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Abstract. Bone regeneration has been extensively studied over
the past several decades. The surgically-induced mouse model
is the key animal model for studying bone regeneration, of the
various research strategies used. These mouse models mimic
the trauma and recovery processes in vivo and serve as carriers
for tissue engineering and gene modification to test various
therapies or associated genes in bone regeneration. The present
review introduces a classification of surgically induced mouse
models in bone regeneration, evaluates the application and
value of these models and discusses the potential development
of further innovations in this field in the future.
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1. Introduction

Bone regeneration has been extensively investigated during the
past several decades, resulting in therapeutic progression in this
field. However, critical bone defects, particularly in patients with
an unfavorable healing microenvironment, remain a primary
concern for surgeons (1-3). Various mouse models have been
developed for the investigation of various injuries and patholog-
ical processes associated with bone regeneration, and numerous
important molecular signaling pathways have been elucidated
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and therapies developed (1,4-6). Among all the different mouse
models, surgically-induced models are prevalent in bone
regeneration research (7). Regenerative medical therapies asso-
ciated with bone healing employ an extensive range of various
strategies that aim to repair, augment, substitute or regenerate
lost tissue (4). To determine the effect of these various treat-
ment therapies, mouse models that use surgical induction of
a particular condition are frequently performed, due to their
similarity to the trauma and the patient recovery process (8-10).
These models are well established in combination with tissue
engineering strategies, for analysis of the function of growth
factors, scaffolds and stem cells (11,12). Furthermore, these
mouse models may be performed in genetically modified mice,
which is an important method using gene-targeting to investi-
gate the genes involved in bone regeneration (13,14). This review
briefly evaluates surgically-induced mouse models, with focus
on the most important models currently used and the potential
development of novel models in the future.

2. Classification and applicability

The surgically induced mouse models were divided into three
different groups based on the severity of trauma and the mouse
phenotypes: Simple fracture models, bone defect models and
ectopic bone formation models.

Simple fracture models. Simple fracture models are used to
determine the effect of various drugs and gene modifications in
fracture healing. The fracture model may be further classified
by anatomic location, with the fibula (15,16) and femur (17,18)
among the most common sites. The fracture may be created
by blunt trauma or using ophthalmic forceps (15,16). For the
simple blunt fracture model, three-point bending equipment
is used to create a fracture. The simple fracture model in the
femur is more complex, as it requires a needle to be implanted
into the intramedullary cavity via the intercondylar notch to
‘fix’ the fracture prior to creation. This is not required in the
fibular fracture model (19-21). These models are technically
simple compared with other models and are frequently used for
identification of bone regeneration associated factors (22,23).

Bone defect models. Critical sized bone defects are a chal-
lenging clinical scenario for surgeons and frequently result in
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a delayed bone union or a nonunion in numerous cases (24).
Therefore, surgically-induced bone defect mouse models have
been extensively used for analysis of growth factors (25,26).
It has previously been reported that deficiency of progranulin
(PGRN), which is a downstream mediator of bone morpho-
genetic protein-2 (BMP-2) involved in bone healing, delayed
bone healing, whereas recombinant PGRN enhanced bone
regeneration. Furthermore, PGRN was required for BMP-2
induction of osteoblastogenesis and ectopic bone forma-
tion (25). When the bone defect models have been used in
biomaterial research (27,28), the results indicated that osteo-
induction and appropriate degradation were important in
accelerating and promoting bone augmentation. This strategy
appears promising as 3D temporal scaffolds for potential
orthopedic applications (28). In addition, this type of model
may be used in stem cell research (29-31). The findings of
the experiment indicated that human muscle-derived stem
cells (hMDSCs; Stem Cell Research Center, University of
Pittsburgh, Pittsburgh, PA, USA) are mesenchymal stem cells
of muscle origin and that BMP2 is more efficient than BMP4
in promoting the bone regenerative capacity of the hMDSCs
in vivo (31). Local or systemic delivery of drugs may be tested
using these models. Altering the genotype of the mouse
involved with these models may also enable researchers to
understand the molecular signaling pathways involved in frac-
ture healing and bone regeneration. According to the size and
pattern of the bone defect, these models are further divided
into drill-hole or critical-size bone defect models.

Drill-hole models. Drill hole models are typically established
in either the femur (32,33) or the tibia (34). To create a drill-hole,
a drill is inserted into the bone while applying constant irriga-
tion (32,34). These holes are typically created in the mid-shaft
of the diaphysis of the long bone, where only cortical bone is
involved. This model may be either unicortical or bicortical, in
which the hole is created in either a single side or on both sides
of cortical bone, respectively (25,35-37). Due to the small size
of the hole, these models are predominantly used for testing
the systemic delivery of medicine or to determine the effect of
a specific gene modification on bone healing. These small bone
defects have also been used for tissue engineering studies, in
which collagen sponges are fixed in the hole position, despite
the unstable location of implantation (34).

Critical-size bone defect models. The critical bone defect
model is used to simulate a greater degree of bone loss than the
drill-hole model and is frequently used to study non-unions. A
review of the literature revealed that two of the most frequently
used methods to establish a critical bone defect include the use
of either the cranial bone of the skull (38,39) or long bones
of the extremities, including the femur (25,40,41) and radius.
There are various differences in the methods used to establish
these models. To create the cranial defect, the pericranium is
removed and a trephine is used to create a circular bone defect
in the skull, with meticulous care taken to avoid damaging the
underlying dura mater (38,39). A drill bit is used to create the
defect in the long bone defect models (25,41); however, a drill
bit cannot be used to create cranial defects as the dura mater
is in close proximity to the inferior aspect of the skull. In the
mouse, a critical-size cranial defect is defined as a bone deficit
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=5 mm (42,43). This model has been used for the investigation
of molecular signaling pathways associated with bone healing,
by using knockout and overexpressing mice, and determining
the effects of treatments aimed at the promotion of bone regen-
eration (44-46). For instance, critical-size bone defect models
reveal accelerated bone formation and bone remodeling in the
absence of the Toll-like receptor 4 signaling pathway. This
phenotype is associated with alterations of local inflammatory
cytokines and expression of osteoclastogenic factors (44). The
femoral bone defect model was originally established to inves-
tigate the pathways involved in non-unions (40,47.48), and has
since been used to study various treatments to promote bone
healing (49). In our previous study, a 0.5 mm femoral bone
defect was used to investigate bone healing. It was demon-
strated that wild-type mice of the control group were able to
fully heal the 0.5 mm bone defect, however PGRN knockout
mice exhibited impaired bone healing (25). The mouse model
was relatively complicated to create, as an intramedullary
needle and a custom-made clip were implanted into the femur
to fix the bone defect (Fig. 1). The use of metal devices may
interfere with the bone signal when using micro computed
tomography (CT; data not shown), and should be removed to
minimize any of these artifacts (50). However, the removal
process may result in damage to the original structure of the
bone defect position.

The radial bone defect model has been extensively used
for determining the effects of tissue engineering in bone
repair (51-53). This is a non-union model and the bone defect
will not recover spontaneously without additional treatment,
which enables the use of gain-of-function studies (54). The
bone defect of the radius is stable, supported by an intact ulna
and scaffold carrying growth factors, to aid the implanta-
tion of cells. Furthermore, this model has previously been
established in genetically modified mice to study molecular
signaling pathways of fracture healing. The present study
established this model in tumor necrosis factor-a receptor
(TNFR)-deficient mice (Jackson Laboratory, Bar Harbor, ME,
USA) to investigate the role of TNFR in the effect of recombi-
nant PGRN protein in the promotion of bone repair (25).

Ectopic bone formation model. Ectopic bone is bone that
forms in locations where bone formation does not typically
occur. Several molecules have been identified to be involved in
the process of ectopic bone formation. It has previously been
demonstrated that ectopic bone formation may occur in PGRN
knockout mice (New York University Medical Center, New York,
NY, USA) (78). BMPs are extensively used to induce ectopic
bone formation (55,56). Molecules and signaling pathways asso-
ciated with these growth factors are investigated using models
of ectopic bone formation (35,57). These models are typically
either subcutaneous or intramuscular in location (25,56,58).
For subcutaneous ectopic bone formation models, implants
carrying genetically modified stem cells and/or growth factors
are surgically implanted into a pocket beneath the skin, and
bone formation is detected at indicated time points (59).
Intramuscular ectopic bone formation can be established in
paravertebral (51,60,61), thigh (62) or calf muscles (63). These
models may be used to determine the effect of various therapies
on BMP-induced bone formation, and may aid the identification
of novel therapeutic strategies (25,59,64). The data from this
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Figure 1. Establishing a femoral bone defect model. (A) Intramedullary needle and custom-made clip were implanted into the femur to fix the bone defect.

(B) Post-operative X-ray analysis.

type of model demonstrates that a focused approach to develop
targeted differentiation protocols in adult progenitor cells may
be achieved via the identification and subsequent stimulation of
genes, proteins and signaling pathways associated with calcium
phosphate mediated osteoinduction (64).

3. Advantages and limitations

Mouse models have numerous advantages compared with larger
animal models, and are used for a broad range of applications
(Table I) (65). Mice are docile, tolerate the surgical procedures
and are able to ambulate with the implanted limb within a short
time following surgery (66). Additionally, genetic alterations
are easily created in mice and therefore certain genes can be
targeted for knockout or overexpression. This allows the inves-
tigation of the effect of drug therapies on bone regeneration
and the identification of the underlying molecular mechanisms
involved. Furthermore, various mouse models have been well
established in the literature, and researchers may select an
appropriate model based on the aim of the experiment.

However, surgically-induced mouse models have limi-
tations. In numerous cases, genetic modification results
in a defect during development, which may involve bone
growth (67,68). This may subsequently interfere with bone
healing, and therefore artificially alter the results of the experi-
ment. In these cases, inducible genetically modified mice may
be used to eliminate any effect on bone development (69).

4. Discussion, conclusion and perspective

The mouse is currently the most commonly used animal
model in basic research (Table I) (70). The ease of mainte-
nance, relative low cost and abundance of pre-established
mouse models provide advantages compared with other

species (65). The ability to use mouse models in an effective
manner in order to gather valuable scientific information is
the responsibility of the researcher. Researchers should select
appropriate models according to the aim of their project.
Fig. 2 presents a proposed outline for the various regenerative
modalities of fracture healing in surgically induced mouse
models. Various cells, particularly osteoblasts (71,72) and
osteoclasts (73), participate in the bone regeneration process,
and induce bone formation and remodeling. In simple bone
regeneration models, periosteum and intramembranous ossifi-
cation is important in the regeneration process (74,75). In the
bone defect model, the indicated cells accumulate towards the
location of the bone defect. The use of scaffolds (76) and exog-
enous growth factors (77) may further promote the targeted
accumulation and function of endogenous and implanted
cells. The surgically-induced mouse model is the environment
in which all of these interactions occur. Further studies are
required to determine the potential long-term effects of such
treatments on bone repair using various fracture models (73).
Numerous discoveries using mouse model of bone regen-
eration have already been clinically tested and translated into
clinical applications. For instance, BMP-2 and -7 were initially
investigated using a surgically-induced mouse model of bone
regeneration and are now available for clinical use to promote
bone regeneration and healing (77).

The use of surgically-induced mouse models of bone
regeneration have the potential to be improved. Firstly, more
efficient devices may be developed for fixation of these
models. Fixation devices that are used near the surgical site
should be free of degrading particles to result in a more puri-
fied microenvironment for bone regeneration. Novel devices
are required for more convenient fixation and less damage
to the surrounding soft tissue, so that the blood supply to the
area of healing is protected. Imaging modalities used for these
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Figure 2. Proposed outline for the different regenerative modalities of fracture healing in various surgically-induced mouse models. (A) Simple fracture model.
(B) Drill hole model. (C) Radial segmental bone defect model. (D) Ectopic bone formation model. Various cells, particularly osteoblasts and osteoclasts,
participate in the bone regeneration process and induce bone formation and remodeling. In simple bone regeneration models, periosteum and intramembranous
ossification are important in the regeneration process. In the bone defect model, the indicated cells accumulate towards the location of the bone defect. The use
of scaffolds and exogenous growth factors may further promote the targeted accumulation and function of endogenous and implanted cells.

small areas of bone regeneration also require improvement,
including micro CT and magnetic resonance imaging. Finally,
inducible transgenic mice should be used more frequently in
the establishment of these models, as this would eliminate any
alterations in bone formation that occur during development.
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