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Abstract. Primary dysmenorrhea (PD) is a common gyne-
cological disorder which, while not life‑threatening, severely 
affects the quality of life of women. Most patients with PD 
suffer ovarian hormone imbalances caused by uterine contrac-
tion, which results in dysmenorrhea. PD patients may also 
suffer from increases in estrogen levels caused by increased 
levels of prostaglandin synthesis and release during luteal 
regression and early menstruation. Although PD pathogenesis 
has been previously reported on, these studies only examined 
the menstrual period and neglected the importance of the 
luteal regression stage. Therefore, the present study used urine 
metabolomics to examine changes in endogenous substances 
and detect urine biomarkers for PD during luteal regression. 
Ultra performance liquid chromatography coupled with 
quadrupole‑time‑of‑flight mass spectrometry was used to 
create metabolomic profiles for 36 patients with PD and 27 
healthy controls. Principal component analysis and partial 
least squares discriminate analysis were used to investigate 

the metabolic alterations associated with PD. Ten biomarkers 
for PD were identified, including ornithine, dihydrocor-
tisol, histidine, citrulline, sphinganine, phytosphingosine, 
progesterone, 17‑hydroxyprogesterone, androstenedione, and 
15‑keto‑prostaglandin F2α. The specificity and sensitivity of 
these biomarkers was assessed based on the area under the 
curve of receiver operator characteristic curves, which can be 
used to distinguish patients with PD from healthy controls. 
These results provide novel targets for the treatment of PD.

Introduction

Dysmenorrhea is a common gynecological disorder, occurring 
during adolescence and throughout reproductive maturity (1). 
There are two categories; primary and secondary dysmenor-
rhea. Primary dysmenorrhea (PD) accounts for >90% of 
dysmenorrhea patients and occurs in the absence of other 
diseases, while secondary dysmenorrhea is caused by a 
disease of the reproductive organs, such as endometriosis (1). 
Dysmenorrhea is characterized by spasmodic pain in the 
hypogastric and lumbar regions between, prior to and during 
menstruation, with severe patients experiencing fainting (1). 
According to previous epidemiological studies using multiple 
survey methods, primary dysmenorrhea occurs in 20‑90% 
of women  (2,3). Although primary dysmenorrhea is not 
life‑threatening, the degree of pain severely affects women's 
quality of life and ability to work normally. Therefore, the 
study of clinical treatments for primary dysmenorrhea is of 
great importance. The luteal regression stage, where the 
corpus luteum degenerates in the absence of pregnancy, is an 
important period during the menstrual cycle, and hormonal 
and endocrinal changes during this time affect the occurrence 
and development of dysmenorrhea (4).

Metabolomics is a discipline that studies the set of metabo-
lites present at a point in time in vivo, and how surroundings, 
physiology, pathology and genetic mutations influence the 
makeup of the metabolome (5). Metabolites are closely associ-
ated with phenotypic changes and are often the end result of 
disease‑associated endogenous substance perturbations (6). 
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Urine metabolomics is a non‑invasive analysis method that is 
normally used in screening for disease, but has great poten-
tial in studies of metabolomics. Ultra performance liquid 
chromatography coupled with quadrupole‑time‑of‑flight mass 
spectrometry (UPLC‑Q/TOF‑MS) is a powerful method of 
analysis, advantageous due to more faster analyses, shorter 
time and increased separation efficiency compared with other 
traditional instruments (7,8). Due to this high throughput, high 
sensitivity and high accuracy, it is possible to dynamically 
analyze urine to identify and resolve metabolic differences in 
endogenous substances in vivo. The results can provide clinical 
guidance in the study of disease mechanisms.

Previous studies have primarily been concerned with 
researching menstruation biomarkers (9). To the best of our 
knowledge, the mechanisms underlying dysmenorrhea during 
the luteal regression stage have not yet been reported, making 
research on the luteal regression stage mechanisms of PD 
urgently required. Therefore, the changes in endogenous 
substances during the luteal regression stage were studied, 
using urine metabolomics combined with receiver operator 
characteristic (ROC) curves to verify biomarkers. Initially, a 
UPLC‑Q/TOF‑MS technique was used to generate a metabo-
lomic profile of urine samples from patients with PD, as well 
as healthy controls. Principal component analysis (PCA) and 
partial least squares discriminate analysis (PLS‑DA) were 
used to identify metabolite perturbations. Next, the classifi-
cation performance (specificity and sensitivity) was verified 
using the area under the curve (AUC) of the ROC curves. The 
present study aimed to confirm the endogenous metabolites 
present at the luteal regression stage and seek potential PD 
biomarkers from among them. The results of this may assist in 
the clinical treatment of PD.

Materials and methods

Study subjects and design. The present study was reviewed 
and approved by the Tianjin University of Traditional Chinese 
Medicine. The samples used in the present study originated 
from the same volunteers used by Fang et al (9), and so shared 
demographic and clinical characteristics. The group included 
36  patients with clinically diagnosed PD and 27 healthy 
controls from the Affiliated Hospital of Tianjin University 
of Chinese Medicine (Tianjin, China) and Tianjin Maternity 
Hospital (Tianjin, China). Urine was collected from PD 
patients and healthy controls during the luteal regression stage, 
and informed consent was obtained from all participants prior 
to sample collection. Each volunteer provided written answers 
detailing age, weight, height, personal and family history of 
menstrual cramps, and dysmenorrhea pain integral. The pain 
integral was >8 in all patients with PD. The selection criteria 
for patients with PD were in accordance with the diagnostic 
criteria established by the People's Republic of China Ministry 
of Health Pharmaceutical Council  (10) and the National 
Higher School Teaching Materials Obstetrics and Gynecology, 

Seventh Edition (11).

Collection of urine samples. Urine samples were collected as 
described previously (9), and collection was consistent with 
the clinical inclusion criteria (morning urine collected three 
days prior to menstruation, and the volume of each sample 

recorded). Following this, each sample was loaded into 10 ml 
centrifuge tube, and 1% sodium azide was added. The samples 
were subjected to centrifugation at 765 x g at 4˚C for 15 min. 
The supernatant was stored at ‑80˚C until analysis.

Urine sample preparation. Urine samples and quality control 
(QC) samples were prepared as previously described (9). QC 
samples were mixture of urine from PD patients and healthy 
controls. Urine samples were prepared as follows: Samples 
were thawed at room temperature and centrifuged at 8,497 x g 
at 4˚C for 10 min. Next, 200 µl liquid supernatant was added 
to 200 µl pure water. The liquid was subsequently vortexed 
for 1 min and centrifuged at 14,360 x g at 4˚C for 15 min. 
Finally, all samples were injected into UPLC‑Q/TOF mass 
spectrometer for analysis. QC samples were prepared as 
follows: 8 samples were selected from each group by random 
sampling. QC samples were centrifuged at 8,497 x g at 4˚C for 
10 min. Liquid supernatant (200 µl) was then added to 200 µl 
pure water, vortexed for 1 min and centrifuged at 14,360 x g 
at 4˚C for 15 min. QC samples were analyzed once every 6 h 
and used to test instrument stability, ensuring that conditions 
remained the same throughout the analysis.

UPLC‑Q/TOF‑MS analysis. The liquid chromatograph used 
was the Waters ACQUITY UPLC system (Waters Corporation, 
Milford, MA, USA). Supernatant (5  µl) was injected into 
ACQUITY UPLC BEH C18 columns (2.1 mm x 100 mm; 
1.7 µm; Waters Corporation). The column temperature was set 
at 45˚C and the flow rate was 0.3 ml min‑1. The gradient system 
consisted of mobile phase A (0.1% formic acid in water) and 
mobile phase B (0.1% formic acid in acetonitrile) as follows: 
0‑8.5 min, 1‑25% B; 8.5‑11 min, 25‑50% B; 11‑13 min, 50‑90% 
B; 13‑15 min, 90‑99% B; 15‑17 min, 99% B; 17‑18.5 min, 
99‑1% B; 18.5‑20 min, 1% B (9).

Mass spectrometry was performed on a Waters Micromass 
QTOF Micro Synapt high definition mass spectrometer 
(Waters Corporation). Electrospray ionization (ESI) was used 
in positive mode. Ion source parameters were as follows: 
Capillary voltage, 3.0 kV; cone voltage, 30 V; nebulizer pres-
sure, 350 psi; nitrogen gas temperature, 325˚C; cone gas flow, 
50  l/h; desolvation gas flow, 600  l/h; source temperature, 
120˚C; desolvation temperature, 350˚C; 0.1  sec (interval 
0.02 sec) collected once spectrum data and scanned at mass 
range of m/z 50‑1,100.

Data processing and multivariate analysis. Data was initially 
exported using MarkerLynx V4.1 (Waters Corporation) with 
peak discovery, peak alignment and raw data filtering to 
determine potential discriminant variables. A data array that 
included retention time, m/z values and normalized peak area 
was then obtained. The multivariate data matrix was exported 
into SIMCA‑P 12.0 software (MKS Instruments, Andover, 
MA, USA) for PCA and PLS‑DA analysis. The PCA model 
is a statistical sample of the principal contradiction reaction 
and can resolve the main factor multivariate data, as well as 
reflect the main features. The data space is compressed, and 
characteristics of multivariate data in a low‑dimensional space 
are expressed through visual effects. The PLS‑DA model 
was fitted following the adaptation of the data. According 
to the classification pattern recognition model, compounds 
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were chosen depending on whether they have an important 
contribution. These data further validate the differences in the 
compounds between PD patients and healthy controls through 
metabolic differences in the luteal regression stage (12,13). 
Cross‑validation tests were sorted through for verification. 
Evaluating urine PLS‑DA models requires a higher R2Y value, 
and Q2 values for these parameters typically. R2X, R2Y and Q2 
are larger in the present model, and the R2Y and Q2 are closer 
to 1, demonstrating the accuracy of the model result  (14). 
Variable‑importance plots (VIP) values >1 were used to 
screen potential biomarkers. Unpaired Student's t‑tests were 
used to determine statistically significant differences between 
biomarkers in patients with PD and healthy controls. P<0.05 
was considered to indicate a statistically significant difference.

Resulting candidate biomarkers were selected based on 
their molecular weights and use of the formula to predict the 
elemental composition of a compound. The database was then 
used to retrieve documents and metabolite candidates, and the 
candidates were finally confirmed using metabolic standards, 
references and tandem mass spectrometry information, such 
as the Human Metabolome Database (HMDB; http://www.
hmdb.ca/) (15‑17) and MassBank (http://www.massbank.jp/). 
Related metabolites were submitted to a correlation analysis 
of metabolic pathways associated with metabolic pathway 
analysis (MetPA) (18) and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG; http://www.genome.jp/kegg/) (19).

Results

Metabolomic profiling analysis. Urinary metabolic finger-
prints of patients with primary dysmenorrhea (T group) and 
healthy controls (Z group) during the luteal regression stage 
are displayed in Fig. 1. Several different peak intensities were 
clearly detected from the typical base peak intensity (BPI), 
which indicates two sets of data with metabolite differences 
in Fig. 1.

Data were processed using multivariate statistical analysis 
methods (Fig. 2). In the PCA scatter plot, each point represents 
a volunteer sample, making it possible to visually discern 
the differences between the samples. In addition, anomalous 
samples can be identified and removed (20,21) to improve the 
accuracy of the model. PLS‑DA (Fig. 2A) was used to identify 
the metabolites that differentiate patients with PD from the 
healthy controls. The R2Y and Q2 of the PLS‑DA model were 
0.992 and 0.806, respectively, demonstrating the accuracy of 
the model. Finally, a VIP value >1 and unpaired Student's t‑tests 
were used to identify metabolites with significant differences 
as potential biomarkers. Following this, a score plot (S‑plot) 
of the PLS‑DA was used to identify potential discriminatory 
metabolites (Fig. 2B). Metabolites that are distal from the 
origin and close to the vertical axis of the S‑plot are the differ-
entiating metabolites.

Identification of biomarkers. PLS‑DA analysis VIP values 
with  >1 ion were used to identify candidate biomarkers. 
Significantly different endogenous compounds during the 
luteal regression stage were considered to be the differentiating 
compounds between patients with PD and healthy controls, 
resulting in the identification of 10 specific biomarkers. 
Levels of citrulline, ornithine, androstenedione, progesterone, 

phytosphingosine, dihydrocortisol and 17‑hydroprogesterone 
were significantly decreased in patients with PD compared with 
healthy controls during the luteal regression stage (P=0.0426, 
P=0.0071, P=0.0040, P=0.0359, P=0.0360, P=0.0454 and 
P=0.0235, respectively; Table I) and levels of sphinganine, 
histidine and 15‑keto‑prostaglandin F2α were significantly 
increased in patients with PD compared with healthy controls 
during the luteal regression stage (P=0.0136, P=0.0107 and 
P=0.0001, respectively; Table I).

Metabolite m/z values were used to determine the prob-
able molecular formula using the HMDB database (15‑17). 
Of these compounds, 4 were identified using authentic 
standards and 6 were identified by comparing the fragments 
based on their molecular ion information and MS/MS data. 
An example is 17‑hydroxyprogesterone, which exhibited an 
accurate biomarker mass ([M+H]+ at m/z 331.2241) in the 
mass spectrum. In positive ion mode, the MS/MS contains 
the fragment ions m/z 195.1 [M+H‑C9H12O]+ and m/z 138.0 
[M+H‑C12H17O2]+. The HMDB database was also used to 
confirm the results (15‑17).

Biomarker verification. To determine the sensitivity and 
specificity of the 10 biomarkers identified in the luteal 
regression stage, SPSS 17.0 (SPSS Inc., Chicago, IL, USA) 
was used to analyze the ROC curves of the biomarkers. The 
ROC curves were regarded as a potential diagnosis threshold 
for the test results, and the sensitivity and specificity were 
calculated and evaluated. Data were plotted as 1‑specificity 
on the x axis and sensitivity on the y axis (Fig. 3). The ROC 
curve is proximal to the upper left (Fig. 3B, blue line), and 
the largest point boundary value of the Youden index (22) is 
the threshold. Therefore, the sensitivity and specificity of the 
test are greater, and the rates of misdiagnoses and missed 
diagnoses are relatively low. With regard to the plotted curve 
and 45˚ oblique linear contrast, if most of the curve coincides 
with the independent variable, the value is a poor predictive 
value for the dependent variable. If the data curves away 
from the 45˚ oblique line more than the independent vari-
able, the value is a better predictive value for the dependent 
variable. In the present study the biomarkers with AUC >0.7 
were considered to have an important role in patients with 
PD. Finally, as demonstrated in (Fig.  3A), the AUC of 6 
metabolites was >0.8. Thus, 6 important biomarker candi-
dates were identified. The combination of the 10 biomarkers' 
AUC at the 95% confidence interval was 0.950, indicating 
high sensitivity and specificity during the luteal regression 
stage (Fig. 3B).

Metabolic pathways. MetPA  (18), which uses a library of 
metabolic pathways from the KEGG (19), was used for meta-
bolic pathway analyses of potential biomarkers (Fig. 4). The 
abscissa is the impact of the pathways. Where the pathway 
impact value calculated from the pathway topology analysis is 
>0, that pathway is likely associated with PD. It was revealed 
that steroid hormone biosynthesis, sphingolipid metabolism, 
arginine and proline metabolism, histidine metabolism and 
arachidonic acid metabolism were perturbed at the luteal 
regression stage in patients with PD (Fig.  4). Finally, the 
disturbed metabolic pathways detected by UPLC‑Q/TOF‑MS 
analysis were analyzed (Fig. 5).
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Figure 1. Typical base peak intensity chromatogram of urine for primary dysmenorrhea patients (T) and healthy controls (Z) at positive electrospray ionization 
mode. Differences in metabolites are indicated.

Figure 2. Multivariate statistical analysis. (A) PLS‑DA model of ultra performance liquid chromatography coupled with quadrupole‑time‑of‑flight mass 
spectrometry data between patients with PD and healthy controls in the luteal regression stage in positive mode. (B) S‑plot of PLS‑DA model between patients 
with PD and healthy control. PLS‑DA, partial least squares discriminate analysis; PD, primary dysmenorrhea.



MOLECULAR MEDICINE REPORTS  15:  1043-1050,  2017 1047

Discussion

PD is associated with hormonal substance changes in vivo, 
and fatty acid buildup in cell membrane phospholipids (23,24). 
The present study surveyed metabolic variations in patients 
with PD using UPLC‑Q/TOF‑MS‑based metabolomics during 
the luteal regression stage. A clear metabolic difference was 
observed between patients with PD and healthy controls, with 
citrulline, ornithine, androstenedione, progesterone, phyto-
sphingosine, dihydrocortisol and 17‑hydroxyprogesterone 
levels decreased and sphinganine, histidine and 15‑keto‑pros-
taglandin F2α levels increased in patients with PD compared 
with healthy controls during the luteal regression stage.

Figure 5 illustrates the disturbed metabolic pathways that 
were detected by UPLC‑Q/TOF‑MS analysis. Phytosphingosine 
is converted into ceramide and sphingosine 1 phosphate, and 
ceramide is converted into sphingosine and sphingomyelin. 
Sphingosine is an important cell membrane component, being 

Figure 3. Receiver operating characteristic curve analysis for (A)  the 
10 biomarkers individually, and (B) the combination of 10 biomarkers during 
luteal regression.

Figure 4. Metabolic pathways of the patients with PD as analyzed by MetPA. 
(A) Steroid hormone biosynthesis, (B) sphingolipid metabolism, (C) arginine 
and proline metabolism, (D) histidine metabolism and (E) arachidonic acid 
metabolism.
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a nerve receptor ligand, a signal transduction effect factor 
and, in addition, involved in the binding of prostaglandin 
E2 (PGE2) and prostaglandin F2α (PGF2α) to the appro-
priate receptor during signal transduction processes (25,26). 
Phospholipids in the cell membrane are converted into 
arachidonic acid by phospholipase A2. Following this, 
cyclic oxidase and PGF synthase generate PGF2α. PGF2α 
has a strong vasoconstrictory effect, and is involved in 
the contraction of uterine smooth muscle. Furthermore, 
15‑ketone‑prostaglandin F2α is a PGF2α metabolite, and 
the level of 15‑ketone‑prostaglandin F2α was increased in 
patients with PD. This may lead to uterine contractions, 
resulting in dysmenorrhea during the luteal regression stage. 
In addition, increased prostaglandin levels may increase 
peripheral nerve pain perception (27,28).

Progesterone, androstenedione, dihydrocortisol and 
17‑hydroxyprogesterone are the metabolic products 
of steroids, which are a class of bioactive compounds 
derived from cholesterol. Cholesterol is converted into 
pregnenolone, which is converted into progesterone by mito-
chondrial enzymes and isomerases. Initially, progesterone 
uses 17‑hydroxylase to form 17‑hydroxyprogesterone, and 
17‑hydroxyprogesterone is converted into androstenedione 
by carbon chain lyase. Previous studies have demonstrated 
that PGF2α levels in the uterine muscle layer positively 
correlate with estradiol levels and negatively correlate with 
progesterone levels in the uterine vein. Increased estradiol 
levels accelerate PGF2α synthesis and release, as well as 
cause uterine blood vessel spasms and thus dysmenorrhea, 
but progesterone antagonizes this reaction  (29). During 
luteal regression, progesterone levels in patients with PD 

was significantly lower than in the healthy control, and estra-
diol levels were increased. It has previously been reported 
that the level of progesterone decreased in mice when the 
animal's pain threshold decreased, but no pain was detected 
when progesterone secretion levels were high (30). In addi-
tion, dihydrocortisol is involved in cortisol metabolism, and 
in vitro experiments have demonstrated that cortisol increases 
the prostaglandin levels in uterine smooth muscle tissue 
and increases myometrial contractions (31). The results of 
the present study also suggest that changes in prostaglandin 
levels may induce dysmenorrhea during luteal regression.

Histidine is converted to histamine by histamine 
decarboxylase. Histamine is a metabolite in mast cells and 
typically exists in an inactive binding state. Mast cells exist 
in the female reproductive system and are widely distributed 
in the human uterine muscle layer. Histamine indirectly 
regulates normal uterine smooth muscle contraction through 
activation of its receptors (32,33). Previous studies indicate 
that activation of the histamine receptor increases pain 
sensitivity in mice  (34). An increase in histidine content 
leads to an increase in histamine content, which increases 
uterine smooth muscle contractions and resulted in dysmen-
orrhea (34).

Arginine is the precursor of nitric oxide (NO) and orni-
thine, which are involved in citrulline synthesis. Nitric oxide 
is a neurotransmitter involved in modulating peripheral and 
central pain level, and is important for nervous and immune 
system regulation. Through the NO‑cyclic guanosine mono-
phosphate pathway, NO induces both pain and analgesic 
effects: When reduced, NO induces pain and results in 
dysmenorrhea, but when increased it inhibits the induced 

Figure 5. Schematic diagram of the disturbed metabolic pathways detected by ultra performance liquid chromatography coupled with quadrupole‑time‑of‑flight 
mass spectrometry analysis. Words in red represent the perturbed metabolites of primary dysmenorrhea during luteal regression. Metabolites written in black 
were not detected but are relevant for all metabolic pathways. The dotted line denotes the five metabolic pathways. The histograms display the increase and 
decrease in urinary levels.
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pain. During luteal regression, ornithine and citrulline are 
involved in arginine metabolism (35). When ornithine and 
citrulline levels were reduced, nitric oxide content was 
reduced and its analgesic effect suppressed, resulting in 
dysmenorrhea (36). Therefore, in future studies, drug inter-
ventions targeting these metabolic pathway biomarkers will 
be used to alleviate pain, to reduce the distress caused by PD 
and to discern the optimal time of administration.

By comparing PD biomarkers between menstrua-
tion and luteal regression in patients with PD, it was 
revealed that primary dysmenorrhea patients are affected 
by perturbations to steroid metabolic pathways during 
the menstrual period and luteal regression stage  (9). The 
hypothalamus‑pituitary‑gonadal axis is important for 
hormone regulation during the menstrual cycle  (37). The 
main ovarian hormones, estrogen and progesterone, regulate 
menstruation (38). Progesterone is able to promote estradiol 
transformation into low active estrone, thereby generating 
reduced prostaglandin, which consequently reduces the 
extent of uterine smooth muscle contraction and alleviates 
dysmenorrhea. In the present study, it was observed that the 
progesterone levels decreased, and also possibly that the 
prostaglandin levels increased, which were consistent with 
previous reports (39). Estrogen is able to stimulate PGF2α 
and vasopressin synthesis, which is released in the uterine 
spiral artery walls, mediated via PGF2α receptors. PGF2α, 
in combination with its receptor, leads to the contrac-
tion of local blood vessels, and reduced blood flow to the 
uterus and muscle, due to pain‑induced ischemia/hypoxia. 
Similarly, vasopressin causes the muscle layers of small 
blood vessels of the uterus to contract, leading to uterine 
ischemia and pain (27). If a target biomarker is converted 
to a PD‑associated form during luteal regression, and a drug 
targeting this biomarker is applied during luteal regression, 
PD may be attenuated. If this occurs, pain in patients with 
PD may be reduced during menstruation  (40). Therefore, 
discovering these important biomarkers in the luteal regres-
sion stage is essential for treating PD.

To conclude, in the present study a UPLC‑Q/TOF‑MS 
analysis was used to create metabolic profiles of urine 
samples during luteal regression, and indicated that metabo-
lomic profiles of patients with PD deviated from the healthy 
controls. In total, 10 biomarkers were identified in patients 
with PD during luteal regression, associated with sphingo-
lipid metabolism, steroid hormone biosynthesis and arginine 
and proline metabolism. ROC curves were used to evaluate 
biomarker sensitivities and specificities during luteal regres-
sion. These results are consistent with the theory of traditional 
Chinese medicine (TCM) syndrome differentiation, and may 
help provide novel targets for the treatment of PD.
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