HIF-1a, hypoxia inducible factor-la; JNK, c-Jun
N-terminal kinase; NF-kB, nuclear factor-xB.

factors (196). Neurons undergo apoptosis and necrosis. The
Notch signaling pathway is activated by various brain insults,
including cerebrovascular diseases (20,47,197), and is associ-
ated with the apoptosis involved in the pathogenesis of stroke
(Fig. 3). Following stroke, activation of the Notch signaling
pathway may result in apoptosis of neurons via NF-xB and
hypoxia inducible factor-1a. (HIF-1a) (20,197,198). In addition,
Notch signaling may affect mitogen-activated protein kinase
(MAPK)-associated signaling pathways. However, the role of
Notch signaling in MAPK activation following stroke remains
to be fully elucidated. In wild-type and NICDI1-overexpressing
HEK and SH-SYS5Y cell lines, ischemic conditions increased
the expression levels of NICD1, INK, p38-MAPK and cleaved
caspase-3; this increase in NICDI and JNK was attenuated by
GSI (198). NICD overexpression increased JNK expression
levels, resulting in enhanced cell death. Therefore, the Notch
signaling pathway may contribute to ischemic stroke via the
JNK signaling pathway (198), and the use of GSIs may be a
potential strategy for the treatment of ischemic stroke.
Neuronal cell apoptosis associated with Notch signaling
occurs in ischemic penumbra and ischemia/reperfusion injury
following ischemic cerebrovascular disease (85,199-201).
Notch signaling may contribute to apoptosis via the NF-«xB,
Bcl-like protein 11 and caspase pathways (202). Calsenilin,
the expression of which is increased in the brain following
experimental ischemic stroke, was revealed to enhance the
v-secretase-mediated cleavage of Notch and to contribute
to apoptosis (203). Peptidyl-prolyl cis-trans isomerase
NIMA-interacting 1 (Pinl) contributes to the pathogenesis
of ischemic stroke by promoting Notch signaling in vitro and
in a mouse stroke model, suggesting that Notch signaling
activation is involved in the pathogenesis of stroke, and that
inhibition of Pinl may be a novel strategy for the treatment
of ischemic stroke (204). However, Notchl may inhibit
neuronal apoptosis in cerebral ischemia/reperfusion injury
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via increasing the phosphorylation of Akt and promoting
inactivation of Bcl-2-associated death promoter. Notchl may
be neuroprotective in the immature brain against ischemic
injury, and future studies and clinical trials are required to
investigate the suitability of Notchl inhibitors as a treatment
for perinatal ischemia. Inhibiting Notch2 was demonstrated to
alter the levels of apoptosis-regulating proteins and slow the
process of apoptosis in cerebral ischemia/reperfusion-induced
mice (199). Loss-of-function mutations in Notch3 have been
identified as the underlying cause of CADASIL (205,206),
in addition to complex regulation of multiple pathways,
including the Wnt/p-catenin signaling pathway, TGF-f and
Notch-induced apoptosis (207).

In summary, the role of Notch signaling in stroke remains
controversial. The majority of studies suggest that Notch
signaling activation is damaging following stroke, promoting
inflammation and apoptosis (20,83,98,202,206,208). However,
certain studies have indicated that enhancing Notch signaling
may improve stroke pathology (209-211). The effect of Notch
on apoptosis is summarized in Table II. Therefore, further
studies are required to fully elucidate the role of Notch
signaling in stroke.

6. Notch signaling and angiogenesis in cerebrovascular
diseases

Angiogenesis is a pathophysiological process of vessel
branching to form a new capillary network via vascular
endothelial cell proliferation and migration, and the
sprouting and division of blood vessels (233-236). The vascu-
lature is primarily comprised of vascular endothelial cells,
VSMCs and extracellular matrix, the structure and activity of
which affect the morphology and function of blood vessels.
Angiogenesis is the result of the interaction between endothe-
lial cells, stromal cells and cytokines mediated by a variety
of positive and negative angiogenic modulators. Studies
have revealed that VEGF/VEGEF receptor (VEGFR) (237),
Delta-like ligand 4 (DLL4)/Notch are the two primary
pathways involved in the promotion and coordination of
angiogenesis (Fig. 4) (238,239).

Lumen formation is required to establish mature blood
vessels with complete structure and function. Vascular endo-
thelial cells are divided into acute (tip cell) and lotus cells
(trunk cell) depending on their location and characteristics,
and are involved in the formation of lumen. High concentra-
tions of VEGF-A induce endothelial cells to differentiate into
tip cells. Tip cells extend filopodia through the extracellular
matrix, along the VEGF-A gradient, providing direction to
the new blood vessel branch. The proliferation of trunk cells
behind the tip cell induces vascular sprouting, and the forma-
tion of the lumen and extended vascular network. High levels
of VEGF induce the synthesis of DLL4 by tip cells, and thus
increase Notchl expression in the adjacent trunk cells. The
activation of the DLL4/Notchl signaling pathway promotes
lumen formation (240,241). DLL4 expression in mouse tip cells
was reduced and angiogenesis attenuated following treatment
with VEGF antagonists or gene silencing (242,243). Studies
have indicated that DLL4/Notch regulate tip and trunk cell
number and differentiation, to control blood vessels sprouting
and branching. Vascular sprouting and branching proceeds
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Table II. Associations between apoptosis biomarkers and Notch signaling.
Apoptosis biomarker Notch Effect on apoptosis References
p53 Notch (1) Inhibiting 195,212,213
Bcl-2 Notchl, Notch2 (|) Anti-apoptosis 195,202,214
Bax (1) Notch 1 (1) Apoptosis (1) 215
Caspase-9 and -3 (1) Notch (]) Initiating 216,217
JNK/p38 Notch (1) Apoptosis (1) 198,218
Ca* (1) Notch 2 (1) Apoptosis (1) 219,220
ERK Notch (1) Apoptosis (1) 221
miR-100 (HS3ST21) Notch (1) Initiating 192,222
NF-xB NICD (1) Apoptosis (1) 188
EGFR Notch-1 Positive correlation 223,224
Jagged?2, angiopoietin 1, eNOS (]) Notch2, Notch4, Caspase 8 (1) 225

Notch3 (jaggedl)

P21/cyclin D Notch 2 (1) Apoptosis (1) 226
PI3K/Akt (1) Notch (|) Podocyte apoptosis (|) 193,194 ,226,227
ROS Notch (1) Apoptosis (1) 228-230
GSIs Notch (]) TRAIL (1) 231,232

Bcl-2, B-cell lymphoma-2; Bax, Bcl-2 associated X protein; EGFR, epidermal growth factor receptor; eNOS, endothelial nitric oxide synthase;
ERK, extracellular signal-regulated kinase; miR, microRNA; GSI, y-secretase inhibitor; ROS, reactive oxygen species; PI3K, phosphatidylino-
sitol 3-kinase; Akt, protein kinase B; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.
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Figure 4. VEGF and DLL/Notch regulation of angiogenesis. VEGF, vascular
endothelial growth factor; VEGFR, vascular endothelial growth factor
receptor; DLL4, Delta-like ligand 4; HES, hairy and enhancer of split; HEY,
hairy and enhancer of split-related protein.

following Notch inhibition, however, these new blood vessels
are dysfunctional (243,244).

Angiogenesis is a complex process regulated by numerous
factors. The most well-known of these regulators is VEGF,
which increases vascular permeability, promotes degradation
of the extracellular matrix and migration and proliferation of
vascular endothelial cells to induce angiogenesis. The expression

of VEGEF is controlled by multiple factors, including fibroblast
growth factor, angiopoietins/Tie receptors, platelet-derived
growth factor, TGF-3, hepatocyte growth factor, HIF-1a, fork-
head box (Fox) cl/Foxc2, TNF-a, epidermal growth factor and
matrix metalloproteinases (Table III).

VEGEF, a growth factor expressed in vascular endothelial
and other cells, acts directly on vascular endothelial cells to
promote mitosis, induce proliferation and migration, maintain
the integrity vessels and increase vascular permeability, and is
thus critical for angiogenesis. VEGF-A is the most well-char-
acterized of the VEGF family, and its receptor VEGFR2 is
the primary receptor involved in angiogenesis (237). The
mammalian Notch signaling pathway, comprised of four
homologous Notch receptors (Notchl, Notch2, Notch3 and
Notch4) and five cognate ligands (DLLI1, DLL3, DLL4,
Jaggedl and Jagged?2) (254-256), is important for angiogen-
esis. High concentrations of VEGF induce DLL4 expression,
thus, increasing Notchl expression on neighboring cells. The
activation of DLL4-Notchl signaling pathways promotes angio-
genesis (47,257,258). Studies have revealed that DLL4/Notch
signaling mediates negative feedback; the expression of DLL4
may suppress the proliferation and migration of endothelial
cells through the inhibition of VEGFR2 by HES-related protein
1 (259,260). VEGF, as a positive regulator of angiogenesis,
initiates and promotes angiogenesis, whereas Notch signaling
may negatively regulate the process to prevent endothelial
cell hyperplasia and, in conjunction with VEGF, promote the
formation of a well-differentiated vascular network (261-266).

Injection or nasal feeding of rats with human recombi-
nant VEGF following focal cerebral ischemia in the middle
cerebral artery promoted neovascularization of the ischemic
area and the recovery of neurological function (267,268). In
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Table III. Factors regulating VEGF expression.
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Regulator Mechanisms References
Ang-1,23 Controls growth, maturation and stability of blood vessels; Ang-2, destabilizes. 245
FGFa/b Promotes EC proliferation and migration; induces vascular branching. 237
PDGF Recruits perithelial cells, vascular aging. 246
TGF-3 Bidirectional regulation: Low concentrations of TGF-f§ promote blood vessel formation, 247,248
high concentrations of TGF-f3 inhibit EC growth, and promote smooth muscle cell
differentiation and basement membrane formation.
HGF Promotes EC proliferation, improves VEGF secretion in ECs and induces angiogenesis 249
HIF-1a Interacts with NICD to increase the response to hypoxia and upregulates DLL4 250
Foxcl/Foxc2 Activates DLL4 expression 251
Angiopoietins/Tie Increases expression of Ang-2/1 252,253

VEGF, vascular endothelial growth factor; Ang, angiopoietin; FGF, fibroblast growth factor; PDGF, platelet-derived growth factor; TGF-f3,
transforming growth factor [3; HGF, hepatocyte growth factor; HIF-1a, hypoxia-inducible factor 1a; Fox, forkhead box; EC, endothelial cell;

NICD, Notch intracellular domain; DLL4, Delta-like ligand 4.

addition, delayed treatment with VEGF alleviates brain injury,
enhances endothelial cell proliferation and augments total
vascular volume following neonatal stroke (269). Furthermore,
the overexpression of VEGF in close proximity to intracere-
bral hemorrhage lesions in mice undergoing transplantation
of F3 human neural stem cells (NSCs) facilitated differen-
tiation and survival of the grafted human NSCs, and resulted
in renewed angiogenesis in the host brain and functional
recovery of mice (270). Studies have revealed that strategies to
enhance angiogenesis following focal cerebral ischemia may
improve recovery from stroke (271-274). The VEGF/Notch
signaling pathway is the primary signaling pathway regulating
angiogenesis following cerebral ischemia (47,275,276). VEGF
and Notch are upregulated in brain tissue following cerebral
ischemia, which may significantly promote angiogenesis in
the ischemic region (277-280). Therefore, regulating the Notch
signaling pathway may provide a potential strategy for the
treatment of cerebrovascular diseases (281).

7. Notch signaling and BBB in cerebrovascular diseases

The BBB is a highly selective permeable barrier separating
circulating blood from the brain extracellular fluid, to regulate
the CNS microenvironment. The BBB is formed of a complex
network of endothelial cells, astroglia, pericytes, perivascular
macrophages and a basal membrane. Under physiological
conditions, BBB integrity is primarily maintained by endo-
thelial cells, through tight junctions, and the basal lamina;
however, the structural and functional integrity of the BBB is
markedly altered during CNS disorders, including neoplasia,
ischemia, trauma, inflammation and bacterial and viral
infections.

Cerebrovascular BBB dysfunction is closely associated
with stroke, including intracranial hemorrhage and brain
ischemia disorders. Endothelial cells are critical for numerous
neurovascular functions, including angiogenesis, BBB
formation and maintenance, vascular stability and removal
of cellular toxins. Cerebrovascular endothelial cells interact
with pericytes to maintain a stable cerebral circulation in the

CNS. A number of studies have revealed that endothelial cell
dysfunction in the CNS results in breakdown of the BBB and
brain hypoperfusion, leading to neurodegeneration. It has
been reported that disruption of Smad4 signaling, the central
intracellular mediator of TGF-f signaling (14), in endothelial
cells leads to the pathogenesis of intracranial hemorrhage and
BBB breakdown (14,282), indicating that Smad4 maintains
cerebrovascular integrity and that TGF-f3/Smad signaling is
involved in the pathogenesis of cerebrovascular dysfunction.
Notch signaling is also critical in controlling BBB integrity
via regulating the normal function of endothelial cells and
pericytes. However, the underlying mechanisms regulating
cerebral endothelial cell functions remain to be elucidated.

The Notch signaling pathway is involved in blood vessel
integrity and BBB stability and function in the mammalian
vasculature (75,283-285). In vitro studies have correlated
BBB endothelial dysfunction with decreased Notch4 expres-
sion (286). Upon activation, the constitutively expressed
endothelial cell membrane protein Notch4 appears to become
primarily involved in the stability and growth of mature
endothelium (287). Permanent ischemia leads to the redistri-
bution of claudin decomposition fragments, zona occludens 1
and occludin protein from the membrane to the cytoplasm in
BBB. Additionally, the GSI, DAPT protects against permanent
ischemia-induced BBB damage, potentially via the modulation
of Notch/NICD/calpastatin homeostasis pathway in vascular
endothelial cells.

8. Conclusion and perspective

Increasing evidence indicates that Notch signaling is critical
in the pathogenesis of stroke, exerting effects via the following
underlying mechanisms: Neuroinflammation, oxidative stress,
apoptosis, angiogenesis and BBB function. Thus, regulating
Notch signaling may be an effective strategy for the prevention
and treatment of cerebrovascular diseases.

Studies have demonstrated that the activation of Notch
signaling is harmful and contributes to the pathogenesis of cere-
brovascular diseases including stroke (20,98,202,204,288-290).
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Acute inhibition of Notch signaling has been revealed to
rescue cerebral hypoperfusion, reduce apoptosis in penumbra,
decrease brain infarct size, elicit certain morphologic features,
including neurogenesis and angiogenesis, associated with brain
repair and functional recovery, and enhance vascular densities
in penumbra in the neonatal rat brain following stroke (288).

However, activation of the Notch signaling pathway may
have aneuroprotective role viaenhancing endogenous neurore-
generation and brain arteriogenesis following stroke (51,291).
In a murine transient global cerebral ischemia/reperfusion
model, the neuroprotective effects of preconditioning were
mediated via the Notch signaling pathway, and the expression
of Notchl, NICD and HES-1 was upregulated (209). Notch
signaling is widely accepted to be a fundamental pathway
controlling cell fate acquisition through the regulation of adult
neurogenesis. Studies have demonstrated that Notch signaling
is crucial for the maintenance, proliferation and differen-
tiation of NSCs in the developing brain (292,293). Notch
signaling induces the neuronal expansion and differentiation
following stroke (21). Increasing the expression level of Notch
signaling components may facilitate intrastriatal transplanta-
tion therapy for ischemic stroke by promoting endogenous
regeneration in the hippocampus (294). Promoting Notch
signaling activity may facilitate increased arteriogenesis in
a middle cerebral artery occlusion stroke rat model (54). In
addition, Notch-induced rat and human bone marrow stromal
cell grafts inhibited ischemic cell loss and abrogated behav-
ioral deficits in chronic middle cerebral artery occlusion
stroke rats (295).

Therefore, the results on the effect of Notch signaling on
the pathogenesis of cerebrovascular diseases are contradictory.
Notch signaling may be damaging, as it promotes inflamma-
tion, oxidative stress and apoptosis. However, the activation of
the Notch signaling pathway may exert neuroprotective effects
via enhancing endogenous neuroregeneration and brain arte-
riogenesis following stroke. What is the exact role of Notch
signaling? Clarifying this question has potentially important
implications for the treatment of cerebrovascular disease, and
will provide novel strategies for future studies.
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