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Abstract. Chrysanthemum indicum Linné extract (CIL) is 
used in herbal medicine in East Asia. In the present study, 
gerbils were orally pre‑treated with CIL, and changes of anti-
oxidant enzymes including superoxide dismutase (SOD) 1 and 
SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the 
hippocampal CA1 region following 5 min of transient cerebral 
ischemia were investigated and the neuroprotective effect of 
CIL in the ischemic CA1 region was examined. SOD1, SOD2, 
CAT and GPX immunoreactivities were observed in the pyra-
midal cells of the CA1 region and their immunoreactivities 
were gradually decreased following ischemia‑reperfusion and 
barely detectable at 5 days post‑ischemia. CIL pre‑treatment 
significantly increased immunoreactivities of SOD1, CAT 

and GPX, but not SOD2, in the CA1 pyramidal cells of the 
sham‑operated animals. In addition, SOD1, SOD2, CAT and 
GPX immunoreactivities in the CA1 pyramidal cells were 
significantly higher compared with the ischemia‑operated 
animals. Furthermore, it was identified that pre‑treatment with 
CIL protected the CA1 pyramidal cells in the CA1 region using 
neuronal nuclei immunohistochemistry and Fluoro‑Jade B 
histofluorescence staining; the protected CA1 pyramidal 
cells were 67.5% compared with the sham‑operated animals. 
In conclusion, oral CIL pre‑treatment increased endogenous 
antioxidant enzymes in CA1 pyramidal cells in the gerbil 
hippocampus and protected the cells from transient cerebral 
ischemic insult. This finding suggested that CIL is promising 
for the prevention of ischemia‑induced neuronal damage.

Introduction

Ischemic stroke occurs due to the temporary or perma-
nent blockage of blood circulation in the brain in several 
circumstances, including brain ischemia, cardiac arrest and 
cardiovascular surgery  (1‑3). Transient cerebral ischemia, 
which is a major cause of ischemic stroke, leads to selective 
neuronal damage/death in vulnerable brain areas, including 
the cerebral cortex, the striatum and the hippocampus (3,4). 
In particular, the most vulnerable area to transient cerebral 
ischemia is the CA1 region of the hippocampus, in which pyra-
midal neurons of the stratum pyramidale of the CA1 region die 
several days following ischemia‑reperfusion injury (5,6).

One of mechanisms regarding neuronal damage/death 
induced by cerebral ischemia is oxidative stress, which is 
associated with the excessive production of reactive oxygen 
species (ROS) (7,8). The accumulation of ROS in ischemic 
conditions induces DNA damage, lipid peroxidation and 
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changes in cellular proteins  (8,9). ROS is converted into 
nontoxic compounds by enzymatic antioxidants including 
superoxide dismutases (SODs), catalase (CAT) and gluta-
thione peroxidase (GPX); known antioxidant enzymes (8,10). 
Various antioxidants, including antioxidant enzymes, have 
been recognized as beneficial in therapies for neurologic 
diseases (11,12).

Many studies on neuroprotection by plant extracts have 
been reported using animal models of cerebral ischemic 
insults (13,14). Chrysanthemum indicum Linné (Compositae; 
CIL) is a traditional herb used for medicines in East Asia. 
It has been used for the treatment of immune‑related disor-
ders, hypertension, infectious diseases and respiratory 
illness (15,16). The major components of CIL are bornyl acetate 
(10.00‑21.33%), borneol (8.34‑18.34%), camphor (7.75‑23.52%) 
and germacrene D (1.08‑12.67%). Significant minor compo-
nents of CIL include α‑terpineol (1.28‑3.32%), terpinen‑4‑ol 
(0.70‑1.59%) and caryophyllene oxide (0.13‑2.73%). However, 
1,8‑cineole is present at 30.41% in fresh flower oil and only 
0.12‑0.61% in the oil of air‑dried and processed flowers (17,18). 
CIL exhibits anti‑bacterial, anti‑viral, antioxidant, anti‑inflam-
matory and immunomodulatory functions (17,19). To the best 
of the authors' knowledge, few studies regarding neuroprotec-
tive effects of CIL and its antioxidant mechanism in brain 
ischemic insults have been published; therefore, the present 
study investigated the neuroprotective effect of CIL and 
whether endogenous antioxidant enzymes, including SOD1, 
SOD2, CAT and GPX, were associated with the neuroprotec-
tion in the hippocampus of the gerbil, a good animal model of 
transient cerebral ischemia (20,21).

Materials and methods

Preparation of extract from CIL. CIL was collected by 
Professor Jong Dai Kim in Kangwon Province (South Korea), 
in October 2013 and maintained in a deep freezer (‑70˚C). 
The CIL was extracted with 70% ethanol at 70˚C for 4 h, and 
extraction was repeated three times. The extract was filtered 
through Whatman filter paper (no. 2), concentrated with a 
vacuum evaporator, and completely dried with a freeze‑drier. 
The extraction yield was 14.5%.

Groups of experimental animals. Male Mongolian gerbils 
(Meriones unguiculatus; weight, 65‑75 g; age, 6 months) were 
obtained from the Experimental Animal Center, Kangwon 
National University, Chuncheon, South Korea. The animals 
were housed in standard conditions under adequate tempera-
ture (23˚C) and humidity (60%) control with a 12‑h:12‑h 
light:dark cycle, and were provided with free access to food and 
water. All the experimental protocols were approved (approval 
no. KW‑130424‑1) by the Institutional Animal Care and Use 
Committee at Kangwon University and adhered to guidelines 
that are in compliance with the current international laws and 
policies (Guide for the Care and Use of Laboratory Animals, 
The National Academies Press, 8th edition, 2011).

The experimental animals were divided into four groups 
(n=7 at each time point in each groups): i) Vehicle‑sham‑group, 
which was treated with vehicle and underwent no ischemia; 
ii) CIL‑sham‑group, which was treated with CIL and under-
went no ischemia; iii)  vehicle‑ischemia‑group, which was 

treated with vehicle and underwent ischemia surgery; and 
iv) CIL‑ischemia‑group, which was treated with CIL and 
underwent ischemia surgery.

Administration with CIL. CIL extract was dissolved in saline 
and administrated orally using a feeding needle once a day for 
seven days prior to ischemia surgery, according to previously 
published procedure (22). The preliminary tests were carried 
out with 25, 50, 100 and 200 mg/kg CIL. There were no 
neuroprotective effects in doses of 25, 50 and 100 mg/kg, but 
protective effects were demonstrated in animals treated with 
200 mg/kg. Thus, 200 mg/kg was selected. The last treatment 
was at 30 min prior to the surgery to maintain the level of CIL 
in animals prior to and following surgery.

Induction of transient cerebral ischemia. As previously 
described (23), the experimental animals were anesthetized 
with a mixture of ~2.5% isoflurane (Baxtor Healthcare 
Corp., Deerfield, IL, USA) in 33% O2 and 67% NO2. Bilateral 
common carotid arteries were isolated and occluded for 5 min 
using non‑traumatic aneurysm clips. Rectal temperature was 
controlled under normothermic (37±0.5˚C) conditions during 
the surgery with a rectal temperature probe (TR‑100; Fine 
Science Tools, Inc., Foster City, CA, USA).

Tissue preparation for histology. As previously described (24), 
gerbils (n=7 at each time point in each group) were anesthetized 
with pentobarbital sodium at the designated times and perfused 
transcardially with 0.1 M phosphate‑buffered saline (pH 7.4) 
followed by 4% paraformaldehyde in 0.1 M phosphate‑buffer 
(PB; pH 7.4). The brains were removed and postfixed in the 
same fixative for 6 h, and the brain tissues were sectioned on a 
cryostat (Leica Microsystems GmbH, Wetzlar, Germany) into 
30 µm coronal sections.

Immunohistochemistry. Immunohistochemistry was 
performed according to the previously published proce-
dure (24). In short, the sections were incubated with diluted 
mouse anti‑neuronal nuclei (NeuN; 1:800; cat. no. MAB377), 
sheep anti‑copper, zinc‑superoxide dismutase (SOD1; 1:1,000; 
cat. no. 574597) and sheep anti‑mangan‑superoxide dismutase 
(SOD2; 1:1,000; cat. no. 574596; all from EMD Millipore, 
Billerica, MA, USA), rabbit anti‑catalase (CAT; 1:500; cat. 
no. ab52477) and sheep anti‑glutathione peroxidase (GPX; 
1:1,000; cat. no. ab21966; both from Abcam, Cambridge, MA, 
UK). Thereafter the tissues were exposed to biotinylated horse 
anti‑mouse (1:250; cat. no. BA‑2000), rabbit anti‑sheep (1:250; 
cat. no. BA‑6000) and goat anti‑rabbit immunoglobulin (Ig)
G (1:250; cat. no.  BA‑1000) and streptavidin peroxidase 
complex (1:200, all from Vector Laboratories, Burlingame, 
CA, USA) and were visualized with 3,3'‑diaminobenzidine 
(Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany).

Fluoro‑Jade B histofluorescence staining. Fluoro‑Jade  B 
(F‑J B) histofluorescence staining was conducted according to 
a published procedure (25) in order to examine neuronal death. 
In brief, the sections were immersed in a solution containing 
1% sodium hydroxide, transferred to a solution of 0.06% 
potassium permanganate and transferred to a 0.0004% F‑J B 
(Histo‑Chem Inc., Jefferson, AR, USA) staining solution. 
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The stained sections were observed using an epifluorescent 
microscope (Zeiss AG, Oberkochen, Germany) with a blue 
(450‑490 nm) excitation source and a barrier filter.

Data analysis. Data were analyzed according to published 
procedure (26). Briefly, to quantitatively analyze immunoreac-
tivities of antioxidant enzymes, the immunoreactivity of SOD1, 
SOD2, CAT and GPX‑immunoreactive structures was evalu-
ated on the basis of optical density (OD), which was obtained 
following the transformation of the mean gray level using the 
formula: OD = log (256/mean gray level). A portion of the OD 
of an image file was calibrated in Adobe Photoshop 8.0 (Adobe 
Systems, Inc., San Jose, CA, USA) and then analyzed as a 
percentage, with the sham‑operated‑group designated as 100%, 
in ImageJ version 1.59 (National Institutes of Health, Bethesda, 
MD, USA). For cell counting, NeuN‑ and F‑J B‑positive cells 
were imaged from the stratum pyramidale through an AxioM1 
light microscope (Zeiss AG) equipped with a digital camera 
(Axiocam; Zeiss AG) connected to a PC monitor. The mean 
number of NeuN‑ and F‑J B‑positive cells was counted in a 
200x200 µm square applied approximately at the center of the 
CA1 region. Cell counts were obtained by averaging the total 
cell numbers from each animal per group and analyzing them as 
a percentage, with the vehicle‑sham‑group designated as 100%.

Statistical analysis. The data was presented as mean ± standard 
error of mean of the means among the groups and were 
statistically analyzed by analysis of variance with a post hoc 
Bonferroni's multiple comparisons test, in order to present 
differences among experimental groups. P<0.05 was considered 
to indicate a statistically significant difference.

Results

Antioxidant immunoreactivities
SOD1 immunoreactivity. SOD1 immunoreactivity was 
easily detected in pyramidal cells of the hippocampal 
CA1 region of the vehicle‑sham‑group (Fig.  1A). In the 
vehicle‑ischemia‑group, SOD1 immunoreactivity was signifi-
cantly decreased in the CA1 pyramidal cells 2 days following 
ischemia‑reperfusion and SOD1 immunoreactivity was 
hardly detected in the CA1 pyramidal cells 5 days following 
ischemia‑reperfusion (Fig. 1C, E and G).

In the CIL‑sham‑group, SOD1 immunoreactivity in the CA1 
pyramidal cells was significantly higher compared with the 
vehicle‑sham‑group (Fig. 1B and G). In the CIL‑ischemia‑group, 
SOD1 immunoreactivity in the CA1 pyramidal cells was 
reduced following ischemia‑reperfusion; however, the SOD1 
immunoreactivity was significantly higher compared with 
the corresponding vehicle‑ischemia‑group (Fig. 1D, F and G). 
In particular, 5 days following ischemia‑reperfusion in the 
CIL‑ischemia‑group, numerous SOD1‑immunoreactive CA1 
pyramidal cells were observed (Fig. 1F).

SOD2 immunoreactivity. SOD2 immunoreactivity was 
also clearly identified in the CA1 pyramidal cells in the 
vehicle‑sham‑group (Fig. 2A). SOD1 immunoreactivity in the 
CA1 pyramidal cells was significantly decreased 2 days and 
barely detected 5 days following ischemia‑reperfusion in the 
vehicle‑ischemia‑group (Fig. 2C, E and G).

In the CIL‑sham‑group, SOD2 immunoreactivity in the 
CA1 pyramidal cells was slightly increased compared with 
the vehicle‑sham‑group; however, it was not statistically 
significant (Fig. 2B and G). In the CIL‑ischemia‑group, the 
changing pattern of SOD2 immunoreactivity in the CA1 
pyramidal cells was similar to that of the SOD1 immunoreac-
tivity (Fig. 2D, F and G).

CAT immunoreactivity. In the vehicle‑sham‑group, CAT 
immunoreactivity was clearly observed in the pyramidal cells 
of the stratum pyramidale layer of the CA1 region (Fig. 3A). 
In the vehicle‑ischemia‑group, CAT immunoreactivity was 
significantly decreased in the CA1 pyramidal cells at 2 days 
post‑ischemia (Fig. 3C and G). At 5 days post‑ischemia, CAT 
immunoreactivity in the CA1 pyramidal cells was barely 
observable; however, CAT immunoreactivity was newly 
expressed in non‑pyramidal cells in the strata oriens and 
radiatum of the CA1 region (Fig. 3E and G).

In the CIL‑sham‑group, CAT immunoreactivity in the CA 
pyramidal cells was significantly increased compared with the 
vehicle‑sham‑group (Fig. 3B and G). In the CIL‑ischemia‑group, 
although the CAT immunoreactivity in the CA1 pyramidal 
cells was decreased following ischemia‑reperfusion, the CAT 
immunoreactivity was significantly higher compared with the 
corresponding vehicle‑ischemia‑group (Fig. 3D, F and G).

GPX immunoreactivity. GPX immunoreactivity in the 
vehicle‑sham‑group was easily detected in the CA1 
pyramidal cells (Fig. 4A). GPX immunoreactivity in the 
CA1 pyramidal cells was markedly decreased at 2  days 
post‑ischemia and barely identified at 5 days post‑ischemia 
(Fig. 4C, E and G).

GPX immunoreactivity in the CA1 pyramidal cells of 
the CIL‑sham‑group was significantly higher compared 
with the vehicle‑sham‑group (Fig.  4B and G). In the 
CIL‑ischemia‑group, GPX immunoreactivity in the CA1 pyra-
midal cells was decreased following ischemia‑reperfusion; 
however, the GPX immunoreactivity was significantly higher 
compared with the corresponding vehicle‑ischemia‑group 
(Fig. 4D, F and G).

Neuroprotective effects
NeuN‑positive neurons. NeuN‑positive neurons were identified 
in the stratum pyramidale of the hippocampus proper (CA1‑3 
regions) of the vehicle‑sham‑group (Fig. 5A and B). The distribu-
tion of NeuN‑positive neurons in the CIL‑sham‑group was similar 
to the vehicle‑sham‑group and the number of NeuN‑positive 
neurons remained unchanged (Fig. 5D, E and M).

In the vehicle‑ischemia‑group, a small number of 
NeuN‑positive neurons were observed in the stratum pyrami-
dale of the CA1 region, and none in the CA2‑3 region, 5 days 
following ischemia‑reperfusion (Fig. 5G and H); the rela-
tive number of NeuN‑positive neurons was ~9% compared 
with the vehicle‑sham‑group (Fig.  5M). However, in the 
CIL‑ischemia‑group, numerous NeuN‑positive neurons 
were detected in the stratum pyramidale of the CA1 region 
5 days following ischemia‑reperfusion (Fig. 5J and K); the 
protected neurons were ~68% of the vehicle‑sham‑group 
(Fig.  5M); this finding was identical to our previously 
study (22).
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F‑J B‑positive cells. In the vehicle‑sham‑ and CIL‑sham‑groups, 
F‑J B‑positive cells were not observed in the stratum pyramidale 
of the CA1 region (Fig. 5C, F and N). In the vehicle‑isch-
emia‑group, however, numerous F‑J B‑positive cells were 
detected in the stratum pyramidale of the CA1 region 5 days 

following ischemia‑reperfusion (Fig. 5I and N). However, in 
the CIL‑ischemia‑group, only a few F‑J B‑positive cells were 
detected, and the relative number of F‑J B‑positive cells was 
~24% that of the vehicle‑ischemia‑group (Fig. 5L and N); this 
finding was identical to a previous study of the authors (22).

Figure 1. SOD1 immunohistochemistry in the hippocampal CA1 region of the (A) vehicle‑sham‑, (B) CIL‑sham‑, (C and E) vehicle‑ischemia‑ and 
(D and F) CIL‑ischemia‑groups following ischemia‑reperfusion. SOD1 immunoreactivity is easily observed in the SP in the vehicle‑sham‑group. In the 
vehicle‑ischemia‑group, SOD1 immunoreactivity is hardly observed in the SP (asterisk) 5 days following ischemia‑reperfusion. In the CIL‑sham‑group, 
SOD1 immunoreactivity is significantly increased compared with the vehicle‑sham‑group, and the immunoreactivity is well detected until 5 days following 
ischemia‑reperfusion. Scale bar, 100 µm. (G) ROD as % values of SOD1 immunoreactivity in the SP of each group (*P<0.05 vs. vehicle‑sham‑group; #P<0.05 
vs. corresponding vehicle‑ischemia‑group; †P<0.05 vs. respective pre‑time point group). The bars indicate the means ± standard error of mean. SP, stratum 
pyramidale; SOD, superoxide dismutase; CIL, Chrysanthemum indicum Linné extract; ROD, relative optical density; SO, stratum oriens; SR, stratum radiatum.
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Discussion

Just five min of transient cerebral ischemia results in the 
damage/death of pyramidal neurons in the hippocampus and 
neuronal death occurs selectively in the hippocampal CA1 

region (27,28). It has been reported (6,29) that pyramidal cells 
of the stratum pyramidale in the hippocampal CA1 region die 
several days following transient cerebral ischemia. Mongolian 
gerbils have been generally used as a good experimental 
animal model of transient cerebral ischemia as the posterior 

Figure 2. SOD2 immunohistochemistry in the hippocampal CA1 region of the (A) vehicle‑sham‑, (B) CIL‑sham‑, (C and E) vehicle‑ischemia‑ and 
(D and F) CIL‑ischemia‑groups following ischemia‑reperfusion. SOD2 immunoreactivity is identified in the SP in the vehicle‑sham‑group, and SOD2 immu-
noreactivity in the SP (asterisk) is barely observable 5 days following ischemia‑reperfusion. In the CIL‑sham‑group, SOD2 immunoreactivity is similar to 
that of the vehicle‑sham‑group, and, in the CIL‑ischemia‑group, SOD2 immunoreactivity in the SP is higher than that corresponding vehicle‑sham‑group. 
Scale bar, 100 µm. (G) ROD as % values of SOD2 immunoreactivity in the SP of each group (*P<0.05 vs. vehicle‑sham‑group; #P<0.05 vs. corresponding 
vehicle‑ischemia‑group; †P<0.05 vs. respective pre‑time point group). The bars indicate the means ± standard error of mean. SP, stratum pyramidale; SOD, 
superoxide dismutase; CIL, Chrysanthemum indicum Linné extract; ROD, relative optical density; SO, stratum oriens; SR, stratum radiatum.
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communicating arteries in Willis' circle, which connect the 
vertebrabasilar and carotid arterial system, are lacking in 
gerbils and transient cerebral ischemia can easily be made by 
the ligation of bilateral common carotid arteries (24,30,31).

The present study observed the death of pyramidal cells in 
the hippocampal CA1 region by NeuN immunohistochemistry 

and F‑J B histofluorescence; a noticeable loss of CA1 
pyramidal cells was identified in the stratum pyramidale of 
the CA1 region 5 days following ischemia‑reperfusion. This 
result corresponds to findings of previous studies (23,32,33). 
In addition, it was identified that the oral pre‑treatment of 
200 mg/kg CIL to the gerbils protected CA1 pyramidal cells 

Figure 3. CAT immunohistochemistry in the hippocampal CA1 region of the (A)  vehicle‑sham, (B)  CIL‑sham‑, (C and E)  vehicle‑ischemia‑ and 
(D and F) CIL‑ischemia‑groups following ischemia‑reperfusion. CAT immunoreactivity is markedly decreased in the SP (asterisk) of the vehicle‑ischemia‑group 
at 5 days following ischemia‑reperfusion; however, in the CIL‑sham‑ and CIL‑ischemia‑groups, CAT immunoreactivity in the SP is significantly higher 
compared with the vehicle‑sham‑ and vehicle‑ischemia‑groups. Scale bar, 100 µm. (G) ROD as % values of CAT immunoreactivity in the SP of each group 
(*P<0.05 vs. vehicle‑sham‑group; #P<0.05 vs. corresponding vehicle‑ischemia‑group; †P<0.05 vs. respective pre‑time point group). The bars indicate the 
means ± standard error of mean. SP, stratum pyramidale; CAT, catalase; CIL, Chrysanthemum indicum Linné extract; ROD, relative optical density; SO, 
stratum oriens; SR, stratum radiatum.
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(~67% of the sham‑operated gerbils) from 5 min of transient 
cerebral ischemia; this finding was identical to a previous 
study of the authors (22).

Although mechanisms regarding neuronal death by 
transient cerebral ischemic insult are complex, it has been 

demonstrated that, among the mechanisms, endogenous 
antioxidant enzymes are associated with neuroprotection via 
the efficient scavenging of ROS (2,9,34,35). Excessive ROS 
production is a cause of neuronal damage/death following 
ischemia‑reperfusion injury and has been implicated in the 

Figure 4. GPX immunohistochemistry in the hippocampal CA1 region of the (A) vehicle‑sham‑, (B) CIL‑sham‑, (C and E) vehicle‑ischemia‑ and 
(D and F) CIL‑ischemia‑groups following ischemia‑reperfusion. GPX immunoreactivity is detected well in the SP of the vehicle‑sham‑group; the immu-
noreactivity is significantly increased in the CIL‑sham‑group. In the vehicle‑ischemia‑group, GPX immunoreactivity is hardly observed in the SP at 5 days 
post‑ischemia; however, in the CIL‑ischemia‑group, GPX immunoreactivity is significantly higher than that in the vehicle‑ischemia‑group. Scale bar, 100 µm. 
(G) ROD as % values of GPX immunoreactivity in the SP of each group (*P<0.05 vs. vehicle‑sham‑group; #P<0.05 vs. corresponding vehicle‑ischemia‑group; 
†P<0.05 vs. respective pre‑time point group). The bars indicate the means ± standard error of mean. GPX, glutathione peroxidase; CIL, Chrysanthemum indicum 
Linné extract; ROD, relative optical density; SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum.
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development of numerous neurologic disorders and brain 
dysfunctions (10,36‑38). Accumulated ROS cause the injurious 
modification of cellular elements including DNA, proteins and 
lipids; eventually, the accumulated ROS can impair cellular 
function and result in neuronal damage/death (39,40). In the 

present study, SOD1, SOD2, CAT and GPX immunoreactivi-
ties of the vehicle‑ischemia‑group were significantly decreased 
and barely identified in the CA1 pyramidal cells 5  days 
following ischemia‑reperfusion. This result is coincident with 
the finding of a previous study using gerbils (40).

Figure 5. NeuN‑(left and middle columns) and F‑J B‑(right column) positive cells of (A‑C) vehicle‑sham‑, (D‑F) CIL‑sham‑, (G‑I) vehicle‑ischemia‑(J‑L) and 
CIL‑ischemia‑groups 5 days following ischemia‑reperfusion. In the vehicle‑ischemia‑group, a few NeuN‑(arrows) and numerous F‑J B‑(asterisk) are detected 
in the SP of the CA1 region. In the CIL‑ischemia‑group, numerous NeuN‑ and few F‑J B‑positive cells are observed in the SP at 5 days post‑ischemia. Scale 
bar, (A, D, G and J) 50 µm and (B, C, E, F, H, I, K and L) 100 µm. (M and N) Relative analysis as % of the number of NeuN‑ and F‑J B‑positive cells in the CA1 
region (*P<0.05 vs. respective vehicle‑sham‑group; #P<0.05 vs. corresponding vehicle‑ischemia‑group). The bars indicate the means ± standard error of mean. 
SP, stratum pyramidale; NeuN, neuronal nuclei; CIL, Chrysanthemum indicum Linné extract; F‑J B, Fluoro‑Jade B; SO, stratum oriens; SR, stratum radiatum.



MOLECULAR MEDICINE REPORTS  16:  133-142,  2017 141

Kim  et  al  (41) investigated the protective effect 
of Chrysanthemum  indicum ethanol extract against 
cisplatin‑induced nephrotoxicity in  vitro. Their find-
ings may be associated with the antioxidative effects 
of Chrysanthemum  indicum ethanol extract since the 
Chrysanthemum indicum ethanol extract pre‑treated group 
demonstrated a recovery of serum renal function index with 
ameliorated oxidative stress; the effect has not been investi-
gated in any ischemic stroke model and may be a subject for 
future studies. In the present study, CIL pre‑treatment signifi-
cantly enhanced the immunoreactivities of SOD1, CAT and 
GPX, although not SOD2, in the CA1 pyramidal cells of the 
vehicle‑sham‑group, and SOD1, SOD2, CAT and GPX immu-
noreactivities in the CA1 pyramidal cells were significantly 
higher compared with the vehicle‑ischemia‑group. These 
results suggested that the administration of CIL increases 
antioxidant enzymes and it exhibits neuroprotection following 
transient cerebral ischemia.

ROS are scavenged by SODs, GPX and CAT, and functions 
of the antioxidant enzymes have been studied by a number of 
researchers. It has been reported that SOD1 overexpression 
demonstrated a neuroprotective effect in the hippocampal CA1 
region against cerebral ischemic insults in rodents (42,43). 
Kondo  et  al  (44) reported that SOD1 knockout mice had 
demonstrated the increase of cell death and edema of the brain 
following focal cerebral ischemia, and Murakami et al (45) 
demonstrated that, in SOD2 knockout mice, exacerbated 
infarct volume was identified in the brain following permanent 
focal cerebral ischemia, and suggested that SOD2 was an 
important enzyme in protecting brain from ischemic injury. It 
has also been reported that the administration of PEP‑1‑CAT 
fusion protein demonstrated significant neuroprotection in 
the hippocampal CA1 region following transient cerebral 
ischemia (46). Furthermore, it was recently reported that GPX, 
which is another antioxidant enzyme contributing to H2O2 
scavenging, exhibited a stronger neuroprotective antioxidant 
against oxidative stress than SOD (8).

It has been demonstrated that CIL is associated with 
the inhibition of inflammatory responses  (15,16,19,22,47). 
Cheng et al (15) reported that a butanol soluble fraction of CIL 
possessed anti‑inflammatory, immunomodulatory and mono-
nuclear phagocytic activities by the enhancement of serum IgG 
and IgM levels in response to sheep red blood cells in cyclophos-
phamide‑induced mice, and Cheon et al (19) demonstrated that 
CIL suppressed the production of inflammatory mediators and 
proinflammatory cytokines via the downregulation of nuclear 
factor κB and mitogen‑activated protein kinases in RAW264.7 
macrophages (15,19). Previously, Kim et al (48) reported that 
CIL protected against 1‑methyl‑4‑phenylpridinium ions and 
lipopolysaccharide‑induced cytotoxicity in a cellular model of 
Parkinson's disease. In addition, Yoo et al (22) recently reported 
that CIL pre‑treatment increased anti‑inflammatory cytokines 
in the hippocampus and that the increased anti‑inflammatory 
cytokines were associated with neuroprotection in the gerbil 
hippocampus induced by transient cerebral ischemia.

In brief, the present study identified that CIL pre‑treatment 
enhanced SOD1, CAT and GPX, although not SOD2, in 
pyramidal cells in the gerbil hippocampal CA1 region and 
protected the cells from transient cerebral ischemia. These 
results indicated that CIL‑mediated neuroprotective effect 

may be associated with increases of antioxidant enzymes in 
the CA1 pyramidal cells and suggested that CIL may be used 
for the prevention of ischemic damage in the brain.
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