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Abstract. Gene expression is the process by which genetic
information is used for the synthesis of a functional gene
product, and ultimately regulates cell function. The increase
of biological complexity from genome to proteome is vast,
and the post-translational modification (PTM) of proteins
contribute to this complexity. The study of protein expression
and PTMs has attracted attention in the post-genomic era.
Due to the limited capability of conventional biochemical
techniques in the past, large-scale PTM studies were tech-
nically challenging. The introduction of effective protein
separation methods, specific PTM purification strategies
and advanced mass spectrometers has enabled the global
profiling of PTMs and the identification of a targeted PTM
within the proteome. The present review provides an over-
view of current proteomic technologies being applied in
eye research, with a particular focus on studies of PTMs in
ocular tissues and ocular diseases.
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1. Introduction

Over the last two decades, genomics has been regarded as
the most popular and productive research field in biological
science. However, the intermediate mRNA transcript may
rapidly degrade (1) or undergo alternative splicing (2), which
leads to a number of variable outcomes that renders the study
of biological systems more challenging. Unlike ribosomal
proteins or enzymes, which are relatively stable, the majority
of proteins involved in the cell cycle demonstrate a rapid turn-
over rate and may function alongside a degradation process (3).
As functional products of the biological system, proteins are
direct and crucial participants in all downstream biochemical
pathways.

Post-translational modification (PTM) is a key step in
protein biosynthesis, whereby the addition, folding or removal
of functional groups leads to drastic alterations in protein
function (4). For instance, an Alzheimer's disease associated
protein, Tau, is phosphorylated at 40 different sites, which
produces site-specific phosphorylation that are responsible
for different stages of the disease (5,6). Large-scale studies of
proteins and PTMs are often included in proteomic research at
present. Robust peptide separation methods that employ strong
cation exchange, high performance liquid chromatography
(HPLC), novel mass spectrometry (MS) designs with high
resolution and sensitivity, such as Orbitrap and TripleTOF, as
well as PTM-specific bioinformatics tools and databases, have
rendered the profiling of unique or multiple PTMs in biological
proteomes possible. Proteomic analysis of PTMs has facilitated
the identification of novel biomarkers for a number of diseases,
including prostate cancer (7), pancreatic cancer (8) and rheu-
matoid arthritis (9). However, few proteomic-based studies have
been performed to explore PTMs associated with eye diseases.
It is thought that gaining an increased understanding of the
characteristics of PTMs through the use of emerging MS tech-
niques, is important for the development of effective diagnostic
and therapeutic strategies for various disorders, including eye
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diseases (10). The present review will discuss the technological
challenges in protein research, provide an overview of the types
and mechanisms of PTMs, as well as their application in the
research of eyes and associated diseases.

2. Proteomics analysis technology

Protein separation methods. Large-scale proteomic analysis
typically involves gel-based and liquid chromatography-based
separation strategies prior to MS analysis. It is possible to
categorize these into electrophoretic and chromatographic
approaches. For electrophoretic separation strategies,
two-dimensional gel electrophoresis (2DE) has been widely
used for separating soluble proteins based on their isoelec-
tric points and molecular weights (11). However, membrane
proteins, which serve vital functions in signal transduction
pathways, are frequently difficult to separate using 2DE
due to their high hydrophobicity (11). In addition, these
approaches are technically insufficient due to a low dynamic
range and throughput, which are important for analyzing
complex biological samples. Therefore, the use of chro-
matography, including ion-exchange chromatography (12),
hydrophobic interaction chromatography (13), size-exclusion
chromatography (14), affinity chromatography (15), and
the most popular, reverse-phase high-performance liquid
chromatography (16,17), have become the more common
separation strategies used in high-throughput liquid chroma-
tography-based proteomic research.

Protein identification strategies. MS has advanced qualitative
and quantitative analysis of unknown organic and inorganic
compounds in numerous fields, including environmental
contaminant monitoring (18), forensic toxicology, doping anal-
ysis (19) and analysis of clinical samples (20), and is currently
an indispensable tool in proteomics research. A typical mass
spectrometer consists of an ionization source, a mass analyzer
and a detector. Analytes are ionized to a gas phase and are
subsequently processed by the mass analyzer and detector.
The resultant mass spectra, expressed as mass/charge ratios,
are compared with protein databases for identification (21).

Currently, there are two major ionization strategies
employed for MS. The first is a matrix-assisted laser desorp-
tion/ionization (MALDI) approach, by which analyte
desorption is induced by a laser beam and then absorbed by
the matrix material (22). The molecules are then ionized to
gases (23). The remaining approach is electrospray ionization
(ESI), which was invented by Dole ez al in 1968 (24). This tech-
nique was developed further by John Fenn, who was awarded
a Nobel Prize in 2002 for this invention (25). Acidic liquid
analytes acquire a positive electro-charge as they are sprayed
into small droplets. They subsequently produce ions and
enter the mass spectrometer. ESI allows a continuous flow of
analytes with a variable flow rate, and generates multi-charged
positive ions depending on the acidity of the solvent. This
technique permits the identification of large molecular weight
proteins by MS (26).

Collision-induced dissociation (CID) is the most widely
used fragmentation method. It allows ions to collide with neutral
gas molecules, which leads to internal energy conversion and
fragmentation of the precursor ion (27). CID is effective in
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detecting small, low-charged peptides and single-charged
ions (28); however, is not as effective at detecting long peptides.
Due to the presence of PTMs, the digestion of long peptides
by CID fragmentation becomes less effective. Therefore, liable
PTMs, such as phosphorylation and S-nitrosylation, may be
lost during CID collision (29). Furthermore, the presence of
several basic amino acid residues in PTM proteins has been
demonstrated to inhibit random protonation along peptide
backbones by CID (28). These factors hinder the generation
of efficient fragment ions by CID. To date, electron-transfer
dissociation (ETD) is considered to be more favorable for PTM
studies (30). This method transfers electrons to multi-proton-
ated proteins or peptides, which leads to N-Ca backbone bond
cleavage. ETD is useful for the identification of liable PTMs.
It provides the protein sequence information and modification
sites, and it is frequently used for PTM analysis (31). Previous
studies have reported that ETD is particularly suitable for
detecting peptides with >2 charges (32,33). However, it has
been suggested that ETD yields a reduced number of identified
proteins due to its lower scanning rate when compared with
CID (29,31). Several studies have compared the efficiency of
CID and ETD in identifying PTMs (34-36). In general, CID
and ETD are able to detect stable PTMs successfully, including
acetylation and methylation, while ETD is the optimal strategy
for identifying liable PTMs, including phosphorylation, ubig-
uitination and glycosylation. Multiple studies have suggested
combining CID and ETD in order to gain higher competency
and accuracy in PTM studies (34-40).

Protein quantification strategies. Advantages of applying
large-scale proteomics strategies for biological research
include profiling of the proteome for protein identification and
quantification of protein expression. It is possible to achieve
such quantification using chemical labeling strategies, in
which the ion intensity between labeled and unlabeled peptides
or differentially labeled peptides is compared. Isobaric
tagging for relative and absolute quantification uses isobaric
amine-specific tandem mass tags to label the N-terminus
and lysine residues of digested peptides. It is then possible
to compare or analyze up to eight different sets of samples
in a single experiment (41). Additional popular labeling
strategies include isotope protein coded labeling (42), which
uses isotope-coded tags instead of isobaric tags to label the
N-terminus and lysine residues. Dimethyl multiplexed labeling
is an economical option, whereby the N-terminus of peptides
and a-amino groups of lysine residues are labeled with
water-soluble formaldehyde via reductive methylation (28).
Stable isotope labeling by amino acids in cell culture (SILAC)
is an in vivo strategy, which involves feeding cell cultures
with amino acids containing stable isotopes. During SILAC,
lysates of labeled and normal cell cultures are mixed, digested
and analyzed by MS, and the relative peak intensities in the
MS spectrum are subsequently compared and analyzed (43).
Despite the effectiveness of using labeling strategies in the
quantification of the proteome, these are time-consuming,
expensive and complicated in terms of sample preparation
procedures and data analysis. Novel and accurate label-free
quantification methods are gradually emerging.

Label-free quantification is a fast and low-cost strategy
for measuring large-scale differential proteomic expression.
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Table I. List of typical and important PTMs and their biological significance.

PTMs Modification subtypes Biological functions
Phosphorylation pSer, pThr, pTyr (most common), Reversible; regulating signaling pathways by
pHis, pCys and pAsp (least common) activating and inhibiting enzymes
Glycosylation N-linked, O-linked, C-mannosylation Molecular interaction; signal
and GPI anchor. transduction; cell recognition
Acetylation N-terminal (most common), Reversible; protein localization, stability and
C-terminal and histone (less common) synthesis; cell-to-cell interaction; apoptosis
Ubiquitination - Protein degradation
Sumoylation - Reversible; protein-protein interaction,
protein stability and localization
Methylation N-/O-terminal Gene transcription and signal transduction
Lipidation GPI anchors, N-myristoylation, Protein activities and targeting

S-palmitoylation and S-prenylation

PTM, post-translational modification; GPI anchor, glycosylphosphatidylinositol anchor.

These approaches are divided into two major strategies; the
first requires cross-checking of the numbers of MS/MS spectra
acquired for peptides of proteins between different standard
samples (44), and the second strategy is based on the measure-
ment and comparison of chromatographic peak areas of
peptide precursor ions between different samples (45). There
are currently multiple open source and commercial software
packages available for the processing of label-free quantifica-
tion data, including MZmine, MsInspect, MapQuant, SIEVE,
Elucidator and OpenSWATH for SWATH analysis (46-49).
These software programs facilitate peak detection and
matching, data alignment, normalization and statistical
analysis. However, limitations, such as the variation between
different samples, remain a major concern.

3. Introduction of PTMs

To date, >400 types of PTMs have been reported, and >90,000
individual PTMs have been identified (50). Glycosylation,
ubiquitination, phosphorylation, methylation and acetylation
are commonly reported (4), while additional PTMs, such as
adenosine monophosphate adenylation, are less frequently
reported (51). As PTMs influence almost every aspect of cell
biology, they are an important molecular factor for under-
standing biological and pathological mechanisms, and are
summarized in Table I.

Phosphorylation. Phosphorylation is a chemical reaction that
involves the transfer of a phosphate group from the y-locus
of adenosine 5'-triphosphate (ATP) or guanosine 5'-triphos-
phate to the side chain of an amino acid residue of a substrate
protein molecule. This reaction is mediated by protein kinase
catalysis, whereas its counterpart enzyme, phosphatase, cata-
lyzes the de-phosphorylation reaction (52). Phosphorylation
is the most widely studied PTM, due to its involvement in
a wide range of cellular functions. For instance, it activates
or inhibits various enzymes or receptors, thus regulating
different signaling pathways that govern cell metabolism,
growth and differentiation, the immune response, oncogenesis

and apoptosis (53-55). Phosphorylation of eukaryotic proteins
has been demonstrated to occur most commonly on serine,
threonine and tyrosine residues, which mediates the activity of
numerous signaling networks involved in cell differentiation
and proliferation (56). A higher frequency of phosphoryla-
tion on serine and threonine residues occurs when compared
with tyrosine residues at a ratio of ~1,800:200:1 (pSer: pThr:
pIyr) (57). By contrast, phosphorylation of histidine, cysteine
and aspartate residues has been reported in bacteria, fungi and
plants, as part of bi- and multi-component phospho-signaling
transduction pathways (58,59). Furthermore, phosphorylation
of histidine has been demonstrated to be involved in regulating
metabolic signaling pathways in eukaryotic cells (60,61). In the
last decade, various human genome projects have confirmed
that genes coding for kinases and phosphatases comprise >2%
of the human genome (62). In total, ~30% of the whole human
proteome has been postulated to undergo phosphorylation
during its life cycle (63).

Glycosylation. Glycation (non-enzymatic glycosylation) is the
covalent bonding of a carbohydrate molecule to another mole-
cule, which may occur under in vivo or in vitro conditions (64).
In biological systems, the process of attaching glycans to
lipids, proteins or additional organic molecules by catalysis is
termed glycosylation (65). It is possible to divide glycosylation
into four main subcategories, including N-linked and O-linked
glycosylation, C-mannosylation and the glycosylphosphati-
dylinositol (GPI) anchor. N-linked glycosylation involves the
attachment of an oligosaccharide to aspartic acid residues of
secreted or membrane-bound proteins, and occurs primarily in
the endoplasmic reticulum of eukaryotic cells (66). A similar
binding strategy occurs between various sugars and serine and
threonine residues primarily in the Golgi, nucleus and cyto-
plasm (67), termed O-linked glycosylation. C-mannosylation
refers to the addition of a mannose oligosaccharide to the
first tryptophan residue in the amino acid sequence via a
carbon-carbon bond (68). Formation of the GPI anchor involves
the covalent linkage of the C-terminus of a protein with the
glycolipid portion of the membrane phospholipid located
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on the extracellular side of the plasma membrane (69). This
occurs in >50% of proteins (70) and affects multiple molecular
activities, including the regulation of cellular interactions,
signal transduction and molecular interactions. In addition,
GPI anchors affect processes including the pathogenesis of
several diseases, such as paroxysmal nocturnal hemoglobin-
uria (71), immunological protection, intercellular adhesion,
cellular proliferation, inflammation, oncogenesis and viral
replication (72,73).

Acetylation. Acetylation is the process of adding an acetyl
group to a molecule. Its counterpart reaction, de-acetylation,
is the removal of the acetyl group from a chemical compound.
Acetylation of various proteins, including histone (74), pS3 (75)
and tubulin (76) have been reported. According to previous
studies, three main categories of acetylation have been iden-
tified thus far; N-terminal acetylation, histone acetylation
and acetylation of C-terminal residues (75,77). N-terminal
acetylation is one of the most common PTMs and is catalyzed
by N-a-acetyltransferases, which have been demonstrated to
be expressed in >50% of cytosolic yeast proteins (78) and
~80-90% of mammalian proteins (78). N-acetylation is known
to affect protein stability and prevent or generate specific
degradation signals (79-81). It is involved in regulating and
determining protein localization (82,83), as well as regulating
the cellular life cycle and apoptosis (84,85). Previous studies
have demonstrated its importance in protein synthesis (86)
and protein-protein interactions (85,86). The a-amino group
of histone lysine residues was revealed to be consistently
acetylated or de-acetylated by enzymes (87,88), which was
subsequently demonstrated to be pivotal in regulating gene
expression (79,89). Further studies have confirmed a close
association between histone acetylation and the regulation of
gene transcription in inflammation and cancers of the immune
system (90-92). In addition, acetylation of C-terminal serine
and threonine residues has been observed (93). Acetylation
has been suggested to compete with phosphorylation of these
C-terminal amino acid residues (94), and thus may be involved
in regulating phosphorylation-associated signaling pathways.
However, a more complete understanding of the involvement
of C-terminal acetylation on PTMs remains to be elucidated.

Ubiquitination and sumoylation. Ubiquitin is a highly
conserved protein (76 amino acids in length) that is abundant
in eukaryotic cells. The process by which the last amino acid
residue of ubiquitin is attached to a lysine residue of a protein
by enzymatic catalysis is known as ubiquitination (95). The
ubiquitin-bound protein then undergoes sequential reactions
catalyzed by three different enzymes, namely ubiquitin-acti-
vating enzyme (E1), ubiquitin-conjugating enzyme (E2) and
ubiquitin ligase (E3). Ubiquitination is commonly involved
in the intercellular degradation of proteins, such as short-life
and abnormal-life proteins (95). Abnormalities in the ubiquitin
system have been associated with a number of pathogeneses,
including neurodegenerative disorders (96,97), malignan-
cies (98,99) and immunological disorders (100,101).

In a previous study, a reversible PTM modifier known
as the small ubiquitin-like protein modifier (SUMO), was
identified (76). The SUMO protein is covalently bound to
a variety of proteins at their lysine residues. This process
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is known as sumoylation, which is mediated by the
SUMO-specific El-activating enzyme heterodimer termed
activator of Sentrin/SUMO-ubiquitin-like modifier activating
enzyme 2, the E2 conjugating enzyme UBC9 and SUMO E3
ligase (102-105). SUMO proteins are ubiquitously expressed
in numerous biological systems, and previous studies have
demonstrated that a high frequency of sumoylation occurs
in cell nuclei (106,107). Additional studies have revealed that
sumoylation occurs in additional cellular structures, including
the plasma membrane (108), endoplasmic reticulum (109)
and mitochondria (110). Four SUMO protein isoforms,
SUMOI1, SUMO2, SUMO3 and SUMO4, have been identi-
fied in humans thus far (111). Although SUMO is functionally
similar to ubiquitin, it has not been demonstrated to promote
protein degradation, and is instead involved in a number
of additional molecular reactions. For instance, it affects
protein-protein interactions (108,112,113), promotes intracel-
lular protein trafficking and localization (114-116) and prevents
protein degradation (117).

Additional types of PTMs. In addition to the aforementioned
PTMs, previous studies have demonstrated that a number of
relatively simple, yet significant additional PTMs have been
identified. For instance, oxidation of specific amino acids as a
result of exposure to oxidative stress, activates in vivo protease
activities, which leads to apoptosis induction (118,119). The
transfer of a carbo-methyl group by methyltransferases to
the N- or O-terminal of histidine, proline, arginine, lysine or
carboxyl groups (known as methylation), is associated with a
number of vital biological functions, such as gene transcription
and signal transduction (120,121). By contrast, the lipida-
tion PTM describes the covalent binding of various lipids to
peptide chains. This PTM is subdivided into GPI anchors,
N-myristoylation, S-palmitoylation and S-prenylation (122). In
addition, lipidation has been demonstrated to affect the func-
tion of proteins and membrane proteins by further increasing
their hydrophobicity (123).

Sample purification and enrichment methods prior to MS
analysis. Despite advancements in improving the sensitivity
of HPLC/MS systems, together with progress in the generation
of powerful algorithms for database searching, the efficiency
of PTM identification by proteomic approaches remains unsat-
isfactory. The identification of low-abundant PTM proteins
remains a major challenge, as their MS signals are easily
disguised by more abundant non-PTM proteins in a complex
mixture. Therefore, extensive purification and enrichment
of PTM proteins is necessary prior to the performance of
mass analysis. Antibody-based affinity purification has been
widely used to purify target proteins with specific PTMs. This
approach has been adopted successfully for the analysis of
tyrosine phosphorylation (124), arginine methylation (125) and
lysine acetylation (126), in order to enhance the sensitivity and
accuracy of PTM identification. However, the running costs of
this enrichment procedure are relatively high. Alternatively,
chemical tagging is a common approach for labeling PTMs
for in vivo and in vitro studies. Chemical tags are sequentially
conjugated to affinity linkers, such as biotin (127) or lectin (128).
Biotin-containing tags have been successfully used to isolate
proteins with PTMs including S-nitrosylation (129), O-linked
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Table II. Overview of purification strategies for PTMs.

Purification/

enrichment Drawbacks/
strategies Ligands PTMs Advantages limitations
Antibody-based Antibody Tyrosine phosphorylation, High specificity Small PTM alterations

affinity purification

In vivo metabolic
and in vitro
chemical

tagging

Chemical derivative
tagging

arginine methylation, lysine
acetylation

Farnesylation (in vitro),
O-GlcNAc modification
(in vivo and in vitro),
palmitoylation (in vitro),
myristoylation (in vitro),
glycosylation (in vitro),
oxidation (in vitro)

Wider enrichment
range of PTMs

are difficult to identify;
generation of antibodies
against poorly antigenic
PTMs is difficult
Sample loss; unwanted
side products;
non-specific binding

PTM, post-translational modification; O-GlcNAc, O-linked (3-D-N-acetylglucosamine.

Table III. Overview of chromatography phospho-enrichment strategies.

Strategy Ligands Advantages Drawbacks/limitations
IMAC Metal ions (Al*, Fe** High purification capacity Poor affinity of mono-phosphopeptides;
Ga**) immobilized on of phosphopeptides from non-specific binding of
a matrix via acidic complex samples. non-phosphorylated peptides with
compounds (IDA, multi-acidic amino acid residues
NTA, TED) or nucleic acid; susceptible to be
influenced by experimental conditions.
MOAC Metal oxide (TiO,, High selectivity and Poor affinity of multi-phosphopeptides;
ZrO,, AI(OH);) sensitivity for complex non-specific binding of acidic
sample; high tolerance of non-phosphorylated peptides.
solvent pH.
SIMAC IMAC+MOAC Increase the number of Complex operation steps.

discovered phosphoproteins;
increase the phosphopeptide
spectrum.

IMAC, immobilized metal affinity chromatography; MOAC, metal oxide affinity chromatography; SIMAC, sequential elution from IMAC;

IDA, iminodiacetic acid; NTA, nitrilotriacetic acid; TED, ethylenediamine.

(-D-N-acetylglucosamine (130) and palmitoylation (131). In
addition, multiple glycoproteomics studies have adopted the
lectin-based affinity enrichment method (132-134). However,
there are a number of limitations associated with these
methods, which are summarized in Table II.

Ionic interaction-based enrichment of phosphoproteins or
phosphopeptides is currently the most successful and widely
used strategy to achieve phosphoproteomic enrichment.
Immobilized metal affinity chromatography (IMAC) utilizes
metal cations to target the negatively-charged phosphate group
and the positively-charged metal ions, which are bound to resins
via acidic linkers (Table III). These are subsequently eluted
using a buffer with increasing pH (135,136). Previous reports
have demonstrated that IMAC enriches the total phosphoprotein

content of a complex sample by up to 90% (137). An alternative
method of enrichment is metal oxide affinity chromatography
(MOAC) (138). In this strategy, the phosphopeptides are
trapped by metal oxide ligands in an acidic solvent, and are
consequently desorbed and eluted under alkaline conditions.
MOAC exhibits higher selectivity and sensitivity for phospho-
peptide enrichment compared with traditional phosphoprotein
enrichment methods, such as **P labeling (139). In addition,
a stronger affinity for phosphopeptides has been observed in
MOAC when compared with IMAC (138). The advantages
and limitations of these phospho-enrichment strategies are
summarized in Table III. In general, IMAC appears to be
effective for the enrichment of multi-phosphopeptides, while
MOAC favors mono-phosphopeptide enrichment. In 2008,
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Thingholm er al (140) introduced an enrichment strategy
known as sequential elution from IMAC (SIMAC), which
combines the two phosphopeptide enrichment strategies with
the aim of overcoming the limitations of either technique in
isolation. In this combined protocol, IMAC was initially used
to enrich multi-phosphopeptides, whilst mono-phosphorylated
peptides were eluted by an acidic solvent. The solution was
then further enriched by TiO,. Using this approach, SIMAC
was able to identify a >2-fold higher number of phosphory-
lated sites when compared with the total number identified
by TiO, enrichment alone (140). This combined strategy has
successfully increased the phosphopeptide spectrum, and a
more comprehensive understanding of protein phosphoryla-
tion patterns may be gained (140).

4. PTMs in eye research

Proteomic studies of multiple PTMs in ocular tissues have
improved our understanding of the physiology or pathology
of various ocular conditions. The discovery of co-existing
modifications of specific proteins, suggests that mecha-
nisms of disease pathogenesis may involve interplay among
these PTMs. The discovery of novel PTM sites on proteins
and the study of differential PTM expression patterns have
revealed a number of candidates that may be involved in
different pathogenic signaling pathways. Using cutting-edge
proteomic technology, novel biomarkers for the early diag-
nosis of ocular diseases are emerging, which may promote
the development of novel therapeutic strategies to treat ocular
diseases.

Tears. The surface of the eyes is overlaid by the tear film, which
consists of lipid, aqueous and mucous layers (141). Alterations
in any component of the tears may reflect underlying func-
tional disorders of ocular structures, such as the secretary
glands or the cornea, and may be an indicator of abnormal
systemic conditions. The accessibility of the tear film is a
desirable factor when searching for biomarkers in various
ocular conditions, including dry eye syndrome, autoimmune
thyroid eye disease (142) and diseases of the cornea (143). The
proteome of human tears has been well-profiled and thou-
sands of proteins have been identified (144,145). Proteins have
been demonstrated to be differentially expressed in the tears
of patients with dry eye syndrome (146), keratoconus (147),
diabetic retinopathy (148) and in those treated with chronic
glaucoma medication (149). Studies investigating the PTM
alterations in tears have been performed using proteomic
technology. For instance, O-acetylation of sialic acid deriva-
tives on membrane-associated mucins was identified in human
tears by the use of LC-MS/MS, and the results suggested
that this PTM may be involved in protecting the cellular
surface from infection (150). An additional study adopted the
hydrazide-resin capture method to enrich N-Linked glyco-
proteins in the tears of patients undergoing climatic droplet
keratopathy, in which 19 unique N-glycosylated proteins were
reported for the first time (151). In a study of human tears,
three sequential dyes were used to stain phospho-, glycol- and
total proteins following 2D-PAGE separation, and a number of
novel proteins including dermcidin, glycosylated lipocalin 1,
cystatin S, phosphorylated nucleobindin 2 were identified
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and their potential ocular functions were discussed (152).
In addition, the protein profile of tears from patients
with ocular rosacea was revealed using glycan-released,
glycan-enriched and solid-phase extraction methods with
MS analysis. In total, ~50 N-glycans and 70 O-glycans were
profiled, and fucosylated N-glycans were revealed to be
significantly underexpressed while sulfated O-glycans was
over-expressed. These factors made them potential markers
to consider for this particular ocular status (153). Detailed
profiling of proline-rich protein 4, a potential biomarker of
lacrimal gland acinar cell function (154), in normal human
tears was conducted by applying one- and two-dimensional
MS analysis. Four co-existing PTMs including methylation,
acetylation, oxidation, and the addition of pyroglutamate were
identified in human tear samples; however, their functions in
physiological and pathological processes have yet to be eluci-
dated (155).

Cornea. The cornea is the outermost and key refractive
structure of the eye. For this unique structure, >3,000 proteins
have been identified by comprehensive proteomic profiling
thus far (156). In 2011, phosphorylated sites on mammary
serine protease inhibitor (maspin) from human extracellular
corneal cells were mapped by nano-HPLC-ESI-MS following
immunoprecipitation (157). A total of 8 serine and threonine
phosphorylation sites were revealed, while no phosphorylated
tyrosine residues were observed (157). These results may
enable clarification of the role of selective phosphorylation of
maspin in the corneal epithelium during wound healing and
anti-angiogenesis. In response to mechanical injury, epidermal
growth factor receptor in the corneal epithelium was demon-
strated to undergo multiple phosphorylations as revealed by a
study using a proteomic workflow (158). In addition, N-glycans
and glycosaminoglycans were profiled in a comparative
manner in Statens Seruminstitut rabbit corneal (SIRC) cells
and rabbit corneal epithelial cells using HPLC-MS. The high
mannose-type and a hybrid type of N-glycan were demon-
strated to be the most abundant types in SIRC cells, and this
observation was considered to have an important pharmaceu-
tical value (159).

Crystalline lens. The crystalline lens is a transparent and
biconvex structure that functions to refract light rays by altering
its curvature. The lens proteome has been thoroughly char-
acterized, with particular interest focused on its association
with cataracts. Cataracts, which is elicited by normal aging or
various pathologies, is the leading cause of blindness world-
wide (160). The association between a-, B- and y-members of
the crystallin family has been the focus of cataract research for
decades. The assemblage of PTMs, including phosphorylation
and deamidation in crystallins, was demonstrated to contribute
significantly to the formation of cataracts in different animal
species (161-171). In addition, the function of phosphorylation
in the crystallin family has gained attention, and profiling
studies concerning phosphorylated sites in the lens proteome
using phospho-enrichment strategies are summarized in
Table IV. Using IMAC followed by LC-MS/MS analysis,
novel phosphorylation sites have been identified on aA- and
aB-crystallins, as well as on additional proteins, including
B-enolase, heat shock protein 27 and glucose-6-phosphate
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Table I'V. Summary of identified PTMs on crystallins using the mass spectrometry approach.
PTM subtypes Species (Refs.)
a-crystallin

Phosphorylation of soluble aA- and aB-crystallins Mouse (170)

Phosphorylation of aA-crystallin on Ser122 and Ser148 Mouse (166)

Oxidation of Met, deamidation of Asp and Glu, phosphorylation of Rat (OXY cataract model) (164)

Ser and Thr residues

Phosphorylation of Tyr4, Ser20, Ser45, Ser59, Ser148, Ser155, Mouse (168)

Ser172/173, N-acetylation and C-truncation of aA-crystallin

Isomerization of several Asp residues Human (165)
[B-crystallin

Phosphorylation and acetylation of fH-crystallin Bovine (167)
v-crystallin

Oxidation of W136 and additional Tyr residues Human (167)

Acetylation of Lys2 and Gly!1 of yD-crystallin Human (205)
Multiple subtypes of crystallins

Deamidation, oxidation, ethylation, phosphorylation, methylation, Human (168)

acetylation, and carbamylation

19 phosphorylation proteins (28 phosphorylated sites) Human (173)

PTM, post-translational modification.

isomerase (172). Furthermore, differential expression patterns
of phosphoproteins have been observed in human cataract
lens extracts, in which 28 novel sites were identified as being
differentially phosphorylated (173).

In a previous study investigating PTMs in the lens
membrane, the most abundant lens membrane protein,
aquaporin 0 (AQPO), was demonstrated to be phosphorylated
on serine 235 and serine 229 (174). It was also revealed to
be truncated at specific residues and racemized/isomerized
on two aspartic acid residues, i.e. Asn 259 and Asn 246,
in normal human lens cells. In addition, the spatial distri-
bution of PTMs in the bovine lens was investigated, and
serine 235 of AQPO was demonstrated to be significantly
phosphorylated in the nuclear and equatorial cortex regions,
while C-terminal truncation of AQPO was detected in the
nuclear region. Furthermore, truncations of connexin 50 and
connexin 46 were observed primarily in the nuclear region,
and the corresponding expression levels of these proteins was
significantly lower in the anterior outer cortex region (175).
Novel PTMs of AQPO, including fatty acid acylation of the
bovine and human lens protein, and an oleic acid modifica-
tion to a lysine residue, have been detected by direct tissue
proteomic profiling (176). These results suggest that various
PTMs exist on AQPO, and that these PTMs may be associ-
ated with its biochemical functions, and particularly during
the aging process of the crystalline lens.

Vitreous humor. Profiling of the human vitreous humor
proteome has been completed, with at least 460 non-redun-
dant proteins being catalogued; however, the PTMs of these
proteins remain to be elucidated (177). The proteome of
the vitreous humor of rats with experimental autoimmune
uveitis (EAU) has been previously analyzed using 2D-PAGE,

MALDI-time of flight (TOF)/MS and micro-LC/LC-MS/MS
approaches. Truncations of aA- and aB-crystallin and phos-
phorylation of aB-crystallin were identified in the EAU group,
indicating that these PTMs may be crucial in regulating the
inflammatory reaction during uveitic conditions (178). In a
rat model of ischemia-reperfusion (I/R) injury, the vitreous
proteome was studied using 2D-PAGE and MALDI-TOF-MS
technology (179). The results revealed an increase in the phos-
phorylation of three serine residues on aB-crystallin, and a
decrease in extracellular signal related kinase 1/2 phsophory-
lation at 48 h following I/R injury. It has been suggested that
phosphorylation of aB-crystallin may be involved in suppres-
sion of the inflammatory process in I/R.

Retina. A number of previous studies have investigated
retinal proteomes, and the proteomic alterations that occur in
response to various retinopathies (180-183). In terms of PTMs,
a previous study profiling porcine rhodopsin documented
an extensive phosphorylation pattern on the C-terminus and
unusual glycosylation pattern, which is a significant discrep-
ancy when compared with that observed in bovine and rat
rhodopsin proteins (184). Among the 13 differentially expressed
mitochondrial proteins in normal mice and those with early
experimental autoimmune uveitis, oxidation and carbamido-
methylation were revealed to be the most common PTMs (185).
By contrast, pre-isolation by column chromatography coupled
with ESI-triple-quadrupole MS, enabled the characterization of
bovine cone transducin (Ty), TB3a8, which is similar to TR1y1
following isoprenylation. This suggested a weak involvement
of the interaction between TR3a8 and phosducin during cone
specialization (186). A similar top-down proteomic study
of the isoprenylation of transducin examined the rod outer
segment membrane of mice. In this study, similar modification
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sites were observed on murine Ty when compared with those
in bovine Ty (187). Using the proteomic PTM approach, a high
heterogeneic pattern of glycosylation on the 5-hydroxytrypta-
mine receptor 4 (5-HT,R) in 5-HT,R-containing rod cells was
discovered in transgenic mice (188). The use of SDS-PAGE,
TiO, phosphopeptide enrichment and LC-MS/MS has revealed
seven N-glycosylation sites and five phosphorylation sites on
the ATP-binding cassette, subfamily A, member 4 protein in
bovine rod outer segments, which has been suggested to be
part of the disease mechanism in Stargardt disease (189). In
addition, proteomic research has contributed to understanding
the dynamic nature of histones in the I/R injured rat retina.
With the application of linear ion trap-orbitrap hybrid MS/MS
analysis, 34 histone PTMs were revealed to be differentially
expressed in this ocular condition, of which three histone H4
marks were further confirmed by western blotting (190). This
indicated that these histone PTMs may predispose towards
DNA damage following I/R injury (190).

The increasing global prevalence of myopia in recent
decades, especially in eastern Asian countries, such as
China, Japan and Singapore, make it a non-negligible health
issue (191,192). The morbidity of myopia can reach up to
80-90% in younger age groups in these areas (193,194).
Previous studies have demonstrated that the retina is the major
site that receives signals and determines the extent of eyeball
elongation (195,196). Thus far, proteomic research has revealed
a number of candidate proteins that may be associated with
myopic eye growth (197-199). However, none of these studies
have specifically focused on PTMs. The first global screening
of the retinal phosphoproteome in a myopic chick model was
conducted using TiO, enrichment and nano-LC-TripleTOF
MS/MS analysis (200). In this pilot study, 560 phosphopro-
teins were profiled, in which 45 were upregulated and 30 were
downregulated during myopic eye growth. In addition, using
the phosphoenrichment approach, acetylated retinal proteins
including carbonic anhydrase, ubiquitin carboxyl-terminal
hydrolase and fatty acid-binding protein were revealed to be
upregulated while nucleophosmin, 40S ribosomal protein S12
and histone H1x were significantly downregulated in myopic
eyes. These results may provide an insight into the analysis
of retinal phosphoproteome alterations during myopic eye
growth.

Retinal pigment epithelium (RPE). The single layer of
pigmented cells located on the outside of the neurosensory
retina, is known as the RPE, which functions primarily to
nourish and support the photoreceptors. Alterations in the
PTMs of proteins have been studied in RPE cells following
exposure to light. The results indicated that phosphorylation
of cystallins may be important in protecting RPE against
light-induced oxidative damage (201). In addition, profiling
of the secretome in bovine RPE demonstrated the pres-
ence of three tyrosine-sulfated proteins. This included
tyrosine-sulfated complement factor H, which may be involved
in age-associated macular degeneration (202). Following
H,0, challenge, a novel 45 kDa truncated modification on
the retinoid isomerohydrolase (RPE65) protein was identified
by LC-MS/MS in murine RPE, suggesting that the RPE65
cleavage process may be affected by oxidative stress (203).
The results of a previous MS-based study put into question
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the conventional belief that the palmitoylation of cysteine
residues on RPE65 is responsible for membrane affinity (204).
However, neither palmitoylation nor additional PTMs were
identified on RPE6S5 in this study.

5. Conclusion

Proteomic approaches have evolved tremendously in the
past decade. Previous methods for protein separation and
fractionation limited the study of PTMs; however, advances
in enrichment methods have overcome these limitations
and enabled the identification of different disease-specific
PTM-associated biomarkers in ocular diseases (151,172,173).
This progress will improve our understanding of different
ocular disease mechanisms, and will be useful for the devel-
opment of novel diagnostic strategies to improve treatment
efficiency. Although research into proteomic PTMs in ocular
diseases is at a preliminary stage, the continuous improvement
of proteomics technologies will facilitate a more detailed
study of PTMs and their applications in ocular therapy in the
near future.
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