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Abstract. Betulinic acid (BA), a lupane‑type pentacyclic trit-
erpenoid saponin from tree bark, has the potential to induce the 
apoptosis of cancer cells without toxicity towards normal cells 
in vitro and in vivo. The antitumor pharmacological effects 
of BA consist of triggering apoptosis via the mitochondrial 
pathway, regulating the cell cycle and the angiogenic pathway 
via factors, including specificity protein transcription factors, 
cyclin D1 and epidermal growth factor receptor, inhibiting 
the signal transducer and activator of transcription 3 and 
nuclear factor‑κB signaling pathways, preventing the invasion 
and metastasis of tumor cells, and affecting the expression of 
topoisomerase I, p53 and lamin B1. In previous years, several 
studies have shown its antitumor effect, initially applied to 
malignant melanoma, however, it also has broad efficacies 
against most solid types of tumor from different regions of 
the body. There have been few investigations in hematological 
malignancies, however, this direction may offer potential 
in such a novel field of research. In this review, the primary 
pharmacological effects of BA in tumors, particularly in 
hematological malignancies are discussed.
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1. Introduction

Betulinic acid (BA) is a lupane‑type pentacyclic triterpenoid 
saponin (3β‑hydroxy‑lup‑20 (29)‑en‑28‑oic acid; MW, 456.71; 
Fig. 1), which exists in the bark of a variety of natural plants, 
principally in Betula. It has been investigated extensively in 
previous decades due to its beneficial properties, including 
anticancer, anti‑inflammatory, anti‑angiogenic, and immuno-
modulatory effects, its anthelmintic activity and its anti‑human 
immunodeficiency virus effects. Its antitumor effects are 
higher at a reduced pH (<6.8), a characteristic of several types 
of tumor (1‑3).

In previous decades, BA has been shown to have a marked 
antitumor therapeutic effect in melanoma cells and several 
types of solid tumor, including glioblastoma (4), lung carci-
noma (5), breast carcinoma (6), colorectal carcinoma (7) and 
prostate carcinoma  (8). In addition, the antitumor effects 
on hematological malignancies have been investigated 
in our previous studies and in those of others in previous 
years (1,9‑11).

The reported primary mechanisms of the anticancer effects 
of BA treatment are shown in Fig. 2 and described below.

Promotion of apoptosis by activation of the mitochondrial 
pathway. BA improves the level of reactive oxygen species 
(ROS) production and alters the mitochondrial membrane 
potential gradient, followed by the release of cytochrome c 
(Cyt c), which causes the mitochondrial‑mediated apoptosis of 
tumor cells via a caspase‑dependent mechanism and apoptosis 
inducing factor (1,12,13). It has been demonstrated that there is 
a link between ROS and the p38 and stress‑activated protein 
(SAP) kinase/c‑Jun N‑terminal kinase (JNK) in melanoma cells. 
This indicates that ROS act upstream of the mitogen‑activated 
protein kinases (MAPKs) in the signaling pathway of BA (14). 
In addition, autophagy has been shown to occur downstream of 
the mitochondrial damage induced by BA (15).

Regulation of cell cycle and the angiogenic pathway via 
specificity protein (Sp) transcription factors, cyclin D1 and 
epidermal growth factor receptor (EGFR). BA can inhibit 
cancer cell growth and proliferation via cell cycle arrest. 
Drugs, including BA, can inhibit the protein expression of Sp1, 
Sp2 and Sp4 through the microRNA (miR)‑27a‑ZBTB10‑Sp1 
axis and slow down the aggressiveness of the tumor (16‑19).
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Inhibition of the signal transducer and activator of transcrip-
tion 3 (STAT3) and nuclear factor (NF)‑κB signaling pathways. 
BA can downregulate the activation of STAT3 through the 
upregulation of Src homology 2 domain‑containing phos-
phatase 1 (SHP‑1), and affect the STAT3/HIF‑1/VEGF signal 
pathway (20‑22). The expression of NF‑κB can be inhibited 
by reducing the activation of inhibitor of NF‑κB (IκBα) kinase 
(IKKβ) and phosphorylation of IκBα with BA (23).

Prevention of the invasion and metastasis. The inva-
sion and metastasis of malignancies is prevented via 
epithelial‑mesenchymal transition (EMT) and inhibition of 
topoisomerase I (24).

The aim of this review was to discuss the primary phar-
macological effects of BA in solid types of tumor and in 
hematological malignancies, and to provide a valuable refer-
ence for future investigations in the hematological system.

2. Sources of BA

BA is a type of pentacyclic triterpene acid, which is found in 
the bark of several species of plant. As a natural compound, 
it has a wide range of biological activities, and also the char-
acteristics of low toxicity and a high safety index. BA has 
attracted increasing attention over previous years due to these 
properties (25).

Previous studies have revealed three sources of BA. 
Its direct extraction from plants is the earliest and most 
direct source. The primary raw material used for BA 
extraction is Betula bark. The bark of Platanus acerifolia, 
Vochysia divergen, Euphorbiacea, Ficus pandurata Hance, 
and the leaves of Vitex negundo and Pterospermum hetero-
phyllum Hance can also be used as raw material to extract 
BA. However, the extraction rate (up to 3.3%) is low due to 
the low content of BA in the bark of these plants. In order 
to increase the extraction efficiency, the preparation of semi-
synthetic BA has been introduced. This method provides a 
higher rate of extraction from betulin, which is an associated 
natural compound and important constituent of birch bark 
(22‑30%), which can be converted into BA in high yields 
through an oxidation process (26,27). Another method used 
to extract BA is microbial fermentation. Microbial trans-
formation has several advantages, including mild reaction 
conditions, low cost and reduced pollution. Several types 
of microbes have been used, namely Aspergillus oryzae AS 
3.49, Aspergillus sp. WZ, Aspergillus foetidus ZU‑G1 and 
Trichoderma koningii ZJ. However, further investigations are 
required for the large‑scale preparation of BA with the use of 
microbes (28).

3. Antitumor effects of BA in solid tumor types

BA was initially confirmed as a selective inhibitor of 
human melanoma cells (29). BA has attracted attention due 
to its unique anticancer activities of selective tumor growth 
inhibition or apoptosis, without damaging normal cells, at a 
concentration >100 mg/kg body weight (30). Several types of 
solid cancer cell have been shown to be sensitive towards BA. 
The following section focuses on the mechanisms underlying 
the effects of BA in solid tumor treatment.

Malignant melanoma. Malignant melanoma, to which indi-
viduals of European origin are vulnerable, accounted for 1.6% 
of new cancer cases in 2012 worldwide (31). As a consequence, 
it is imperative to identify an effective treatment approach. BA 
is a specific toxic reagent towards melanoma cells and was first 
used for the treatment of melanoma. Tan et al (14) demonstrated 
that treatment of UISO‑Mel‑1 human melanoma cells with BA 
leads to the activation, via phosphorylation, of pro‑apoptotic 
MAPK proteins, P38 and SAP/JNK, the formation of ROS and 
the upregulation of caspase (14). Pisha et al (29) initially reported 
that BA induced the apoptosis of a number of melanoma cell 
lines, including MEL‑1, 2, 3 and 4, with half maximal effective 
dose values ranging between 0.5 and 4.8 µg/ml. In addition, 
BA interferes with EMT‑associated changes, a mechanism to 
antagonize invasive melanoma cells A375 at a concentration 
of 10 µM, whereas BA reduces A375 cell proliferation at a 
concentration of 50 µM (32).

Cervical cancer. BA activates the endoplasmic reticulum 
pathway and the ROS‑mediated mitochondrial pathway to 
induce apoptosis of HeLa cells. Potze et al (33) demonstrated 
that BA causes cell membrane rupture, apoptosis and mito-
chondrial depolarization in HeLa cell lines, with an minimum 
effective concentration of 7.5 µg/ml, reaching a plateau at 
10 µg/ml.

BA increases the levels of microtubule‑associated 
protein 1 light chain 3 (LC3‑II) more markedly in HeLa cell 
lines, compared with DMSO‑treated control groups, and the 
BA‑treated HeLa cell lines have a potent inducing effect on 
the expression of p62. BA can also inhibit the autophagic flux 
by increasing the degradation of long‑lived proteins following 
14 h medium replacement (33).

The B cell lymphoma‑2 (Bcl‑2) family members interact 
with each other to maintain mitochondrial integrity and 
regulate cell apoptosis. The two predominant types of Bcl‑2 
proteins include anti‑apoptotic proteins, including Bcl‑2‑A1, 
Bcl‑2, Bcl‑extra large (Bcl‑xL), Bcl‑2‑like protein  2, and 
myeloid cell leukemia‑1, and pro‑apoptotic proteins, 
including Bcl‑2‑associated death promoter, Bcl‑2 homolo-
gous antagonist/killer, Bcl‑2‑associated  X  protein (Bax), 
BH3‑interacting domain death agonist, Bcl‑2‑interacting 
killer, Bcl‑2‑interacting mediator of cell death, activator of 
apoptosis harakiri, phorbol‑12‑myristate‑13‑acetate‑induced 
protein 1 and p53‑upregulated modulator of apoptosis. BA 
downregulates Bcl‑2 and upregulates the Bax gene in HeLa 
cell lines (34‑36).

Breast cancer. Previous research demonstrated that Sp is over-
expressed in tumors (19). Previous reports have shown that BA 
mediates antitumor activity by downregulating the Sp1 tran-
scription factor. Knocking down the expression of Sp1 inhibits 
tumor growth and angiogenesis in xenograft models (10,19). 
ZBTB10 is a transcriptional repressor of Sp transcription 
factors, and drugs inhibit Sp transcription factors through 
the microRNA (miR)‑27a‑ZBTB10‑Sp1 axis. BA induces the 
apoptosis of MDA‑MB‑231 estrogen‑receptor‑negative breast 
cancer cell lines by downregulating the mRNA and protein 
levels of Sp1, Sp3 and Sp4 at concentrations of 2.5‑10 µM, 
decreasing the expression of miR‑27a and increasing the levels 
of ZBTB10 in vitro and in vivo (16,37,38).
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Yin Yang 1 (YY1), an Sp‑regulated gene, is a key upstream 
regulator of ErbB2. BA inhibits the expression of YY1 in 
BT474 and MDA‑MB‑453 cell lines. The activation of canna-
binoid type 1 (CB1) and CB2 receptors, which modulate the 
miR‑27a‑ZBTB10‑Sp1 axis, mediate the effects of Sp tran-
scription factors and ErbB2 on these two cell lines (39).

P53, a well‑known tumor suppressor, mediates cell cycle 
arrest and apoptosis (40). BA induces the apoptosis of MCF‑7 
and T47D breast cancer cell lines in an p53‑independent 
apoptotic pathway with half maximal inhibitory concentration 
(IC50) values of 12.3 and 9.8 µg/ml, respectively, following 
72 h incubation (6,41).

Lung carcinoma, colorectal carcinoma and gastric adenocar-
cinoma. Lung cancer and colorectal cancer are considered to 
be major contributors to incidence and mortality rates (42,33). 
In a previous study in nude mice, compared with control mice, 
BA‑treated transplanted tumors of A549 lung cancer or SW480 
colon cancer cell lines grew at a slower rate, with an IC50 of 
4.3 µg/ml in the A549 cell lines, determined using MTT (44).

BA inhibits the proliferation of colon cancer cells and 
xenograft tumor growth. It induces the proteasome‑dependent 
and ‑independent downregulation of Sp transcription factors, 
including Sp1, Sp3 and Sp4, in SW480 and RKO cell lines, 
at concentrations of 5‑10 µM. In addition, BA disrupts the 
expression of miR‑27a and ZBTB10 mRNA in RKO cell 
lines (45,46). The expression levels of Sp‑regulated genes, 
including cyclin D1, p65, EGFR and Bcl‑2 also decrease. In 
addition, BA can markedly decrease the percentage of RKO 
cells in the G0/G1 and S phases, and increase the percentage 
in the G2/M phase (47,48).

BA mediates G2/M cell cycle arrest and downregulates 
the protein expression of Hiwi and cyclin B1 in the AGS 
human gastric adenocarcinoma cell line, with an IC50 of 
12.99 µg/ml (49).

Vascular endothelial cell growth factor (VEGF) is a 
regulator of physiological and pathological angiogenesis. 
It is expressed at high levels in several types of solid tumor, 
including colon carcinoma and breast cancer. BA can decrease 
the expression of VEGF via Sp proteins, thus having an 
antiangiogenic role (50,51).

Pancreatic cancer and hepatocellular carcinoma. The 
lamin B1 protein, an important member of the lamin protein 
family (52), regulates apoptosis, proliferation, invasion and 

metastasis (53). The expression of lamin B1 is reduced in lung 
cancer, colon cancer, breast cancer, bronchial carcinoma and 
gastric cancer (54,55), whereas the expression of lamin B1 
is increased in prostate cancer and hepatocellular carci-
noma (56,57).

The expression of lamin B1 is positively correlated with the 
growth of cancer. Sp1, a lamin B1 downstream gene, may regu-
late the expression of lamin B1. However, BA suppresses the 
expression of lamin B1 in pancreatic cancer cells independent 
of the Sp1 protein in vitro and in xenograft models (58‑60).

The upregulation of lamin B1 in hepatocellular carcinoma 
tumors correlates with tumor size, stage and nodule number. 
Elevated levels of plasma lamin B1 can predict early stage 
hepatocellular carcinoma with a sensitivity of 76% and a 
specificity of 82% (61).

Prostate cancer, bladder cancer and endometrial adenocar-
cinoma. The dysregulation of STAT3 is involved in tumor cell 
survival, proliferation, apoptosis and metastasis. BA mediates 
anticancer activity through inhibiting STAT3 in solid tumors. 
It was reported that BA may be a potent anti‑angiogenic drug 
in prostate cancer, affecting the expression and transcription 
of hypoxia‑indicible factor (HIF)‑1α, STAT3 and VEGF, and 
capillary tube formation (20,22).

In endometrial adenocarcinoma cells, BA is vital in cancer 
development and progression. It inhibits prolidase, which 
catalyzes collagen degradation in the final step, and decreases 
the expression of α1 and α2 integrin, HIF‑1, VEGF, glucose 
transporter‑1, erythropoietin‑1, carbonic anhydrase and 
glyceraldehyde‑3‑phosphate dehydrogenase (62,63).

NF‑κB, a key regulator of stress‑induced transcriptional 
activation, regulates cell survival, proliferation, apoptosis, 
immune responses and adaptive responses to alterations in 
cellular redox balance (23,64). BA inhibits the expression of 
NF‑κB, which leads to a decrease in the activity of IKKβ and 
phosphorylation of IκBa in PC‑3 human prostate carcinoma 
cells. BA treatment for 24 h results in a dose‑dependent reduc-
tion in cell viability, which ranges between 2.9 and 91.2% in 
PC‑3 cells at concentrations of 1‑40 µM. Furthermore, the 
protein expession of cyclin D1 is lowered in a mouse model of 
prostate cancer treated with BA (10 mg/kg) (8).

The expression of EGFR is correlated with vascularity. 
BA can significantly downregulate the expression of the 
Sp‑dependent gene, EGFR, through repression of the Sp1, Sp3 
and Sp4 proteins in 253JB‑V and KU7 bladder cancer cells at 
a concentration of 5 or 10 µM (19,65).

Head and neck carcinoma. The RET proto‑oncogene, 
involved in recurrent chromosomal rearrangements, is found 
in thyroid and lung cancer. Of all papillary thyroid carcinoma 
(PTC) cases, ~20% are attributed to RET/PTC rearrange-
ments (66,67).

Topoisomerases, a class of ubiquitous enzymes located in 
the cell nucleus, catalyze the fracture and combination of DNA 
strands. BA secludes to topoisomerase I in the nucleoplasm. 
Therefore, BA inhibits topoisomerase I DNA cleavage complex 
formation. Coincidentally, fragile site breakage of the RET 
proto‑oncogene is affected by DNA topoisomerase I (68‑70).

The BA derivative, compound 15, shows marked inhibi-
tion of SW1736 anaplastic thyroid cancer cell lines in a short 

Figure 1. Chemical structure of betulinic acid (C30H48O3; MW, 456.71).
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duration with an IC50 of 3.54±0.66 µM (71). Compared with 
BA, B10, a semi‑synthetic glycosylated derivative of BA, 
shows a higher cytotoxicity in glioma cell lines. B10 induces 
cell death by inducing autophagy and lysosomal permeabiliza-
tion in glioblastoma cells. It induces autophagy and abrogates 
the autophagic flux on a panel of glioblastoma cell lines. The 
release of lysosomal enzymes contributes to B10‑triggered cell 
death. B10 decreases the level of poly ADP ribose polymerase, 
the apoptotic protein, and survivin (72).

The phosphoinositide 3‑kinase (PI3K)/Akt/mamma-
lian target of rapamycin (mTOR) pathway, integrating 
extra- and intracellular survival signals, stimulates cell growth 
and inhibits cell death (73,74). In addition, the PI3K/Akt signal 
can regulate the activity and stability of lysosomes (75). The 
PI3K/Akt/mTOR signaling pathway is inhibited in B10‑treated 
(18 µM) U87MG cells by decreasing the phosphorylation of 
Akt, a downstream target of PI3K, which is an upstream target 
of mTOR. The activation of caspase‑3, lysosomal permeabili-
zation and cell death are decreased significantly when ATG7, 
ATG5 or BECN1 are downregulated by RNA interference (76).

4. Antitumor effects of BA in hematological malignancies

Currently, the therapeutical effect of BA against hematological 
malignancies predominantly focuses on multiple myeloma, 
acute leukemia and lymphoma. This review elaborates on the 
correlative functional mechanism of BA‑treated cell lines.

Multiple myeloma. The U266 and MM.1S human multiple 
myeloma cell lines have been investigated in order to determine 
whether BA can modulate the STAT3 pathway. BA downregu-
lates the activation of STAT3 (22) through the upregulation of 
SHP‑1 (77). Thus, BA inhibits the activation of STAT3, Src 
kinase, janus kinase (JAK)1 and JAK2 (77). The ability of BA 

to inhibit STAT3 activation is abolished and BA‑induced cell 
death is rescued when the SHP‑1 gene is silenced. In multiple 
myeloma, the expression levels of STAT3‑regulated gene 
products, including Bcl‑extra large (Bcl‑xL), Bcl‑2, cyclin D1 
and survivin, are downregulated by BA (77).

In our previous study, it was demonstrated that BA inhibits 
cell proliferation and autophagic flux, and induces apoptosis 
in a time‑dose‑dependent manner in KM3 multiple myeloma 
cells, which was bound up with the activation of caspase 3. 
These experimental results indicated that the proliferation of 
the KM3 cells was suppressed when the cells were treated 
with BA (5‑25 µg/ml). The IC50 values at 12, 24 and 36 h 
were 22.29, 17.36 and 13.06 µg/ml, respectively. However, 
the cells were sensitized to BA‑induced apoptosis when they 
were treated with Z‑DEVD‑FMK, a specific inhibitor of 
caspase 3. The accumulation of LC3‑II and P62 in KM3 cells 
treated with dose‑dependent BA increased, which indicated 
the suppression of autophagic flux. Furthermore, the expres-
sion of Beclin 1, an important inducer of autophagy, was 
downregulated in the KM3 cells treated with BA (78). Our 
previous study also confirmed that BA can induce the apop-
tosis of RPMI‑8226 multiple myeloid cell lines via modulating 
the apoptosis‑associated genes, Bcl‑xL and caspase 3 (79). 
This efficiency showed a time‑ and dose‑dependency. In 
the RPMI‑8226 cell lines, BA also affected the cell cycle in 
the G1/S phase and arrested cells in the G0/G1 phase. The 
IC50 values of BA to RPMI‑8226 cells at 24 and 48 h were 
10.156±0.659 and 5.434±0.212 µg/ml, respectively (79).

Acute leukemia. Ehrhardt et al (80) found that BA induced 
marked apoptosis in 65% of primary pediatric acute leukemia 
cells and in all leukemia cell lines assessed through the mech-
anism of induction of Cy c and second mitochondria‑derived 
activator of caspases. In all cell lines assessed, including the 

Figure 2. Diagram showing the antitumor pharmacological effects of betulinic acid.
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SKW6, HUT 78 and CEM T‑cell leukemia cell lines, the BJAB, 
NALM6 and BOE B‑cell lines and the HL‑60 myeloid cell line, 
the cells showed sensitivity towards BA‑induced apoptosis at a 
concentration of 10 µg/ml (80). Kumar et al (81) found that the 
methanolic extract of Dillenia indica L. fruits showed signifi-
cant antileukemic activity in U937, HL60 and K562 human 
leukemic cell lines. BA can induce the apoptosis of these 
leukemic cell lines with IC50 values of 13.73±0.89, 12.84±1.23 
and 15.27±1.16 µg/ml, respectively (81). Our previous study 
also showed that BA inhibited the proliferation of K562 cells 
through the induction of cell cycle arrest, and upregulation 
of the protein expression levels of Bcl‑2‑associated X protein 
and caspase 3. BA was cytotoxic towards K562 cells with an 
IC50 of 21.26 µg/ml at 24 h (82). It was also found that BA is 
important in T lymphocytic leukemia. BA is able to inhibit the 
proliferation of Jurkat cells by regulating the cell cycle, with 
arrest of cells at the G0/G1 phase and the induction of apop-
tosis. The antitumor effects of BA were associated with the 
downregulated expression levels of cyclin D3 and Bcl‑xL. The 
proliferation of Jurkat cells was decreased in the BA‑treated 
group with an IC50 value of 70 µmol/l at 24 h (83).

Lymphoma. Our previous study in the Raji Burkitt lymphoma 
cell line showed that BA can induce cell cycle arrest and 
apoptosis via suppressing the expression of the D‑type cyclin, 
cyclin D3. The IC50 values of BA at 24, 48 and 72 h were 
39.44±0.65, 26.26±2.39 and 15.35±1.83 µg/ml, respectively. 
BA primarily caused the arrest of Raji lymphoma cell lines in 
the G0/G1 phase at 24 h (84).

5. Outlook

In conclusion, BA is a promising antitumor reagent. It mediates 
selective cell death without cytotoxicity towards normal cells 
and tissues. The antitumor activities described above indicate 
BA as a veritable candidate for clinical cancer treatment. 
In addition, previous studies have demonstrated that BA is 
involved in the treatment of solid tumors, however, there are few 
reports on BA‑treated hematological malignancies, the elucida-
tion of which may be of potential value in such a novel field of 
research, and indicates a direction for future investigations.
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