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Abstract. Hypoxia is a key factor in the pathogenesis of angio-
genesis, and cysteine‑rich 61 (CCN1), an angiogenic factor, 
is involved in the development of pathological angiogenesis. 
The aim of the present study was to investigate the mecha-
nism of CCN1 RNA interference (RNAi)‑induced inhibition 
of hypoxia‑induced pathological angiogenesis in endothelial 
cells. Human umbilical vein endothelial cells (HUVECs) 
were cultured under hypoxic conditions in vitro. The effects 
of inhibiting phosphoinositide 3‑kinase (PI3K)/Akt signaling 
using LY294002 were investigated in hypoxic HUVECs. The 
proliferation and apoptosis of HUVECs under hypoxia were 
assessed using CCN1 RNAi. The CCN1‑PI3K/Akt‑vascular 
endothelial growth factor (VEGF) pathway was analyzed under 
hypoxic conditions using reverse transcription‑quantitative 
polymerase chain reaction and western blotting. CCN1 
RNAi inhibited the proliferation and induced the apoptosis 
of the HUVECs under hypoxia, with hypoxia significantly 
increasing the mRNA and protein expression levels of CCN1, 
Akt and VEGF. By contrast, CCN1 RNAi reduced the mRNA 
and protein expression levels of CCN1, Akt and VEGF in 
the HUVECs (P<0.05). Furthermore, LY294002 reduced the 
mRNA and protein expression levels of CCN1 in the hypoxic 
cells (P<0.05). These data indicated that CCN1 inhibits apop-
tosis and promotes proliferation in HUVECs. Therefore, CCN1 
RNAi may offer a novel therapeutic strategy, which may aid in 

the treatment of pathological angiogenesis via inhibition of the 
PI3K/Akt‑VEGF pathway.

Introduction

Hypoxia is a common pathophysiological phenomenon, which 
has a profound impact on endothelial cell (EC) properties in 
numerous pathological angiogenic diseases, including retinop-
athy of prematurity, proliferative diabetic retinopathy, retinal 
vein occlusion and age‑related macular degeneration (1,2). 
These diseases are a major cause of blindness worldwide, 
however, there remains a lack of effective medical treatment 
options. Therefore, understanding the association between 
hypoxia and pathological angiogenesis may be important in 
characterizing the mechanisms of disease and assist in the 
development of novel treatment strategies.

Cysteine‑rich 61 (CCN1), the first cloned member of the 
CCN family, mediates cell adhesion, stimulates chemotaxis, 
augments growth factor‑induced DNA synthesis, fosters cell 
survival and enhances angiogenesis (3‑5). Previous studies 
have demonstrated that hypoxic conditions are able to induce 
the expression of CCN1 in several types of cell (6‑11). The 
phosphatidylinositol 3‑kinase (PI3K)/Akt pathway is involved 
in multiple cellular processes, including cell survival and 
differentiation, and it has been demonstrated to be important 
in angiogenesis (12). Previous studies have demonstrated that 
CCN1 induces monocyte chemotactic protein 1 through the 
activation of PI3K/Akt and nuclear factor‑κB signaling in 
chorioretinal vascular ECs (13). Additionally, a previous study 
indicated that CCN1 can enhance the expression of vascular 
endothelial growth factor (VEGF) and promote tumor neovas-
cularization via the PI3K/Akt signaling pathway (14).

However, the specific mechanisms, which are involved 
in CCN1‑mediated pathological angiogenesis in ECs remain 
to be fully elucidated. The present study hypothesized that 
the CCN1/PI3K/AKT/VEGF signaling pathway may be 
associated with pathological angiogenesis and comprise 
possible molecular therapeutic targets. In order to confirm 
this hypothesis, the present study investigated the effect 
of reducing the expression of CCN1 in hypoxic ECs, and 
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analyzed the molecular mechanisms involved in pathological 
angiogenesis.

Materials and methods

Cell culture. HUVECs were purchased from Cell Systems 
Corporation (Kirkland, WA, USA) and were cultured in 
Dulbecco's modified Eagle's medium (GE Healthcare Life 
Sciences, Chalfont, UK) with 10%  fetal bovine serum 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA) at 37˚C 
in a humidified atmosphere containing 95% air and 5% CO2, 
with subconfluent monolayers passaged 3‑10 times prior to 
treatment.

Hypoxic treatment. Hypoxic exposure was performed 
using a tightly sealed molecular incubator chamber 
(Billups‑Rothenberg, Inc., Del Mar, CA, USA), which was 
tightly sealed and flushed with a gas mixture containing 
1% O2, 94% N2 and 5% CO2, as previously described (15,16), 
with the cell culture dishes containing 1x105 cells/well placed 
in the chamber and incubated at 37˚C for 24 h.

The HUVECs were divided into four groups: A normoxia 
group; a hypoxia group; a hypoxia‑control group, which 
was transiently transfected with scramble small interfering 
(si)RNA; and a hypoxia‑CCN1 siRNA group, which was 
transiently transfected with CCN1 siRNA. The HUVECs 
were transiently transfected with plasmids (500 ng/µl) using 
Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, 
Inc.) for 48 h.

PI3K/Akt inhibition. The PI3K/Akt inhibitor, LY294002, 
was used in the present study to determine the effect of 
inhibiting the PI3K/Akt pathway on the normoxic and 
hypoxic HUVECs. The cells were cultured under normoxic 
or hypoxic conditions in six‑well plates at a density of 1x105 
cells/well as described above, in the presence of LY294002 
(Sigma‑Aldrich, St. Louis, MO, USA). The solution comprised 
40 µmol/l dissolved in dimethyl sulfoxide (DMSO), with a 
final concentration of DMSO in the cell culture of 0.1%. The 
cells were pretreated with LY294002 for 30 min prior to being 
placed in the incubator for hypoxic exposure. The mRNA and 
protein expression levels of CCN1 were then analyzed using 
RT‑qPCR and western blotting, respectively, following 24 h 
normoxia or hypoxia.

Gene knockdown by siRNA. Four pairs of CCN1 siRNA 
sequences were designed and synthesized (Shanghai 
GenePharma Co., Ltd., Shanghai, China), with one pair selected 
based on stability and effectiveness. The sequences were as 
follows: CCN1 (Cyr61‑homo‑553) forward, 5'‑GGG​AAA​
GUU​UCC​AGC​CCA​ACU​TT‑3' and reverse, 5'‑AGU​UGG​
GCU​GGA​AAC​UUU​CCC​TT‑3'; CCN1 (Cyr61‑homo‑789) 
forward, 5'‑GAG​GUG​GAG​UUG​ACG​AGA​AAC​TT‑3' and 
reverse, 5'‑GUU​UCU​CGU​CAA​CUC​CAC​CUC​TT‑3'; CCN1 
(Cyr61‑homo‑1072) forward, 5'‑GCA​AGA​AAU​GCA​GCA​
AGA​CCA​TT‑3' and reverse, 5'‑UGG​UCU​UGC​UGC​AUU​UCU​
UGC​TT‑3'; CCN1 (Cyr61‑homo‑1268) forward, 5'‑GAU​GAU​
CCA​GUC​CUG​CAA​AUG​TT‑3' and reverse, 5'‑CAU​UUG​CAG​
GAC​UGG​AUC​AUC​TT‑3'. In addition, a non‑silencing siRNA 
sequence was selected for use as a negative control (forward 

5'‑UUC​UCC​GAA​CGU​GUC​ACG​UTT‑3' and 5'‑ACG​UGA​
CAC​GUU​CGG​AGA​ATT‑3' reverse). The siRNAs were cloned 
using a pGPU6/green fluorescent protein (GFP)/Neomycin 
resistance screening marker (Neo) siRNA Expression 
Vector kit (cat.  no.  E‑07/F‑07; Shanghai GenePharma 
Co., Ltd.), according to the manufacturer's protocol, 
generating the pGPU6/GFP/Neo‑CNN1 siRNA and the 
pGPU6/GFP/Neo‑scramble siRNA plasmids, which contained 
Bbs1 and BamH1 restriction sites. The cells were transfected, 
according to the manufacturer's protocol, with the mRNA and 
protein levels assessed 48 h following transfection. siRNA 
was successfully transfected into HUVECs in six‑well culture 
plates, with each well containing 240 pmol fluorescent labelled 
siRNA and 8 µl Lipofectamine® 2000 for 6 h. Transfection 
efficiency was determined using fluorescence microscopy 
(FV1000; Olympus Corp., Tokyo, Japan).

Cell proliferation assay. A Cell Counting Kit‑8 (CCK8) assay 
(Beyotime Institute of Biotechnology, Jiangsu, China) was 
used to measure cell proliferation, according to the manu-
facturer's protocol. Briefly, HUVECs were plated in 96‑well 
plates at a density of 2,000 cells/well, and proliferation was 
measured each day for 4 days following transfection. A total 
of 10 µl CCK8 was added to each well and incubated for 2 h 
at 37˚C. Following incubation, the samples were vortexed 
for 10 min and the absorbance of each was measured in a 
Sunrise™ microplate reader (Tecan Group, Ltd., Männedorf, 
Switzerland) at 450 nm.

Cellular apoptosis assay. Cellular apoptosis was investi-
gated by flow cytometry using an Annexin V‑Fluorescein 
Isothiocyanate (FITC) Apoptosis Detection kit (cat. 
no. KGA106; Nanjing KeyGen Biotech, Co., Ltd., Nanjing, 
China), according to the manufacturer's protocol. The cells 
were washed twice in ice‑cold phosphate‑buffered saline at 
pH 7.5 (Zhongshan Jinqiao Biotechnology Co., Ltd., Beijing, 
China) and resuspended in 1X binding buffer (Zhongshan 
Jinqiao Biotechnology Co., Ltd.) at 1x106 cells/ml. A total of 
100 µl cells (1x105 cells) were gently mixed with 5 µl annexin 
V‑FITC and 5 µl propidium iodide (PI), and incubated for 
15  min in the dark at room temperature. An additional 
400 µl of 1X binding buffer was added, and cellular apoptosis 
was detected using a flow cytometer (FACSCalibur™; BD 
Biosciences, San Jose, CA, USA). The apoptotic rates of the 
cells were calculated as the ratio of early and late apoptotic 
cells to the total cells (17).

Reverse transcription‑quantitative polymerase chain reac‑
tion (RT‑qPCR). Total RNA was isolated from the HUVECs 
using TRIzol reagent (Invitrogen; Thermo Fisher Scientific, 
Inc.) and was reverse‑transcribed into cDNA using a reverse 
transcription kit (DRR037S; PrimeScript™ RT Reagent 
kit‑Perfect Real‑Time; Takara Bio Inc., Dalian, China) as 
previously described  (18). Primers were designed using 
Primer Express software version  2.0 (Life Technologies; 
Thermo Fisher Scientific, Inc.) and are presented in Table I. 
qPCR was performed using SYBR Green PCR Master mix 
(Premix Ex Taq™‑Perfect Real Time; cat. no.  DRR041S; 
Takara Bio, Inc.). The PCR mixture contained  10  µl  2X 
TaqMan PCR mix, 0.4 µl PCR forward and 0.4 µl PCR reverse 
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primer, 1.0 µl cDNA and 8.2 µl double‑distilled H2O with a 
total volume of 20 µl and the reaction was performed in an 
Applied Biosystems 7300 Real‑Time PCR system (Thermo 
Fisher Scientific, Inc.). The cycling conditions were as 
follows: 95˚C for 30 sec, 50 cycles of 95˚C for 5 sec and 60˚C 
for 31 sec. β‑actin was included in each reaction as an internal 
control, and the relative gene expression levels were calculated 
using the 2‑ΔΔCq method (19).

Western blot analysis. The cells were lysed in lysis buffer 
containing 50  mM Tris‑HCl (pH  8.0), 150  mM NaCl, 
0.5% Nonidet P‑40, 0.5% sodium deoxycholate and phenyl-
methylsulfonyl fluoride (all from Sigma‑Aldrich), and protein 
concentration was determined using a bicinchoninic acid assay 
(Beyotime Institute of Biotechnology, Haimen, China). The 
samples (60 µg) were separated by 8% or 10% SDS‑PAGE 
(Beyotime Institute of Biotechnology) and transferred onto a 
polyvinylidene fluoride membrane (EMD Millipore, Billerica, 

MA, USA). Following blocking with 5%  bovine serum 
albumin (Sigma‑Aldrich) in Tris‑buffered saline‑Tween‑20 
[20  mM Tris‑HCl, 500  mM NaCl and 0.05%  Tween‑20 
(Yesen Biotechnology Co., Ltd., Shanghai, China); TBST], 
membranes were washed four times for 5 min with TBST, and 
were then incubated with the following specific primary anti-
bodies overnight at 4˚C: Rabbit anti‑CCN1 polyclonal antibody 
(1:2,000 dilution; cat. no. ab24448; Abcam, Cambridge, UK); 
rabbit anti‑phosphorylated (p)AKT1/2/3 (Ser473) polyclonal 
antibody (1:2,000 dilution; cat. no. sc‑101629); rabbit anti‑VEGF 
polyclonal antibody (1:2,000 dilution; cat. no.  sc‑152) and 
rabbit anti‑mouse β‑actin polyclonal antibody (1:2,000 dilu-
tion; cat. no. sc‑130656) (all from Santa Cruz Biotechnology, 
Inc., Dallas, TX, USA). Subsequently, membranes were incu-
bated for 2 h at 37˚C with horseradish peroxidase‑conjugated 
anti‑rabbit‑immunoglobulin G secondary antibodies (1:2,000 
dilution; cat. no. ZB‑2010; Zhongshan Jinqiao Biotechnology 
Co., Ltd.). Protein bands were visualized using enhanced 

Table I. Primer sequences used for reverse transcription‑quantitative polymerase chain reaction.

Gene	 Direction	 Primer sequence (5'‑3')	 Product length (bp)

β‑actin	 Forward	 CGTGGACATCCGCAAAGAC	 200
	 Reverse	 GGAAGGTGGACAGCGAGGC	
VEGF	 Forward	 TGCCCACTGAGGAGTCCAAC	 336
	 Reverse	 TGGTTCCCGAAACGCTGAG	
Akt	 Forward	 TTGCTTTCAGGGCTGCTCA	 230
	 Reverse	 TCTTGGTCAGGTGGTGTG ATG	
CCN1	 Forward	 CGAGGTGGAGTTGACGAGAA	 211
	 Reverse	 GCACTCAGGGTTGTCATTGGT

  A

  B

Figure 1. Transfection efficiency of (A) CCN1 siRNA and (B) scramble siRNA in HUVECs under hypoxic conditions. Transfection efficiency was detected 
using light and fluorescence microscopy. Scale bar=100 µm. HUVECs cultured under hypoxic conditions attached to the bottom of the well. HUVECs under 
the  hypoxic condition lost their normal fusiform morphology and an increased number of dead cells were observed. At 6 h post‑transfection, siRNA was 
successfully transfected into the cells with a percentage of green fluorescence protein‑positive HUVECs of >80%. CCN1, cystein‑rich 61; siRNA, small 
interfering RNA; HUVECs, human umbilical vein endothelial cells; siRNA, small interfering RNA.
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chemiluminescence reagents (Pierce Biotechnology, Inc., 
Rockford, IL, USA) and an MF‑ChemiBIS  3.2 (DNR 
Bio‑Imaging Systems, Ltd., Jerusalem, Israel). Optical density 

(OD) was quantified using ImageQuant LAS 4000 software 
(GE Healthcare Life Sciences). Protein concentrations were 
established by calculating the ratio between the ODs of the 
protein of interest and β‑actin.

Statistical analysis. SPSS software, version 15.0 (SPSS, Inc., 
Chicago, IL, USA) was used for statistical analyses. Data are 
presented as the mean ± standard deviation of three indepen-
dent experiments. Statistical significance was evaluated using 
one‑way analysis of variance, with a least significant difference 
test for post‑hoc analysis. P<0.05 was considered to indicate a 
statistically significant difference.

Results

CCN1 siRNA transfection reduces the expression of CCN1 
in HUVECs. At 6 h post‑transfection with CCN1 siRNA, 
the percentage of GFP‑positive HUVECs was >80% 
(Fig. 1A and B). RT‑qPCR was performed to measure the mRNA 
expression of CCN1. Compared with the hypoxia‑control, 
mRNA expression of CCN1 in the hypoxia‑CCN1 siRNA 
group was downregulated by 78.21% (P<0.05; Fig. 2). Western 
blotting indicated that, compared with the hypoxia‑control 
group, the protein expression of CCN1 in the hypoxia‑CCN1 
siRNA group was downregulated by 32.43% (P<0.05; Fig. 3).

CCN1 siRNA inhibits the growth rate of HUVECs. The major 
hallmark of angiogenesis is endothelial cell proliferation (20); 
therefore, HUVEC proliferation was measured using a CCK8 
assay. The proliferation rate was reduced in the hypoxia‑CCN1 
siRNA group, compared with the proliferation rates in the 
hypoxia and normoxia groups (P<0.05; Fig. 4). These results 
indicated that CCN1 siRNA has an anti‑proliferative effect on 
HUVECs (21), possibly due to an anti‑angiogenic effect.

CCN1 siRNA induces apoptosis in HUVECs. To investigate 
whether hypoxia can induce apoptosis in HUVECs, cellular 
apoptotic ratios were measured using flow cytometry, in which 
apoptotic cells determined as annexin V‑FITC positive and PI 
negative. The results of the flow cytometric analysis indicated 

Figure 2. Reverse transcription‑quantitative polymerase chain reaction 
analysis of the CCN1‑PI3K/Akt‑VEGF pathway under hypoxic conditions. 
The expression levels of CCN1, Akt and VEGF were assessed 2  days 
post‑transfection under hypoxia. Data are presented as the mean ± standard 
deviation of three independent experiments. *P<0.05, vs. the normoxia group, 
#P<0.05, vs. the hypoxia group and ΔP<0.05, vs. the hypoxia‑control group. 
CCN1, cysteine‑rich 61; PI3K, phosphoinositide 3‑kinase; VEGF, vascular 
endothelial growth factor; siRNA, small interfering RNA.

Figure 4. Hypoxia inhibits the expression of CCN1 in HUVECs under 
hypoxic conditions. The proliferation of the HUVECs was measured using 
a Cell Counting Kit‑8 assay daily for 4 days post‑transfection with CCN1 
siRNA under hypoxic conditions. CCN1, cysteine‑rich 61; HUVECs, human 
umbilical vein endothelial cells; siRNA, small interfering RNA.

Figure 3. Western blot analysis of the CCN1‑PI3K/Akt‑VEGF pathway under 
hypoxic conditions. Data are presented as the mean ± standard deviation 
of three independent experiments. The protein expression levels of CCN1, 
pAkt and VEGF were determined 2 days post‑transfection under hypoxia; 
*P<0.05, vs. the normoxia group, #P<0.05, vs. the hypoxia group, ΔP<0.05, vs. 
the hypoxia‑control group. CCN1, cysteine‑rich 61; PI3K, phosphoinositide 
3‑kinase; VEGF, vascular endothelial growth factor; pAkt, phosphorylated 
Akt; siRNA, small interfering RNA.
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a moderate increase in apoptosis in the HUVECs transfected 
with CCN1 siRNA (69.24±0.85%; P<0.05), compared with the 
HUVECs transfected with scramble siRNA (40.14±0.78%), 
under hypoxic (32.28±0.23%) or normoxic (18.68±0.43%) 
conditions (Fig. 5). These results indicated that CCN1 siRNA 
had a pro‑apoptotic effect on HUVECs (21), possibly due to an 
anti‑angiogenic effect.

Hypoxia induces the expression of CCN1 through the 
PI3K/Akt‑VEGF signaling pathway. The results of the 
RT‑qPCR (Fig. 2) and western blot analysis (Fig. 3) indicated 
that the mRNA and protein levels of CCN1 and VEGF 
were increased in the hypoxia and hypoxia‑control groups, 
compared with the normoxia group (P<0.05), however, no 
significant differences were observed between the hypoxia 
and hypoxia‑control groups (P>0.05). The mRNA levels 
of Akt were increased, and western blotting indicated an 
increase in the expression levels of p‑Akt in the hypoxia and 
the hypoxia‑control groups, compared with the normoxia 
group. Additionally, the mRNA and protein expression levels 
were reduced in the hypoxia‑CCN1 siRNA group, compared 
with the hypoxia and hypoxia‑control groups (P<0.05; 
Figs.  2  and  3). Compared with the hypoxia‑control, the 
hypoxia‑CCN1 siRNA group demonstrated reduced mRNA 
expression levels of CCN1, Akt and VEGF, which were 
reduced by 78.21, 67.19 and 77.65%, respectively (Fig. 2). The 
protein levels of CCN1, Akt and VEGF were reduced by 32.43, 
48.48 and 57.76%, respectively, in this group (Fig. 3). These 
results demonstrated that the hypoxia‑induced expression of 

CCN1 was mediated through the PI3K/Akt‑VEGF signaling 
pathway.

PI3K/Akt inhibition by LY294002 reduces the expression 
of CCN1. In the present study, RT‑qPCR and western blot-
ting were performed to measure the mRNA and protein 
expression levels of CCN1 following exposure of the cells to 
LY294002 under normoxic or hypoxic conditions. Compared 
with the hypoxia group, the mRNA expression of CCN1 in 
the LY294002 hypoxia group was downregulated by 82.38% 
(P<0.05; Fig. 6A), and LY294002 treatment reduced the protein 
expression of CCN1 by 37.32% in the hypoxic cells (P<0.05; 
Fig. 6B and C). Compared with the normoxia group, the mRNA 
expression level of CCN1 in the normoxia‑LY294002 group 

Figure 5. Inhibition of CCN1 in HUVECs promotes apoptosis under hypoxic 
conditions. Apoptotic cells were identified by double supravital staining with 
FITC‑conjugated annexin‑V and PI. The graphs show the percentages of late 
apoptotic cells (upper right quadrant), fully viable cells (lower left quadrant), 
early apoptotic cells (lower right quadrant) and necrotic cells (upper left 
quadrant). The total apoptotic rate in the CCN1 siRNA‑transfected cells 
under hypoxic conditions was increased, compared with those in the hypoxia 
scramble siRNA‑transfected and normoxic cells. CCN1, cysteine‑rich 61; 
HUVECs, human umbilical vein endothelial cells; FITC, fluorescein isothio-
cyanate; PI, propidium iodide; siRNA, small interefering RNA.

  A

  B

  C

Figure 6. Effects of PI3K/Akt inhibition by LY294002 on the expression 
levels of CNN1 under normoxic and hypoxic conditions. (A) mRNA expres-
sion levels of CCN1 were determined using reverse transcription‑quantitative 
polymerase chain reaction analysis. β‑actin was used as a reference gene. 
(B) Protein expression levels of CCN1 were determined using western blot-
ting. (C) Protein expression was normalized to β‑actin. Data are presented as 
the mean ± standard deviation of three independent experiments. *P<0.05, vs. 
the normoxia group; #P<0.05, vs. the hypoxia group. PI3K, phosphoinositide 
3‑kinase; CCN1, cysteine‑rich 61.
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was downregulated by 32.57% (P<0.05; Fig. 6A), as were the 
protein levels of CCN2, which were reduced by 21.87% in 
the normoxic group (P<0.05; Fig. 6B and C). These results 
suggested that the PI3K/Akt inhibitor, LY294002, reduced the 
expression levels of CCN1, and that this process involved an 
autocrine loop.

Discussion

Hypoxia and ischemia trigger a multitude of responses, 
which are designed to compensate for the reduced oxygen 
availability (22). In ECs, these responses increase the expres-
sion levels of growth factors and induce angiogenesis (23). 
The growth of blood vessels in angiogenesis is a delicately 
controlled process, which involves the activation, prolifera-
tion, migration, differentiation and maturation of ECs (24,25). 
Physiological angiogenesis is required for normal vascular 
development in addition to vascular homeostasis during adult-
hood (26). Pathological angiogenesis, commonly induced by 
tissue ischemia, hypoxia or inflammation, underlies numerous 
vascular disorders, including retinopathy of prematurity, which 
is a leading cause of blindness in childhood (27).

Previous studies have directly  (28,29) and indi-
rectly (30,31) demonstrated that CCN1 is able to promote 
chorioretinal angiogenesis in vitro via the proliferation and 
migration of ECs, and the formation of tubular structures, 
indicating that CCN1 may be involved in the formation of 
angiogenesis in the retina. These processes all begin with 
EC proliferation and, mechanistically, CCN1 may promote 
the proliferation of ECs by upregulating the PI3K/Akt 
pathway  (10,11,21). However, the exact role of the CCN1 
pathway remains to be elucidated.

In the present study, examination of the proliferation 
of HUVECs following CCN1 siRNA transfection under 
hypoxic conditions demonstrated that treatment with CCN1 
siRNA significantly inhibited cell proliferation. Furthermore, 
it was demonstrated that CCN1 siRNA promoted apoptosis 
of the cells, thus interfering with angiogenesis. However, 
the aim of the present study was not to determine whether 
apoptosis prevented angiogenesis or whether apoptosis was 
induced by the inhibition of angiogenesis. Despite this, these 
data indicated that the expression of CCN1 was involved in 
cell proliferation and apoptosis. These findings are supported 
by the findings of previous studies, which demonstrated that 
EC proliferation is the initial step in angiogenesis, and is an 
essential step prior to both cell migration and tube forma-
tion (30).

In addition, several previous studies have suggested 
that VEGF has central role in angiogenesis, therefore, 
understanding the interaction between CCN1 and VEGF is 
important  (32,33). To further investigate the mechanisms 
underlying the hypoxia‑induced expression of CCN1, the 
PI3K/Akt pathway was analyzed in the present study. PI3K/Akt 
is downstream effector of insulin signaling (34), in addition 
to being an important signaling molecule in the regulation 
of glycogen metabolism in myocytes, lipocytes and hepato-
cytes (12). Furthermore, PI3K/Akt has an important role in 
ECs by regulating angiogenesis, proliferation, microvascular 
permeability, survival, cellular transformation and embryonic 
differentiation (35‑37). It has been reported that CCN1 induces 

the expression levels of PI3K/Akt in different types of cell, 
including breast cancer, gastric cancer, renal cell carcinoma and 
glioma cells (10,38‑40). The results of the present study demon-
strated that hypoxia increased the mRNA and protein levels 
of CCN1 via the PI3K/Akt‑VEGF pathway, and that CCN1 
siRNA induced a significant inhibition of the PI3K/Akt‑VEGF 
pathway. In addition, the data indicated that the mRNA and 
protein levels of CCN1 were reduced in the cells treated with 
LY294002 prior to hypoxia, compared with hypoxia‑exposed 
cells without LY294002 treatment. These results supported the 
hypothesis that the hypoxia‑induced expression of CCN1 acts 
through the PI3K/Akt‑VEGF pathway.

In addition, the results of the present study demonstrated 
that the proliferation and of ECs, and the expression levels 
of CCN1, Akt, and VEGF were not completely inhibited by 
CCN1 siRNA. This may be associated with the actions of 
other growth factors, including basic fibroblast growth factor, 
interleukin‑8, c‑Jun and hypoxia‑inducible factor‑1α (31,41). 
Further investigations are required to determine the precise 
association between these growth factors and CCN1, and their 
involvement in pathological angiogenesis.

Taken together, the present study demonstrated that CCN1 
induced the proliferation of HUVECS, and increased the 
secretion of cytokines, including VEGF, which acted through 
PI3K/Akt activation. Therefore, CCN1 RNAi may offer a prom-
ising strategy for the treatment of pathological angiogenesis.
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