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Abstract. Macrophages exert important functions in 
the balance and efficiency of immune responses, and 
participate in innate and adaptive immunity. The proinflam-
matory actions of macrophages are implicated in autoimmune 
diseases. Unlike classically activated M1 macrophages, the 
alternatively activated cluster of differentiation (CD)163+ 
and CD206+ M2 macrophages are involved in tissue repair 
and wound healing, and use oxidative metabolism to support 
their long‑term functions. CD163 is a member of the scav-
enger receptor superfamily, categorized into class B, and 
its soluble(s) form, sCD163, is a marker of activated M2 
macrophages. CD163 is selectively expressed in cells of the 
monocyte and macrophage lineages; however, its biological 
role has yet to be elucidated. The expression of sCD163 is 
markedly induced by anti‑inflammatory mediators, such as 
glucocorticoids and interleukin‑10, whereas it is inhibited by 
proinflammatory mediators, such as interferon‑γ. These find-
ings suggest that CD163 may serve as a potential target for 
the therapeutic modulation of inflammatory responses. The 
concentration of sCD163 in blood is associated with acute and 
chronic inflammatory processes in autoimmune disorders of 
connective tissue, fat metabolism and cardiovascular diseases, 
and it can be used for the assessment of cancer prognosis. A 
role for sCD163 in the pathogenesis of asthma has also been 
proposed. The present review serves to present the available 
knowledge concerning the implication of sCD163 in the 
pathophysiological mechanisms of asthma, and evaluate its 
potential as a biomarker and possible therapeutic target for 
asthma.
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1. Introduction

Macrophages are involved in several pathological conditions, 
including severe sepsis, autoimmune disorders, cancer and 
low‑grade inflammatory disorders, such as metabolic syndrome, 
atherosclerosis and asthma. Macrophages are essential in 
regulating the activation and resolution of immune responses, 
and can influence the progression of a disease (1). Cluster of 
differentiation (CD)163 is a monocyte/macrophage‑associated 
antigen that has been identified as a hemoglobin (Hb) scavenger 
receptor with anti‑inflammatory and immunoregulatory prop-
erties. This surface receptor undergoes ectodomain shedding, 
triggered by an inflammatory stimulus, generating the soluble(s) 
form, sCD163, in plasma (2). CD163 is a scavenger receptor for 
the endocytosis of Hb and haptoglobin (Hp)‑Hb complexes (3). 
It is almost exclusively expressed on monocytes and macro-
phages, and participates in the modulation of inflammatory 
responses (3,4). sCD163 is a novel marker associated with states 
of low‑grade inflammation characteristic of conditions such as 
diabetes, obesity, liver disease and atherosclerosis (5).

The proteolytic cleavage of monocyte‑bound CD163 by 
matrix metalloproteinases (MMPs), which is triggered by 
exposure to oxidative stress or an inflammatory stimulus, 
releases sCD163 (6‑8). Oxidative stress pathways, induced by 
prostaglandin F2α (PGF2α) and 8‑iso‑PGF2α, enhance the 
expression of tumor necrosis factor (TNF)‑α and CD163 (8). 
Lipopolysaccharide (LPS) can also increase the levels of 
sCD163 and TNF‑α, via stimulation of a disintegrin and metal-
loproteinase metallopeptidase domain 17 (ADAM17), which is 
known to mediate the shedding of the extracellular domains 
of CD163 and TNF‑α (9). The significant negative correlation, 
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which was revealed between membrane CD163 expression and 
sCD163 levels, suggests that plasma sCD163 may be derived 
from circulating monocytes, in addition to being secreted by 
tissue macrophages (10). sCD163 is constitutively being shed 
from the cell surface into the circulation, and it is stable and 
easily detectable in serum. The present review focuses on 
examining the role of sCD163 in various inflammatory disor-
ders, including inflammatory disorders of the airways, and 
specifically in the pathogenesis of asthma.

2. Characteristics of M2 macrophages

Classically activated M1 macrophages are the first line of 
defense against bacterial infections and obtain energy through 
glycolysis. Cell‑surface markers of classically activated 
macrophages are not well defined; however, CD40 is predomi-
nantly used (11,12). Conversely, alternatively activated M2 
macrophages, which are CD163+ and CD206+, are involved in 
tissue repair and wound healing, and use oxidative metabolism 
to fuel their long‑term functions. Granulocyte‑macrophage 
colony‑stimulating factor (GM‑CSF) and interferons (IFNs) 
can enhance the macrophage lineage, and modulate macro-
phage differentiation and function. M1 macrophages can be 
produced in vitro by culture and subsequent differentiation of 
human peripheral blood monocytes. The cytokines M‑CSF, 
interleukin (IL)‑4 and IL‑10 stimulate monocyte differen-
tiation into M2 macrophages (13). M1 macrophages secrete 
proinflammatory cytokines, such as IL‑12 and TNF‑α, and 
also have antigen‑presenting capacity and promote Th1 
immune responses.

Conversely, M2 macrophages secrete anti‑inflammatory 
mediators, such as IL‑10, and have poor antigen‑presenting 
capabilities and stimulate the generation of regulatory 
T cells (13‑15). The activation of M2 macrophages is primarily 
triggered by T helper (Th) 2 cytokines, such as IL‑4, IL‑13 
and IL‑10, as well as anti‑inflammatory mediators, such as 
glucocorticoids  (16). CD163+ M2 macrophages reduce M1 
populations through the release of anti‑inflammatory cyto-
kines, such as IL‑10. Macrophage mannose receptor (MRC)‑1, 
IL‑13, IL‑1 receptor antagonist (IL‑1RA) and CD163 serve 
important roles in M2 differentiation (17). Monocyte‑derived 
macrophages, classically activated via IFN‑γ priming and 
LPS stimulation, demonstrate a decreased CD163 expres-
sion; however, the alternative activation route, involving 
IL‑4/IL‑13 priming, does not affect the expression of CD163 
and calprotectin on macrophages (18). The presence of IFN‑γ, 
indicative of Th1 inflammation, or a prolonged exposure to 
IL‑4, promotes apoptosis of macrophages and suppresses M2 
differentiation, which leads to a reduction in the clearance of 
apoptotic neutrophils, increased accumulation of apoptotic 
cells and persistent inflammation  (19). Conversely, in the 
presence of IL‑17, indicative of a Th17 response, macrophage 
apoptosis is prevented and M2 differentiation is stimulated, 
which ensures that apoptotic neutrophils are cleared efficiently 
and anti‑inflammatory conditions are restored (Fig. 1) (19). 
Following IL‑4 or IL‑13 stimulation, M2 macrophages derived 
from peripheral blood mononuclear cells exhibit markedly 
increased mRNA expression levels of thymus activation regu-
lating chemokine (CCL) 11, CCL17, CCL24 and CCL26, and 
the production of CCL17 and CCL24 is also potentiated (20).

3. CD163 structure

CD163 is a 130‑kDa, type I transmembrane protein, which 
belongs to class B of the cysteine‑rich scavenger receptor 
family, and was first identified in 1987 (21). The expression of 
CD163 on circulating monocytes and most tissue macrophages 
is constitutive and/or induced by some stimuli (22). CD163 
has been reported to bind human pathogenic bacteria (10,23) 
and TNF‑α‑like weak inducer of apoptosis (TWEAK) (24). 
Using western blot analysis of CD163 variants, a panel of 
10 monoclonal antibodies was mapped to scavenger receptor 
cysteine‑rich (SRCR) domains 1, 3, 4, 6, 7 and 9 (25). Four 
of the SRCR domains of CD163 (domains 2, 3, 7 and 9) have 
conserved consensus motifs for Ca2+ binding, whereas domain 
5 has a potentially/semi‑conserved Ca2+ binding site. The 
other four SRCR domains have at least one non‑conservative 
mutation of an essential residue in the consensus Ca2+ binding 
sequences (26).

Only the two antibodies targeting SRCR domain 3 can 
effectively inhibit ligand binding. This is an exposed domain 
and a critical factor regulating the Ca2+‑sensitive coupling 
of Hp‑Hb complexes  (25). Since CD163 is a scavenger 
receptor on the surface of macrophages, its extracellular 
region, consisting of nine SRCR domains, can be stimulated 
by inflammation or other stimuli, resulting in the release of 
its soluble form, sCD163, in the plasma (22,25). Ligands of 
Toll‑like receptors (TLR) 2, 4 and 5 can stimulate ectodomain 
shedding of CD163, thereby releasing sCD163  (3). CD163 
and pro‑TNF‑α are transmembrane proteins subjected to 
hydrolytic cleavage by the inflammation‑responsive proteases 
ADAM17  (23,27) and ADAM10  (23) from the monocyte 
surface. This results in the release of sCD163 and bioac-
tive TNF‑α in the circulation. A sequence comparison of 
their juxtamembrane region identified similar palindromic 
sequences in human CD163 (1044Arg‑Ser‑Ser‑Arg) and 
pro‑TNF‑α (78Arg‑Ser‑Ser‑Ser‑Arg) (Fig. 2) (27).

sCD163 and immunoglobulin G interact with the free Hb 
in plasma, leading to the endocytosis of the sCD163‑Hb‑IgG 
complex via the Fcγ receptor (FcγR) into monocytes. The 
endocytosed sCD163 is recycled to restore the homeostasis of 
CD163 on the monocyte membrane, whereas the internalized 
Hb is catabolized (28). Paracrine transactivation of endothelial 
cells is mediated by the shed sCD163, which detoxifies and 
clears residual Hb. Circulating sCD163 only weakly competes 
with membrane CD163 for the uptake of Hp‑Hb complexes, 
and Hp‑Hb saturation of sCD163 in serum can only be 
achieved with a large surplus of Hp‑Hb complex. These 
findings indicated that the Hp‑Hb complex may be harder to 
dissociate from the membrane form of CD163 (Fig. 3) (29).

4. sCD163 expression

CD163 is expressed only on cells of the monocytic‑macrophage 
lineage, and its expression increases as monocytes mature 
into macrophages. CD163 expression is particularly high on 
macrophages in the liver (Kupffer cells), red pulp of the spleen, 
lungs and bone marrow (21). sCD163 is a marker of activated 
macrophages (30). Following an inflammatory stimulus or 
oxidative stress, sCD163 is released from the cell surface 
by proteolytic cleavage of monocyte‑bound CD163 through 
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the action of MMPs (6‑8) and after LPS stimulation (22,31), 
whereas proinflammatory cytokines, such as TNF, reduce 
CD163 expression  (3). Furthermore, TLR7 levels have 
been associated with concentrations of IL‑10, IL‑1RA and 
CD163 (32).

T h e  exp r e s s ion  of  C D163  i s  i nduc e d  by 
corticosteroids (3,33‑35), IL‑10 (3,22,33‑35), IL‑6 (12,34,36), 
IL‑12 (37), the chemokine (C‑X‑C motif) ligand (CXCL) ‑10 (37), 
and oxidative stress  (8). sCD163 protects monocytes from 
hyperactivation during bacterial infections by dampening 
the secretion of the proinflammatory cytokines TNF‑α, 
IL‑1β, IL‑6 and IL‑8 (38). The actions of sCD163 and TNF‑α 
seem to be interconnected, and the sCD163/TNF‑α ratio is 
higher in patients with uncomplicated malaria (39). In vitro, 
stimulation of murine monocyte‑macrophage cells resulted 
in increased TNF‑α release accompanied by elevated CD163 
expression  (17). In patients with cirrhosis and hepatitis C 
infection, sCD163 also appears significantly correlated with 
TNF‑α (40).

5. Clinical significance of sCD163 expression

Elevated sCD163 serum levels are currently the most specific 
marker for distinguishing bacterial infections, such as 
brucellosis, or those caused by Staphylococcus aureus and 
Haemophilus  influenzae (41,42), from non‑bacterial infec-
tions, based on previously described results comparing lumbar 
puncture with composite reference standards (43). sCD163 
expression is correlated with levels of IL‑6 (21,41), IL‑10 and 
IL‑8 (44), but not with LPS‑binding protein, procalcitonin 
(PCT) or C‑reactive protein (CRP) levels (41). Plasma levels 
of CRP, PCT and sCD163 are increased in patients with bacte-
rial infections (45). CRP and PCT are also valuable diagnostic 
tools and can be used as markers of bacterial infections. In 
patients with sepsis, sCD163 levels were significantly lower 
than in patients with severe sepsis; however, sCD163 levels in 
both groups were considerably increased compared with in the 
control group (46,47). Furthermore, higher sCD163 levels were 
reported in patients with sepsis who succumbed compared 

Figure 1. Macrophages serve a key role in regulating the activation and resolution of immune responses. The induction of M0 macrophages by inflammatory 
mediators, such as IL‑4 and IL‑10, results in the differentiation of M2 macrophages. IL‑17 (in a Th17 environment) prevents macrophage apoptosis, whereas 
IFN‑γ (during Th1 inflammation) promotes apoptosis of macrophages. NE stimulates CD163 shedding, a marker of M2 macrophage activation. Macrophages 
effectively eliminate apoptotic neutrophils via phagocytosis. IL, interleukin; Th, T helper; IFN, interferon; NE, neutrophil elastase; CD, cluster of differentia-
tion; Treg, T regulatory.
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with in surviving patients (46‑48). MRC and sCD163 expres-
sion is markedly increased in septic patients compared with 
in non‑septic patients and healthy controls  (48). Increases 
in serum sCD163 levels were delayed in animals that were 
infected with virulent strains of Haemophilus parasuis (44).

sCD163 serum levels are elevated in patients with acute 
and chronic liver diseases. In patients with cirrhosis, sCD163 
concentration is ~3 times higher compared with in healthy 
controls  (49,50). In addition, although sCD163 is linearly 

associated with the pressure gradient in the portal vein, its 
concentration remained unaltered after a transjugular intra-
hepatic portosystemic shunt procedure  (51). High sCD163 
serum levels are considered an independent risk factor for 
variceal/gastrointestinal bleeding, portal hypertension and 
mortality in patients with cirrhosis (49,52,53). High serum 
sCD163 concentrations have been reported during acute liver 
damage, but are lower in acute hepatitis; however, in both 
conditions, they are higher than those reported in patients 
with chronic hepatitis  (12,26,30). Hepatitis B infection is 
characterized by higher serum sCD163 levels when compared 
with hepatitis C, particularly when accompanied by liver 
fibrosis (40,54), whereas higher serum sCD163 concentrations 
have been associated with higher mortality (55,56).

sCD163 is also associated with obesity, insulin resistance, 
and the development of type 2 diabetes (57‑59). In patients 
with type 2 diabetes, sCD163 appears strongly associated with 
known risk factors, such as physical inactivity, body mass 
index, elevated CRP levels and triglyceride content (60). High 
serum sCD163 levels have been associated with complications 
in patients with type 2 and type 1 diabetes mellitus (59,61); 
conversely, levels of soluble TWEAK, a cytokine that regu-
lates inflammation, angiogenesis and tissue remodeling, 
follow an opposite trend  (61). Serum sCD163 levels are 
significantly higher in obese patients compared with in lean 
patients, whereas efferocytosis by M2 macrophages appears to 
be impaired in obese patients (61‑63). A low‑fat diet reduced 
the levels of sCD163 (64,65); however, a 12‑week exercise 
program had no such effect (66).

sCD163 has been associated with arterial inflammation, 
non‑calcified plaque formation, perivascular fat accumulation 
and carotid atherosclerosis (67,68). Neutrophil elastase has 
been demonstrated to promote CD163 shedding, and CD163 

Figure 2. Shedding of sCD163. Several inflammatory signals have been demonstrated to induce ectodomain shedding of sCD163 in vitro. ADAM17/10 
mediates shedding of CD163 and TNF‑α upon stimulation by inflammatory stimuli. CD163 and pro‑TNF‑α are rapidly cleaved from the surface of activated 
macrophages by an ADAM17/10‑mediated mechanism. The half‑life of sCD163 is much longer than that of TNF‑α. Similar palindromic sequences in human 
CD163 (1044Arg‑Ser‑Ser‑Arg) and pro‑TNF‑α (78Arg‑Ser‑Ser‑Ser‑Arg) were identified by a comparison of the sequences of the juxtamembrane region of the 
proteins. s, soluble; CD, cluster of differentiation; ADAM, a disintegrin and metalloproteinase; TNF, tumor necrosis factor; IL, interleukin; Hb, hemoglobin; 
M‑CSF, macrophage‑colony stimulating factor; IFN, interferon; LPS, lipopolysaccharide; CXCL, (C‑X‑C motif) ligand.

Figure 3. A hypothetical model of Hp‑independent intravascular detoxifica-
tion and clearance of cell‑free Hb by CD163. Hb induces shedding of CD163 
into the plasma and the produced sCD163 captures and quenches the residual 
redox‑reactive Hb. Subsequently, IgG interacts with the sCD163‑Hb complex. 
The sCD163‑Hb‑IgG complex then elicits an autocrine loop of endocytosis 
via FcγR on monocytes and subsequent recycling of the internalized sCD163 
via endosomes to restore CD163 homeostasis in the membrane, whereas the 
internalized Hb is catabolized by HO‑1. Hp, haptoglobin; Hb, hemoglobin; 
CD, cluster of differentiation; s, soluble; Ig, immunoglobulin; FcγR, Fcγ 
receptor; HO, heme oxygenase; TLR, Toll‑like receptor.
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expression on the surfaces of macrophages was decreased, 
resulting in impaired of Hb clearance by macrophages. These 
effects may be correlated with acute coronary syndrome and 
stable angina pectoris, and may increase the risk of myocardial 
infarction (69). It has been demonstrated that CD163 can bind 
and neutralize TWEAK (70), whereas sCD163 functions as a 
decoy receptor for TWEAK. An imbalance between TWEAK 
and CD163 could reflect the progression of atherosclerosis. 
Furthermore, the CD163/TWEAK plasma ratio may have 
potential as a biomarker of atherosclerosis in asymptomatic 
individuals  (71). Substantially elevated sCD163/sTWEAK 
ratios have been reported in patients with critical limb ischemia 
and peripheral artery disease (72,73).

Serum sCD163 levels were estimated in patients 
with systemic sclerosis  (SSc) as an indicator of disease 
deterioration, pulmonary fibrosis and pulmonary hyperten-
sion (4,6,74,75). sCD163 levels and the sCD163/sTWEAK ratio 
were significantly increased in patients with SSc compared 
with in controls. Elevated plasma sCD163 and an increased 
sCD163/sTWEAK ratio were associated with a lower risk of 
digital ulcers in patients with SSc (70).

Early rheumatoid arthritis (RA) patients have signifi-
cantly increased sCD163 plasma levels, which are reduced 
following treatment. Therefore it may be hypothesized that 
sCD163 is implicated in RA activity, although an association 
between sCD163 and disease activity has yet to be demon-
strated (37,76). sCD163 shed from resident tissue macrophages 
were abundant in inflamed synovium  (77). In addition, 

sCD163 levels have been correlated with the Systemic Lupus 
Erythematosus Disease Activity Index  (78). Patients with 
elevated serum sCD163 levels exhibit significantly higher rates 
of anti‑double‑strand‑DNA antibodies (79).

Macrophages serve key roles in tumor development and 
invasion in several types of human cancer, and sCD163 is a 
marker of alternatively activated M2 macrophages. High 
sCD163 concentrations have been detected in hepatocellular 
carcinoma (80), ovarian cancer (81,82), T cell lymphoma (83) 
and multiple myeloma (84). Furthermore, elevated sCD163 
concentrations are associated with a poor prognosis in patients 
with cancer (40,81‑83).

In conclusion, sCD163 levels in infection, liver disease, 
autoimmune disorders, metabolic disease and cancer are 
elevated, whereas the clinical significance of this elevation 
varies among the various diseases (Table I).

6. CD163‑deficient animal model

House dust mite (HDM)‑challenged Cd163‑/‑ mice have been 
reported to exhibit increased concentrations of airway eosin-
ophils and develop mucous cell metaplasia (85). In addition, 
Cd163‑/‑ mice may demonstrate transiently elevated TWEAK 
levels, which can stimulate muscle satellite cell proliferation 
and tissue regeneration in ischemic and non‑ischemic limbs. 
These results suggested a role for sCD163 in muscle regen-
eration following ischemic injury (86). In CD163‑deficient 
mice, the overall clearance of Hb has been demonstrated 

Table I. Expression of sCD163 in different diseases and its clinical significance.

Disease	 sCD163 concentration	 Clinical significance	 (Refs.)

Acute respiratory distress	 >1,020 ng/ml	 Associated with increased	 (2)
syndrome (mean)		  risk of mortality	
Cirrhosis (mean ± SD)	 4.7±2.5 mg/l	 Associated with gastrointestinal	 (49)
  Controls	 1.6±0.5 mg/l	 bleeding, hepatic venous pressure gradient	
Systemic sclerosis	   984±420 ng/ml	 Associated with greater skin involvement	 (70)
  Controls (mean ± SD)	   823±331 ng/ml		
Early rheumatoid arthritis [median (IQR)]	 1.69 (1.42‑2.10) mg/l	 Associated with disease activity	 (76)
Epithelial ovarian cancers 	 3,220 ng/ml	 Used in diagnosis; associated with	 (81)
  Controls (mean)	 2,488 ng/ml	 poor prognostic factors	
Type 1 diabetes mellitus [median (IQR)]	 285.0 (247.7‑357.1) ng/ml	 Associated with cardiovascular risk	 (61)
  Controls 	 224.8 (193.3‑296.5) ng/ml		
Sepsis (mean ± SD)	 105.32±145.87 mg/l	 Associated with poor prognosis	 (46)
  Severe sepsis 	 233.32±171.78 mg/l		
  Control group 	 44.19±86.48 mg/l	 	
Obese [median (IQR)]	 974 (657‑1,272) ng/ml	 Used as a marker for predicting the	 (58)
  Normal weight controls		  risk of insulin resistance	
Allergic asthma (serum) (mean ± SD)	 599 (423‑892) ng/ml		
  Controls (serum)	 1,030±499 ng/ml	 Associated with anti‑inflammatory	 (33)
Allergic asthma (sputum)		  effects of inhaled corticosteroid therapy	
  Controls (sputum)	       930±334.5 ng/ml		
	    4.78±3.34 ng/ml	 	
	      1.8±0.41 ng/ml	 	

IQR, interquartile range; SD, standard deviation.
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to be slightly impaired and follow a one‑phase decaying 
trend (87).

7. Functions of macrophages and potential role of CD163 
in asthma

Macrophages have a central role in the regulation and effi-
ciency of the immune response, and participate in innate and 
adaptive immunity. Macrophages exert important functions 
in autoimmune disorders, including RA, Crohn's disease, 
psoriasis, sarcoidosis and atherosclerosis. M2 macrophages 
are associated with responses to anti‑inflammatory stimuli and 
tissue remodeling (88). Since they participate in tissue repair 
and in the restoration of lung microenvironment homeostasis, 
M2 macrophages may serve a major role in asthma  (89). 
Macrophages represent the majority of immune cells present 
in lungs under physiological conditions and serve to dictate 
the innate defense mechanisms of the airways. Pulmonary 
macrophage populations are heterogeneous and demonstrate 
notable plasticity, due to variations in their origin, tissue 
residency and environmental influences (90). In mice with 
moderately severe asthma, the population of M1 macrophages 
is elevated and negatively correlated with the population of 
M2 (CD163+) macrophages. Decreased numbers of M2‑like 
macrophages are reported after HDM exposure, and they are 
negatively correlated with the number of M1 macrophages (88). 
In addition, macrophages have been implicated in the patho-
genesis of chronic obstructive pulmonary disease (COPD). 
Ex‑smokers with COPD have a higher percentage of CD163+ 
macrophages in bronchoalveolar lavage (BAL) than current 
smokers. Furthermore, the percentage of CD163+ M2 macro-
phages is higher in BAL than in sputum (91). In ovalbumin 
(OVA)‑sensitized mice, exposure to the airborne particulate 
matter PM2.5 caused a slight increase in the number of 
neutrophils and macrophages  (92). The balance between 
macrophage phenotypes fluctuates, depending on the severity 
of allergic airway inflammation (88). This balance is regulated 
by cytokines, such as IL‑13, which is a typical pro‑M2‑Th2 
cytokine that has been linked to allergic diseases and asthma. 
MicroRNA (miR)‑155 may also be involved in regulation of the 
M1/M2 balance via modulating the effects of IL‑13. miR‑155 
directly targets the IL‑13RA1 gene and reduces the protein 
levels of IL‑13RA1, thus preventing the activation of the signal 
transducer and activator of transcription (STAT) 6 (93).

Serum amyloid P (SAP) inhibits the generation of M2 
markers, such as arginase and the chitinase Ym‑1, through an 
FcγR‑dependent mechanism in cultured macrophages. This 
effect has been correlated with a decrease in STAT6 phosphoryla-
tion in SAP‑treated M2 macrophages (94). Type 2 cytokines, i.e. 
IL‑4 and IL‑13, can drive the differentiation of macrophages into 
M2 macrophages. This population of macrophages is associated 
with allergic inflammation (95). Monocytes co‑cultured with 
regulatory T cells display typical features of alternatively acti-
vated macrophages, including upregulated expression of CD206 
(macrophage mannose receptor) and CD163, and increased 
production of CCL18 (96). OVA‑sensitized and challenged mice 
exhibit a significant increase in white blood cells, eosinophilia, 
mucus accumulation and goblet cell hyperplasia, which were 
correlated with increased expression of genes associated with 
alternatively activated M2 macrophages, such as arginase 1, 

Ym‑1, Ym‑2, resistin like‑α, and eosinophil‑associated, ribo-
nuclease A family member 11. The expression of other genes 
associated with asthma, including FcγRIIb, MMP‑14, CCL‑8, 
CCL‑17 (20,97), ADAM‑8, lymphotoxin β receptor 1 (LTβR1), 
aquaporin‑9 and IL‑7R, is also upregulated in bronchoalveolar 
macrophages isolated from OVA‑sensitized/challenged mice 
compared with in macrophages from healthy controls (97).

CD163 participates in inflammatory responses and may 
contribute to connective tissue remodeling. CD163 may function as 
a pulmonary defense element, as suggested by its local expression 
in the lungs, and its secretion during lung infection and as part of 
inflammatory respiratory responses (98). Cell surface expression 
of CD163 on alveolar macrophages is reduced in human subjects 
with asthma, which suggests that CD163 may participate in the 
regulation of airway inflammatory responses in the lung (85). 
In addition, sCD163 is inversely associated with predicted 
forced expiratory volume in 1 sec in patients with asthma (9) 
and COPD, particularly in those with severe disease  (94). 
During Dermatophagoides  pteronyssinus  (Dp)‑induced 
bronchoconstriction, alterations in monocyte CD163 expression 
and sCD163 were negatively correlated with fractional exhaled 
nitric oxide concentrations (99). Asthma in obese adults has 
been associated with impaired macrophage efferocytosis. This 
impairment is associated with altered monocyte programming, 
impaired response to glucocorticoids and systemic oxidative 
stress (62). Obese asthmatic children exhibit increased sCD163 
expression, in addition to sex‑specific macrophage activation, 
which may impair asthma control and lung function  (9). 
Furthermore, sCD163 concentration in sputum is significantly 
higher in patients with allergic asthma compared with in 
controls. Treatment with inhaled corticosteroids results in a 
significant increase in sCD163 concentrations in sputum (33). 
Macrophages isolated from sputum samples from patients with 
asthma demonstrate significantly higher CCL17 and lower 
CD163 mRNA expression levels compared with macrophages 
from healthy subjects (100). CD163+ alveolar macrophages were 
decreased in patients with asthma (85), whereas sputum sCD163 
levels were increased (33). This inverse relationship between 
surface and soluble CD163 has already been described (44). 
Therefore, we speculate that airway inflammation and some 
inflammatory mediators induce alveolar macrophages to release 
CD163 from the cell surface in patients with asthma, and sCD163 
participates in the airway inflammatory response, and the 
phagocytosis of CD163+ M2 macrophages is impaired in asthma.

8. Conclusion

Macrophages serve a key role in the regulation of immunity 
and tissue remodeling. CD163, which is a transmembrane 
scavenger receptor found on the surface of macrophages, is 
released in the circulation in its soluble form, sCD163, via 
cleavage by MMPs following oxidative stress or inflammatory 
stimuli. sCD163 is involved in the pathogenesis of autoimmune 
diseases, atherosclerosis, diabetes and cancer. Bronchial asthma 
is characterized by nonspecific inflammation of the airways, 
and the alternatively activated CD163+ M2 macrophages have 
a key role in this pathological condition. Through phagocytosis 
and the subsequent release of biologically active substances, 
neutrophils participate in defense mechanisms of the airways. 
After completing their mission, neutrophils undergo apoptosis. 
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Macrophages effectively eliminate apoptotic neutrophils, a 
process critical in suppressing acute inflammation and restoring 
homeostasis. Neutrophil elastase has been revealed to enhance 
CD163 shedding, and sCD163 is a marker of macrophage 
activation. Neutrophil elastase serves as a neutrophil activation 
marker, which suggests that macrophage activation is associated 
with the activation of neutrophils. A Th1/Th2 imbalance has 
been suggested as an indicator of the pathogenesis of asthma. 
Th2 cytokines, such as IL‑4, IL‑13 and IL‑10, can influence 
M2 macrophage activation. IL‑10 and IL‑6 promote sCD163 
shedding from M2 macrophages, whereas release of Th17 and 
IL‑17 can inhibit the apoptosis of CD163+ M2 macrophages. In 
addition, M2 macrophages are associated with T lymphocytes. 
IL‑4 and IL‑13 can stimulate eosinophil activation. sCD163, a 
marker of M2 macrophages, is associated with the eosinophil 
count through several cytokines. Furthermore, sCD163 is 
associated with body mass index in patients with asthma, and 
the concentration of sCD163 in plasma or induced sputum is 
inversely correlated to predicted forced expiratory volume in 
1 sec. Therefore, investigating the role of sCD163 may contribute 
to elucidating the underlying molecular mechanisms of asthma, 
and may represent a promising target for the development of 
effective therapeutic agents for the treatment of asthma.
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