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Abstract. The present study aimed to investigate potential 
gene markers for predicting the formation of carotid atheroma 
plaques using high‑throughput bioinformatics methods. The 
GSE43292 gene expression profile was downloaded from the 
Gene Expression Omnibus database. Following data processing, 
differentially expressed genes (DEGs) were screened using 
a paired t‑test in the Linear Models for Microarray Data 
package with the criteria of a false discovery rate of P<0.05 
and |log2 fold‑change| ≥0.58, followed by functional enrich-
ment, protein‑protein interaction (PPI) network construction, 
key node and module analysis, and prediction of transcription 
factors (TFs) targeting genes in the significant modules. The 
results revealed that the gene expression profiles from 32 paired 
samples of carotid atheroma plaque tissue and macroscopi-
cally intact tissue were obtained, based on which 886 DEGs, 
including 513  upregulated genes and 373  downregulated 
genes, were identified. The upregulated and downregulated 
gene sets were enriched in 24 and 13 pathways, respectively. 
The PPI network constructed with these DEGs comprised 
35 key nodes with degrees ≥20, among which spleen tyrosine 
kinase (SYK), LYN and phosphatidylinositol‑4,5‑bisphosphate 
3‑kinase catalytic subunit γ (PIK3CG) were the three highest. 
A significant module was mined in the PPI network, which 
consisted of 29 DEGs targeted by 11 TFs. The DEGs between 
the carotid atheroma plaque and macroscopically intact tissue 
samples may be involved in carotid atherogenesis. Key nodes 
in the PPI network constructed from these DEGs and the genes 
involved in the significant module, including SYK, LYN and 
PIK3CG, are promising for the prediction of carotid plaque 
formation.

Introduction

Strokes are reported to be the third leading cause of mortality 
following cancer and heart disease, and the most common 
cause of adult disability in developed countries  (1). It is 
estimated that 85% of strokes can be ascribed to athero-
sclerotic disease, and 10% are specifically associated with 
carotid atheroma (2,3). Several factors have been identified to 
predispose to carotid atherosclerosis, including male gender, 
advancing age, hypercholesterolemia, systolic hypertension 
and obesity  (4). However, these classic characteristics are 
generally poor at predicting the risk of thromboembolism, 
which may lead to 80% needlessly exposed to the surgical 
risks of carotid endarterectomy (5). Thus, it is important to 
investigate markers with improved ability in predicting the 
formation of carotid atheroma plaques.

With the emergence and improvement of gene microarray 
technology, global mRNA expression has been investigated 
for screening mRNA populations, which are differentially 
regulated in varied disease processes, and to provide clues 
to the underlying molecular pathology. In terms of carotid 
atheroma, a microarray study by Ayari and Bricca (6) was 
performed in patients with significant carotid stenosis, and 
used for comparing gene expression between carotid plaque 
and intact arterial tissues. Expression profiling provides 
substantial valuable information, although the previous study 
focused on the gene expression of CD163 and HO‑1 only, 
which suggested more pronounced induction of atheromatous 
plaque formation with these two genes. The deep mining of 
this set of data is urgently required as it is likely to assist in 
screening potential gene markers of carotid atheroma plaque 
formation.

In the present study the genome‑wide expression profile 
of human carotid atheroma were analyzed comprehensively 
using high‑throughput bioinformatics methods. Differentially 
expressed genes (DEGs) were identified in the carotid atheroma 
plaque and compared with the macroscopically intact carotid 
tissue adjacent to the atheroma plaque. Functional annotation 
and pathway enrichment were then performed, followed by 
the construction of protein‑protein interaction (PPI) networks, 
analysis of key nodes and prediction of transcription factors 
(TFs). The aim of the present study was to examine potential 
gene markers for predicting the formation of carotid atheroma 
plaques.
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Materials and methods

Data source. The GSE43292 gene expression profile and its 
corresponding platform annotation files were downloaded from 
the Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/)  (7). This data set was submitted by 
Ayari and Bricca (6) on 4th January 2013, last updated on 
21st May  2015 and stockpiled on the GPL6244 platform 
(HuGene‑1_0‑st) Affymetrix Human Gene 1.0 ST Array [tran-
script (gene) version]). This gene expression data consisted of 
32 paired samples of carotid atheroma plaque and macroscopi-
cally intact tissue adjacent to the atheroma plaque. Each paired 
sample was collected from sections obtained through carotid 
endarterectomy in one hypertensive patient. Specifically, the 
samples of the atheroma plaque were at stage IV or above 
according to the Stary classification (8), and contained the core 
and shoulders of the plaque, whereas the other group of samples 
were distant macroscopically intact tissue at stages I and II.

Data preprocessing. For the optimal mining of essential infor-
mation from the gene expression profile, the raw level data were 
first preprocessed using the Robust Multi‑array Average method 
in the Bioconductor oligo package (version 2.1; http://www.
bioconductor.org), which is based on the Bioconductor prin-
ciples of reproducibility, transparency and efficiency of 
development (9). The probe ID for each gene was then converted 
to a gene symbol using the hugene10sttranscriptcluster.db, org.
Hs.eg.db and annotate package in Biocondctuor (http://www.
bioconductor.org/). For gene symbols corresponding to multiple 
probes IDs, the mean of these probes was calculated as the 
representative expression level of this gene.

Screening for DEGs. To identify the DEGs between the carotid 
atheroma plaque and macroscopically intact carotid tissue 
samples, a paired t‑test in the Linear Models for Microarray 
Data (LIMMA) package of R/Bioconductor software was 
performed for analyzing data from the gene expression 
experiments (10). The Benjamini‑Hochberg methods (11) were 
further used to correct the P‑value, and a false discovery rate 
of the P‑value (FDP) was calculated (12). FDP<0.05 accom-
panied with |log2 fold‑change (FC)| ≥0.58 were considered the 
thresholds for the identification of DEGs, which were grouped 
as upregulated and downregulated genes.

Functional annotation and pathway enrichment. The 
Database for Annotation Visualization and Integrated 
Discovery (DAVID; http://david.abcc.ncifcrf.gov) is primarily 
used for functional annotation and classification. This tool was 
designed to systematically extract biological meanings from a 
large gene or protein list through a novel agglomeration algo-
rithm (13). To investigate the potential functions of the DEGs 
screened out above, DAVID was used to map the upregulated 
and downregulated genes to Gene Ontology (GO) terms and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways, respectively. The GO is determined using the Gene 
Ontology Consortium (http://www.geneontology.org) and 
widely used to produce a dynamic and controlled vocabu-
lary for all eukaryotes with accumulation and alterations in 
gene and protein roles in cells (14). To describe gene product 
attributes, GO provides three structured networks of defined 

terms, including cellular compartment (CC), biological process 
(BP) and molecular function (MF). By contrast, the KEGG 
pathway database (http://www.genome.ad.jp/kegg) contains 
information on how molecules or genes are networked, which 
is essentially a combined map of ~120  existing pathway 
maps (15). In the present study, GO terms with a threshold of 
P<0.05, and KEGG pathways with a threshold of P<0.05 and 
enriched gene count ≥3 were selected.

Construction of the PPI network. PPIs are considered to be 
important for understanding the potential functions of a certain 
protein, and the Search Tool for the Retrieval of Interacting 
Genes (STRING; http://string‑db.org/) is designed to provide 
such a global perspective based on criteria, including experi-
mental evidence, neighborhood, gene fusion, co‑occurrence, 
co‑expression, existing databases and text‑mining (16) In the 
present study, PPI pairs were predicted using STRING, and 
those with high confidence (PPI score >0.07) were selected for 
construction of the PPI network. The PPI network was visual-
ized using Cytoscape 2.8 (http://cytoscape.org/) (17), followed 
by module analyses using ClusterONE with the threshold 
of <4e‑4. The genes in the significant modules were further 
mapped to KEGG pathways for functional analysis.

Functional analysis for key nodes in the PPI network. 
Functional analyses were performed for key nodes in the 
PPI network constructed above. GenCLiP 2.0 is a web‑based 
text‑mining server, which can be used for the analysis of 
human genes with enriched keywords and molecular interac-
tions (http://ci.smu.edu.cn/GenCLiP2.0/confirm_keywords.
php). The Gene Cluster with Literature Profiles module in 
GenCLiP can annotate the input genes by generating statis-
tically over‑represented keywords based on the occurrence 
frequencies of free terms in gene‑based literature. In addition, 
Agilent Literature Search software is a meta‑search tool for 
automatically querying multiple text‑based search engines 
to identify and extract associations among genes/proteins of 
interest (http://www.agilent.com/labs/research/litsearch.html). 
In the present study, the potential functions of key nodes in 
the PPI network were predicted using the Gene Cluster with 
Literature Profiles module with a threshold of P≤0.05 and 
Hit ≥6, and their associations with the formation of atheroma 
plaques were identified using Agilent Literature Search soft-
ware with the key word ‘atheroma plaque .̓

Prediction of TFs. iRegulon, as a Cytoscape plugin, was devel-
oped to reverse‑engineer the transcriptional regulatory network 
underlying a co‑expressed gene set using cis‑regulatory 
sequence analysis and integrating databases of TFs, including 
Transfac, Jaspar, Encode, Swissregulon and Homer (18). By 
setting the minimum identity between orthologous genes as 
0.05 and the maximum false discovery rate on motif similarity 
as 0.001, iRegulon was used to predict TFs targeting to genes 
in the modules identified above with a normalized enrichment 
score >5.

Results

Data processing and DEG screening. The profile normaliza-
tion is shown in Fig. 1A and B. The median base‑line level in 
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the box plot indicates well‑effected normalization. With the 
criteria of FDP<0.05 and |log2 FC| ≥0.58, a total of 886 DEGs 
were finally screened out from the carotid atheroma plaque 
samples, when compared with those of the macroscopically 
intact carotid tissue, including 513 upregulated genes and 
373 downregulated genes.

Functional enrichment of DEGs. DAVID was used for 
predicting the potential functions of the DEGs by mapping 
the upregulated and downregulated genes to GO terms and 
the KEGG database, respectively. The top five significant 
GO terms of the MF, CC and BP categories enriched by 
the upregulated and downregulated genes, respectively, are 

Figure 1. Box plots for the expression profiles of microarray data (A) prior to normalization and (B) following normalization. The box refers to the quartile 
distribution (25‑75%) range, with the median presented as a central black horizontal line in the box. The interval represents the minimum and maximum values, 
excluding outliers.

Figure 2. GO analysis. (A) Upregulated genes and (B) downregulated genes. GO, Gene Ontology; MF, molecular function; CC, cellular component; BP, 
biological process.
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shown in Fig. 2. The results demonstrated that the upregulated 
genes were predominantly associated with MFs, including 
carbohydrate binding, CCs, including plasma membrane 
and BPs, including immune response (Fig. 2A), whereas the 
downregulated genes were predominantly involved in MFs, 
including ion binding, CCs, including plasma membrane part 
and BPs, including cell adhesion (Fig. 2B). The results for the 
KEGG pathway enrichment are shown in Fig. 3, which indi-
cated that the upregulated genes were significantly enriched 
in 24 pathways, including the chemokine signaling pathway 
and cytokine‑cytokine receptor interaction (Fig. 3A); whereas 
the downregulated genes were predominantly involved in 
13 pathways, including dilated cardiomyopathy and regulation 
of actin cytoskeleton (Fig. 3B).

Construction of PPI network and functional analysis for 
key genes. The Cytoscape tool visually constructed the 
PPI network with 478 nodes and 1,457 edges, which were 
predicted using STRING with a PPI score >0.07 (Fig. 4). In 
the PPI network, 35 nodes with a degree ≥20 were regarded as 
key genes (Table I), among which only five were downregu-
lated and the others were upregulated in the carotid atheroma 
plaque samples, compared with the macroscopically intact 

tissue samples adjacent to the atheroma plaque. Of the 35 key 
nodes, SYK, LYN and PIK3CG were the top three nodes, with 
degrees of 43, 43 and 37, respectively. The heat map indicated 
that these 35 genes were able to distinguish the two groups 
of tissue samples (Fig.  5). Literature mining using Gene 
Cluster with Literature Profiles revealed that these key nodes 
clustered in biological functions, which included phospholi-
pase C, map kinase, cytokine production and inflammatory 
response (Table II). The disease network was constructed with 
296 nodes and 1,118 edges associated with the above 35 genes 
using Agilent Literature Search software (Fig. 6). Certain 
genes in this disease network were the DEGs identified above, 
indicating that these genes may be vital in the formation of 
atheroma plaques.

Module analysis. In the PPI network, one module was mined 
using ClusterOne software with a threshold <4e‑4. A total of 
29 DEGs, including 22 upregulated and seven downregulated 
genes, were used to construct this module and 11 TFs were 
predicted to target these genes by iRegulon (Fig. 7). The KEGG 
pathway enrichment showed that genes in this module were 
predominantly involved in the chemokine signaling pathway 
and cytokine‑cytokine receptor interaction (Table III).

Figure 3. Pathway enrichment analysis. Pathway enrichment for (A) Upregulated genes and (B) downregulated genes.
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Figure 4. Protein‑protein interaction network. Red circles represent upregulated genes and green circle represent downregulated genes. The lines represent the 
interaction between two nodes.

Figure 5. Heat map for key nodes in the protein‑protein interaction network. The scaled expression of the predicted key nodes, denoted as the row Z‑score, is 
plotted in with a blue and brown color scale, with blue indicating high expression and sandy‑brown indicating low expression.
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Discussion

Strokes are one of the leading causes of mortality and 
long‑time disability in the majority of countries world-
wide  (19). Generally, a stroke is caused by an embolus or 
thrombus arising from a ruptured carotid atheromatous plaque 
or, more rarely, results from hemodynamic changes induced by 
the considerable contraction of the carotid lumen (20). Strokes 
are described as being avoidable, however, a major challenge is 
identifying efficient markers to detect patients who are at risk 
of stroke. The present study aimed to investigate gene markers 
for predicting the formation of atheroma plaques by applying 
high throughput bioinformatics methods for comprehensive 
analyses of gene expression data from 32 paired samples of 

carotid atheroma plaque and macroscopically intact tissue 
adjacent to the atheroma plaque. A total of 886  DEGs, 
including 513 upregulated and 373 downregulated genes, were 
identified. This set of upregulated genes were predicted to be 
significantly involved in BPs, including carbohydrate binding 
and immune response, and were involved in 24 pathways. The 
downregulated genes were predominantly involved in ion 
binding and cell adhesion via 13 potential pathways. The PPI 
network constructed using these DEGs revealed 35 key nodes 
and one significant module. These results provided novel 
insight and valuable information for improving understanding 
the pathogenesis of carotid atheroma. Notably, key nodes in the 
PPI network and genes in the significant modules, including 
SYK, LYN and PIK3CG, are promising for the prediction of 
carotid atheroma plaque formation.

SYKis a 72  kDa non‑receptor tyrosine kinase and its 
highest level expressed is in hematopoietic cells. SYK contains 
three functional domains, including two SRC homology 2 
domains and a kinase domain (BOX 1). Investigations have 
focused on SYK as it is a potential therapeutic target in 
chronic inflammatory diseases, particularly in rheumatoid 
arthritis and asthma (21). Apoptotic cell accumulation is a 
major feature of advanced human atherosclerotic lesions and is 
associated with increased susceptibility to thrombotic plaque 
complications (22). A previous study reported that defective 
tyrosine kinase signaling in bone marrow cells may lead to the 
accumulation of apoptotic cells within atherosclerotic lesions, 
increase the proinflammatory immune response and accel-
erate atherosclerosis (23). As a tyrosine kinase, SYK has also 
been found to be correlated with atherogenesis. Choi et al (24) 
demonstrated that macrophage responses mediated by SYK 
may contribute to chronic inflammation in atherosclerosis 
in humans. Atherosclerotic lesions in low density lipopro-
tein‑deficient mice, were examined following treatment with 
an SYK inhibitor, and were found to contain fewer macro-
phages, but more smooth muscle cells and collagen, which 
are features of more stable plaques in humans (25). The SYK 
inhibitor, fostamatinib was identified as a potentially beneficial 
therapeutic strategy for patients with atherosclerosis as it was 
reported to reduce atherosclerotic lesion size by up to 59.6% 
in mice (25). In the present study, the expression of SYK was 
found to be upregulated in the carotid atheroma plaque samples, 
compared with macroscopically intact tissue samples from the 
same hypertensive patient. Functional enrichment analysis 
revealed that SYK was associated with positive regulation of 
the immune system process and leukocyte activation, which 
was in accordance with the previous studies. Of note, SYK 
was characterized with the highest degree in the PPI network 
constructed of DEGs between the two sets of samples. Thus, 
it was hypothesized that SYK is a key factor in the process 
of carotid atherosclerosis and promising in the prediction of 
plaque formation.

LYN, also known as FYN, is a 59 kDa protein located on 
chromosome 6q21. LYN is also a member of the Src family of 
non‑receptor tyrosine kinases. LYN is identified as a conver-
gence point of several signaling pathways, and is vital in a 
number of BPs, including regulating cell cycle entry, growth, 
proliferation and cell‑cell adhesion (26). Using complemen-
tary inhibition strategies, Toubiana et al  (27) showed that 
LYN may be involved in nuclear factor (NF)‑κB activation in 

Table I. Key nodes in the protein‑protein interaction network 
with degrees ≥20.

Gene symbol	 Degree	 Log2 fold-change

SYK	 43	 0.854037
LYN	 43	 0.797114
PIK3CG	 37	 0.721574
VAV1	 34	 0.712220
CXCR4	 33	 0.728104
ICAM1	 33	 0.765050
CCR2	 32	 0.671559
MMP9	 31	 1.817924
LPAR1	 31	 ‑0.648530
CCR1	 30	 1.177328
GNAI1	 28	 ‑0.624960
FPR2	 28	 0.708739
ITGAM	 28	 0.994177
RAC2	 27	 0.871698
CXCL10	 26	 1.046254
PIK3R5	 26	 0.592723
ADCY5	 25	 ‑0.936170
ADCY7	 25	 0.611163
CXCL16	 24	 0.708373
HCK	 24	 0.789003
ITGB2	 24	 0.967159
FPR1	 23	 0.753358
PTGER3	 23	 ‑0.600980
CD4	 23	 0.926358
CXCL2	 22	 0.581285
CCL19	 21	 0.908325
FPR3	 21	 0.815153
PPARG	 21	 0.689479
C5AR1	 21	 0.829772
CCL21	 21	 0.620375
HCAR3	 20	 0.580189
C3AR1	 20	 0.676339
PTPRC	 20	 0.782351
FGR	 20	 0.767073
NPY1R	 20	 ‑1.286510
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Table II. Functional enrichment of key nodes in the protein‑protein interaction network.

Key word	 Hits (n)	 P‑value	 Genes

#cluster1
Enrichment score: 48.42			 
  PHOSPHOLIPASE C	 19	 7.09E‑47	 C5AR1, CCR1, CD4, CXCR4, FGR, FPR1, FPR2, ICAM1,
			   ITGAM, ITGB2, LPAR1, LYN, MMP9, PIK3CG, 
			   PTGER3, PTPRC, RAC2, SYK, VAV1
  MAP KINASE	 20	 2.08E‑51	 C5AR1, CD4, CXCL10, CXCL2, CXCR4, FGR, FPR1,
			   FPR2, ICAM1, ITGAM, ITGB2, LPAR1, LYN, MMP9, 
			   PIK3CG, PPARG, PTPRC, RAC2, SYK, VAV1
#cluster2			 
Enrichment score: 47.48			 
  CYTOKINE PRODUCTION	 23	 9.57E‑76	 C3AR1, C5AR1, CCL19, CCL21, CCR1, CCR2, CD4,
			   CXCL10, CXCL16, CXCL2, CXCR4, FPR1, ICAM1, 
			   ITGAM, ITGB2, LYN, MMP9, PIK3CG, PPARG, 
			   PTGER3, PTPRC, SYK, VAV1
  INFLAMMATORY RESPONSE	 24	 2.28E‑38	 C3AR1, C5AR1, CCL19, CCL21, CCR1, CCR2, CD4, 
			   CXCL10, CXCL16, CXCL2, CXCR4, FPR1, FPR2, ICAM1, 
			   ITGAM, ITGB2, LYN, MMP9, PIK3CG, PPARG, 
			   PTGER3, PTPRC, RAC2, SYK
  TUMOR NECROSIS FACTOR	 25	 1.68E‑30	 C3AR1, C5AR1, CCL19, CCL21, CCR1, CCR2, CD4, 
			   CXCL10, CXCL16, CXCL2, CXCR4, FGR, FPR1, FPR2, 
			   HCK, ICAM1, ITGAM, ITGB2, LYN, MMP9, PIK3CG, 
			   PPARG, PTGER3, PTPRC, SYK
#cluster3			 
Enrichment score: 41.88			 
  CELL ADHESION	 24	 5.81E‑23	 C5AR1, CCL19, CCL21, CCR1, CCR2, CD4, CXCL10, 
			   CXCL16, CXCL2, CXCR4, FPR1, FPR2, HCK, ICAM1, 
			   ITGAM, ITGB2, LYN, MMP9, PIK3CG, PPARG, PTPRC, 
			   RAC2, SYK, VAV1
  CELL ACTIVATION	 26	 2.95E‑62	 C3AR1, C5AR1, CCL19, CCL21, CCR1, CCR2, CD4,
			   CXCL10, CXCL16, CXCL2, CXCR4, FGR, FPR1, FPR2, 
			   HCK, ICAM1, ITGAM, ITGB2, LYN, MMP9, PIK3CG, 
			   PPARG, PTPRC, RAC2, SYK, VAV1
#cluster4			 
Enrichment score: 37.67			 
  C REACTIVE PROTEIN	 13	 7.87E‑13	 C5AR1, CCR2, CD4, CXCL10, CXCL16, CXCL2, FPR1, 
			   ICAM1, ITGAM, ITGB2, MMP9, PPARG, PTPRC
  TUMOR NECROSIS FACTOR	 16	 1.57E‑48	 C5AR1, CCR2, CD4, CXCL10, CXCL16, CXCL2, CXCR4, 
			   FGR, FPR1, ICAM1, ITGAM, ITGB2, MMP9, PIK3CG, 
			   PPARG, PTPRC
  HUMAN UMBILICAL VEIN	 17	 7.91E‑54	 C5AR1, CCR2, CD4, CXCL10, CXCL16, CXCL2, CXCR4, 
			   FPR1, FPR2, ICAM1, ITGAM, ITGB2, LPAR1, MMP9, 
			   PIK3CG, PPARG, PTPRC
#cluster5			 
Enrichment score: 32.27			 
  MONOCYTE	 18	 8.99E‑24	 C5AR1, CCL19, CCL21, CCR1, CCR2, CD4, 
  CHEMOATTRACTANT			   CXCL10, CXCL16, CXCL2, CXCR4, FPR1, ICAM1, 
  PROTEIN			   ITGAM, ITGB2, MMP9, PIK3CG, PPARG, PTPRC
  MACROPHAGE	 18	 2.13E‑26	 C5AR1, CCL19, CCL21, CCR1, CCR2, CD4,
  INFLAMMATORY			   CXCL10, CXCL16, CXCL2, CXCR4, FPR1, ICAM1, 
  PROTEIN			   ITGAM, ITGB2, MMP9, PIK3CG, PPARG, PTPRC
  CENTRAL NERVOUS	 19	 1.87E‑11	 ADCY5, C3AR1, C5AR1, CCL19, CCL21, CCR1, CCR2,
  SYSTEM			   CD4, CXCL10, CXCL2, CXCR4, FPR1, ICAM1, ITGAM, 
			   ITGB2, MMP9, PIK3CG, PPARG, PTPRC
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human cellular models. Monocyte chemoattractant protein‑1, 
as an inflammatory marker increased with arteriosclerosis, 
was found to be downregulated by inhibiting the activation of 

NF‑κB, which is the vascular protective mechanism underlying 
the antihypertensive action of nifedipine (28). In the present 
study, LYN was found to be differentially expressed in the 

Table II. Continued.

Key word	 Hits (n)	 P‑value	 Genes

  CELL ADHESION MOLECULE	 20	 6.56E‑45	 C5AR1, CCL19, CCL21, CCR1, CCR2, CD4, CXCL10,
			   CXCL16, CXCL2, CXCR4, FPR1, ICAM1, ITGAM, ITGB2, 
			   MMP9, PIK3CG, PPARG, PTPRC, RAC2, SYK
  TOLL-LIKE RECEPTOR	 21	 1.87E‑58	 C5AR1, CCL19, CCL21, CCR1, CCR2, CD4, CXCL10, 
			   CXCL16, CXCL2, CXCR4, FPR1, FPR2, ICAM1, ITGAM, 
			   ITGB2, LYN, MMP9, PIK3CG, PPARG, PTPRC, SYK
#cluster6
Enrichment score: 28.75			 
  MITOGEN ACTIVATED PROTEIN 	 27	 4.90E‑39	 C3AR1, C5AR1, CCL19, CCL21, CCR1, CCR2, CD4, CXCL10, 
			   CXCL2, CXCR4, FGR, FPR1, FPR2, HCK, ICAM1, ITGAM,
			   ITGB2, LPAR1, LYN, MMP9, PIK3CG, PPARG, PTGER3, 
			   PTPRC, RAC2, SYK, VAV1,
  SIGNAL TRANSDUCTION	 28	 6.54E‑20	 C3AR1, C5AR1, CCL19, CCL21, CCR1, CCR2, CD4, CXCL10,
			   CXCL16, CXCL2, CXCR4, FGR, FPR1, FPR2, HCK, ICAM1,
			   ITGAM, ITGB2, LPAR1, LYN, MMP9, PIK3CG, PPARG, 
			   PTGER3, PTPRC, RAC2, SYK, VAV1

Figure 6. Protein‑disease network constructed using Agilent Literature Search. The triangles represent the key nodes in the protein‑protein interaction network, 
whereas pink circles and green circles represent the identified upregulated and downregulated genes, respectively. The blue circles represent other genes that 
were reported to be associated with this disease in scientific literature and other unstructured text. The grey lines indicate the interactions between two nodes.
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carotid atheroma plaque samples and macroscopically intact 
tissue samples adjacent to the atheroma plaque from the same 
hypertensive patient, and as a key nodes in the PPI network 
constructed with using DEGs between these two groups. 
Therefore, this gene may be an essential marker in predicting 
plaque formation within the carotid artery.

PIK3CG encodes an enzyme, which can phosphory-
late phosphoinositides. Single nucleotide polymorphisms 
(SNPs) close to or within PIK3CG have been shown to have 
important clinical significance. For example, the rs342286 
SNP, located 140  kb upstream of the PIK3CG gene, may 
be associated with increased platelet aggregation and acute 
coronary syndromes (29). A genome‑wide association study 
by Wain et al (30) on pulse pressure and mean arterial pres-
sure demonstrated 7q22.3 close to PIK3CG as a novel pulse 
pressure locus, which may affect systolic blood pressure and 
diastolic blood pressure. In carotid artery plaques, a combined 

meta‑analysis confirmed rs17398575, situated 96.5 kb from 
the PIK3CG gene, as the most significant signal, which may 
induce an 18% increase in chance of plaque presence (31), 
although other reports do not support the association of this 
locus with subclinical atherosclerosis (32). The results of the 
present study showed that PIK3CG was upregulated in carotid 
atheroma plaque samples, compared with macroscopically 
intact tissue samples from the same individual. It was also a 
key node in the PPI network with a relatively high degree. This 
suggested PIK3CG as one of key genes associated with the 
formation of carotid plaques.

Taken together, the DEGs identified in the carotid 
atheroma plaque samples, when compared with macro-
scopically intact tissue samples, may be involved in carotid 
atherogenesis. The key nodes identified in the PPI network 
constructed with these DEGs and genes involved in the 
significant module, including SYK, LYN and PIK3CG, are 

Figure 7. Significant modules in the protein‑protein interaction network and predicted transcription factors targeting to genes in this module. The red and green 
circles represent the upregulated and downregulated genes identified in the study, respectively. The blue rhombi represent transcription factors. The dotted 
lines indicate the regulatory relationship between transcription factors and target genes. The solid grey line indicates the interaction between target genes.

Table III. Kyoto Encyclopedia of Genes and Genomes pathway enrichment of genes in the significant module.

Term	 n	 P‑value	 Genes

hsa04062: Chemokine signaling pathway	 17	 2.23E‑17	 ADCY7, GNAI1, ADCY5, CCR1, CXCL2, CCL19, 
			   CCL8, CCL18, CXCL10, CCL13, ARRB2, CXCR4, 
			   ARRB1, CCL21, CXCL16, CCR2, GRK5
hsa04060: Cytokine‑cytokine receptor interaction	 11	 2.84E‑07	 CCL13, CCL21, CXCR4, CCR1, 
			   CXCL16, CXCL2, CCR2, CCL8, CCL19, CCL18, CXCL10
hsa04080: Neuroactive ligand‑receptor interaction	   8	 2.18E‑04	 C3AR1, C5AR1, PTGER3, FPR1, FPR3, FPR2,
			   NPY1R, LPAR1
hsa04540: Gap junction	   4	 0.010074	 ADCY7, GNAI1, ADCY5, LPAR1
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promising for the prediction of carotid plaque formation. 
Further experimental evidence is required to confirm these 
findings.
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