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Abstract. Osteosarcoma is a common malignant tumor in 
childhood and adolescence (nearly 5% of all cases of cancer 
in children), as well as a type of tumor with poor prognosis. 
However, the pathogenesis and molecular mechanisms of 
osteosarcoma remains to be elucidated. The aim of the current 
study was to determine the association between methylation 
and gene expression changes in osteosarcoma cell line. 
Microarray data were obtained from the Gene Expression 
Omnibus database (GSE36004). Genome-wide methylation 
status was determined in 19 different osteosarcoma cell lines 
and 6 normal controls. Differentially expressed genes (DEGs) 
were identified from cancer cells with genefilter package in 
R and differentially methylated sites were screened with 
CpGassoc package in R. Integrated gene expression with 
methylation profiles, genes differentially expressed and 
methylated, were obtained, and transcriptional regulatory 
network construction was performed. Functional annotation 
was performed for genes in the network using the DAVID 
online tool. Following integrated analysis, a total of 75 
methylated sites were demonstrated to be localized at a 
transcription factor binding region. These sites may be bound 
by 83 transcription factors which will then alter the expression 
of 75 downstream DEGs. In the regulatory network, seizure 
related 6 homolog like 2 (SEZ6L2) had the highest degree 
of upregulation and was demonstrated to be regulated by 12 
transcription factors. Furthermore, kin of IRRE like (KIRREL), 
centrosomal protein 72 (CEP72) and cyclin‑dependent kinase 4 
(CDK4) were also regulated by more than three transcription 
factors. Functional annotation revealed that the upregulated 
genes were primarily involved in the cell cycle pathway. 
Several differentially methylated sites were associated with 
upregulation of SEZ6L2, KIRREL, CEP72 and CDK4 and may 

have an important role in the pathogenesis of osteosarcomas 
through promotion of cell proliferation and metastasis.

Introduction

Osteosarcoma, which is most prevalent in childhood and 
adolescence, is an aggressive, malignant neoplasm that 
exhibits osteoblastic differentiation and produces malignant 
osteoid (1). Although the majority of patients are able to 
have limb surgery, various risk factors, including infection, 
complications of surgery and local tumor recurrence may 
induce the need for further surgery (2). In addition, although 
the 5-year survival rates of patients that received combined 
treatments, such as chemotherapy and surgery, may be as high 
as 70%, rates in patients with lung metastasis remain unsatis-
factory (20-40%) (3,4). Thus, it is necessary to investigate the 
pathogenesis and molecular mechanisms of osteosarcoma in 
further depth to further advance treatment.

To date, various studies have investigated the molecular 
mechanism of osteosarcoma, including investigation of 
associated genes and pathways. Of those investigated, the reti-
noblastoma (RB) gene and p53 gene are commonly implicated 
in the activation of metastatic osteosarcoma (5). Furthermore, 
it has been demonstrated that the integrity of the RB pathway 
has an important role in tumor behavior, clinical progression 
and outcome in patients with osteosarcoma (6). Notably, resto-
ration of RB also corrected the activity of the p53 pathway in an 
aggressive osteosarcoma (7,8). A previous study demonstrated 
that the methylation of heterozygous RB and the RB promoter 
have been exhibited in several patients with osteosarcoma (9). 
Previously, CpG island methylation, which is an epigenetic 
form of gene regulation that disturbs the function of tumor 
suppressor genes or oncogenes, has also been demonstrated 
to contribute to carcinogenesis (10). Skarn et al (11) demon-
strated that methylation of CpG islands had an important role 
in the regulation of microRNA expression in osteosarcoma. 
However, the understanding of the epigenetic alterations 
implicated in osteosarcoma is currently limited. Therefore, the 
role of CpG methylation in the pathogenesis and progression 
of osteosarcoma remains to be defined in full.

A previous study made progress in the investigation of 
the molecular mechanisms of osteosarcoma dependent on 
methylation. Kresse et al (12) demonstrated the association 
between the copy number of DNA, mRNA expression and 
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DNA methylation in osteosarcoma. Specifically, the present 
study focused on the effects of CpG island methylation in 
transcriptional regulation that contributes to the tumorigenesis 
of osteosarcoma. Based on the DNA methylation and gene 
expression profiles in osteosarcoma, differentially expressed 
genes (DEGs) with CpG methylation were identified, and 
the transcriptional regulatory relationship was analyzed by 
building a regulatory network. Functional annotation was also 
performed to investigate the biological role of abnormally 
expressed genes.

Materials and methods

Data source. Gene expression data of GSE36001 (ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE36001) and 
DNA methylation profiles of GSE36004 (ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE36004) were downloaded from 
the Gene Expression Omnibus (GEO) based on the platform of 
Illumina human-6 v.2.0 expression BeadChip (Illumina, Inc., 
San Diego, CA, USA) and Illumina HumanMethylation27 
BeadChip (Illumina, Inc.) (12). In each of these datasets, 
19 osteosarcoma cell lines were included, while two normal 
osteoblast cell lines (OB1 and OB2, two primary osteoblast 
cultures isolated from human calvaria of different donors) 
were purchased from ScienCell Research Laboratories 
(California, USA) (12) and four normal bone samples were 
included as controls. The following osteosarcoma cell lines 
were included: 143B; HAL; HOS; ΩIOR/OS9; IOR/OS10; 
IOR/OS14; IOR/OS15; IOR/OS18; IOR/MOS; IOR/SARG; 
KPD; MG-63; MHM; MNNG/HOS; OHS; OSA; Saos-2; U-2 
OS; and ZK-58. Details of the origin of each cell line or bone 
sample involved in the datasets can be obtained via the web 
links provided for each dataset.

Data preprocessing. Raw data of all probes were normalized 
by the median method (13). Following normalization, the 
probe name was converted into a gene symbol based on the 
annotation information. If more than one probe mapped to one 
gene, an aggregate function in R (14) was performed to calculate 
the mean expression value for this gene. Probes with missing 
values were imputed with the nearest neighbor averaging 
method (15) of imputation (impute) package (version 1.0; 
https://bioconductor.org/packages/release/bioc/html/impute.html) in 
R (16). The DNA methylation data obtained from GEO was 
preprocessed with BeadStudio software (version 3.1) from 
Illumina, Inc. where the methylated locus for each sample with 
a missing value was removed.

Identification of DEGs in osteosarcoma cells. To identify 
DEGs between osteosarcoma cells and normal controls, 
one way analysis of variance (ANOVA) in the genefilter 
package of R was performed (15). P-values were generated 
using Benjamini-Hochberg (BH) multiple testing correction 
method and P<0.05 was considered to indicate a statistically 
significant difference. The ratio of mean expression of normal 
and osteosarcoma cell groups was used to determine whether 
genes were up or downregulated.

Identification of disease‑associated methylated regions 
(DMR). To identify disease-associated CpG methylated sites 

in osteosarcoma cells, compared with normal control for 
disease-association analysis, CpG loci with beta values that 
were not significantly different between case and control 
were eliminated. Similarly, all CpG loci on the X, Y and 
mitochondrial chromosomes were removed. Subsequently, the 
CpGassoc package of R (17) was used for disease-association 
analysis, which is designed to investigate the association 
between methylation at CpG loci across the genome and a 
phenotype of interest. CpGassoc algorithm of R package 
was used to determine the association between CpG loci and 
osteosarcoma. In addition, CpGassoc can also be used to create 
quantile-quantile plots, manhattan plots and scatterplots for 
individual CpG sites. BH multiple testing correction was used 
to estimate the false discovery rate (FDR) in disease‑associated 
analysis. FDR≤0.05 was chosen as the threshold.

Integration analysis of gene expression and methylation 
profiles. To investigate the association between methylation 
and gene expression in osteosarcoma cell lines, methylation 
data was measured on ±2 kb genomic regions around the 
transcriptional start sites (TSS) of each gene. The obtained 
genes were differentially methylated. Integration analysis 
was performed to identify genes where there was an overlap 
between differential expression between control and osteosar-
coma, and the presence of methylation. In order to investigate 
the influence of methylation on gene expression, the transcrip-
tion factor binding sites were searched within the UCSC 
database (18). Subsequently, methylated DEGs in transcription 
factor binding regions in osteosarcoma cells were screened.

Construction of transcriptional regulatory networks. Based on 
the transcription factor and target gene information provided 
by the UCSC database, transcriptional regulatory networks 
were constructed and further visualized by Cytoscape soft-
ware (version 2.8.0; www.cytoscape.org) (19). In the network, 
the node degree was calculated by igraph package in R (20).

Functional annotation of target genes of transcription factors. 
To understand the biological roles of target genes of the 
transcription factors blocked by DNA methylation, gene ontology 
(GO) function and pathway enrichment analysis was performed 
by DAVID (database for annotation, visualization, and integrated 
discovery) online tool (21). P<0.05 was considered to indicate a 
statistically significant difference.

Results

Identification of DEGs in osteosarcoma cells. Following 
preprocessing of methylation profile data, a total of 20,006 
methylation sites were identified from the 25 samples 
Similarly, a total of 24,214 genes were identified from 
25 samples following preprocessing of expression profile data. 
By applying ANOVA, a total of 6,419 DEGs were identified in 
osteosarcoma cells compared with normal control, including 
3,236 upregulated and 3,183 downregulated genes.

Identification of DMRs. To identify differentially methylated 
genes, the present study performed three types of analyses. 
Initially preprocessing of raw methylation data was performed 
and 20,006 methylated sites were identified in the 25 samples 
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included in the dataset. Subsequently, methylated sites that 
were located on the X, Y and mitochondrial chromosomes 
and imputation analysis was performed; as a result, 5,921 
sites were eliminated from further analysis. Finally, following 
disease-associated analysis, 13,750 differentially methylated 
genes located in different chromosome regions, with an 
FDR<0.05, were identified in osteosarcoma cells (Fig. 1).

Integration analysis of DEGs and differentially methylated 
genes. Integration analysis indicated that 3,625 genes were 
differentially expressed in osteosarcoma and control, and also 
methylated around their TSS. Based on the UCSC database 
for transcription factors, a total of 75 methylated sites were 
located in the transcription factor binding regions, which may 
affect 83 transcription factors and 75 downstream target genes.

Construction of transcription regulatory network. Based on 
different types of regulation, a transcription regulatory network 
was constructed, which included 83 transcription factors and 
75 downstream target genes (Fig. 2). In the network, there were 
158 nodes and 129 edges. Of the genes in the network, the 
overexpressed gene seizure related 6 homolog like 2 (SEZ6L2) 
had the highest degree. It was observed that SEZ6L2 was regu-
lated by 12 transcription factors, including signal transducer 
and activator of transcription 3 (STAT3) and early growth 
response 1-3 (EGR1-3). Additionally, the transcription factor 
myocyte enhancer factor 2 (MEF2), which had a higher degree 
compared with other transcription factors, regulated seven 
downstream targets, including the upregulated replication 
factor C (activator 1) 4, cyclin‑dependent kinase 4 (CDK4) 

and chromodomain helicase DNA binding protein 6 genes, 
and downregulated the chromosome 14 open reading frame 
102 gene. Similarly, the upregulated kin of IRRE like gene 
(KIRREL) was regulated by seven different transcription 
factors. Transcription factor paired box 5 (PAX5) was indicated 
to be involved in the regulation of three up and two downregu-
lated genes in the network. Upregulated genes, centrosomal 
protein 72 (CEP72), block of proliferation 1 (BOP1) and TruB 
pseudouridine synthase family member 1, were regulated by a 
different set of three transcription factors: STAT3, MEF2 and 
adaptor-related protein complex 1 (AP1).

Functional annotation of target genes of transcription 
factors. GO functional enrichment analysis was performed 
for 46 upregulated and 29 downregulated genes. The top 
five enriched categories are listed in Tables I and II. The 
upregulated genes were predominantly enriched in the GO 
terms of cell cycle, non-coding RNA metabolic process and 
the maturation of large subunit ribosomal RNA (rRNA) from 
tricistronic rRNA transcript. In addition, downregulated genes 
were predominantly involved in the inflammatory response, 
regulation of the humoral immune response and response to 
wounding.

Discussion

Osteosarcoma is the most common histological form of 
primary bone cancer. To analyze the effects of genome-wide 
changes in gene expression and DNA methylation in osteosar-
coma cell lines, the present study identified 75 significantly 

Figure 1. Distribution of DMRs on chromosomes. The y axis indicates chromosome location and the x axis indicates the position of DMRs. All DMRs located 
on the X, Y and mitochondrial chromosomes were removed. DMRs, disease-associated methylated regions.



WANG:  DNA METHYLATION IN OSTEOSARCOMA904

methylated genes, which included 46 genes that were upregu-
lated (including SEZ6L2, KIRREL, CEP72, BOP1 and CDK4) 
and 29 genes that were downregulated in osteosarcoma cell 
lines compared with the normal controls. These genes were 
regulated by 83 transcription factors, including MEF2 and 
PAX5.

SEZ6L2 encodes a seizure-associated protein with an 
N-terminal signal peptide that is located on the cell surface. 
In the present study, this gene was demonstrated to be regu-
lated by various transcription factors, including STAT3, EGR1 
and PAX4. It has been previously demonstrated that STAT3 
upregulates vascular endothelial growth factor expression 
and contributes to tumor angiogenesis (22), which means it is 
widely regarded as a promising target for cancer treatment. 
In addition, the STAT3 inhibitor, CDDO-Me, inhibited the 
development of osteosarcoma cell lines and also induced apop-
tosis (23). Furthermore, it was demonstrated that microRNA 
(miR)-125b downregulated the expression of STAT3, which 
suppressed the migration and proliferation of osteosarcoma 
cells (24). In addition, a previous study demonstrated that, by 
upregulating EGR1, chemotherapy downregulated the activity 
of urokinase and prevented osteosarcoma cell invasion (25). 

Additionally, another member of EGR family, EGR2, was 
suppressed by miR-20a, which promoted the cell cycle and 
proliferation of human osteosarcoma cells (26). Based on 
these previous results, SEZ6L2 may modulate the cell cycle 
and metastasis of osteosarcoma through regulation by STAT3, 
EGR1 and PAX4.

KIRREL, also known as NEPH1, is a nephrin-associated 
member of the immunoglobulin superfamily that is involved 
in cell-cell interaction and somatic cell fusion during 
embryonic development (27,28). Notably, it is thought that 
somatic cell fusion may be a mechanism that contributes 
to cancer metastasis and chemotherapy resistance (29,30). 
KIRREL has been demonstrated to be differentially 
hyper-methylated in primary malignant adrenocortical 
samples compared with benign samples (31). In the present 
study, it was identified that KIRREL was regulated by 
various transcription factors, including AP4, GATA binding 
protein 2 (GATA2) and serum response factor (SRF). AP4 
induced the expression of CDK2, which subsequently 
regulated the proliferation of osteosarcoma cell lines (32). 
SRF was previously demonstrated to be involved in the 
mitogen‑activated protein kinase cascade signaling pathway 

Figure 2. Transcriptional regulatory network. Blue triangle, transcription factor; red rectangle, upregulated gene; green rectangle, downregulated gene.



MOLECULAR MEDICINE REPORTS  16:  901-907,  2017 905

in human osteosarcoma cells (33). Furthermore, it has been 
demonstrated that GATA2 is required for proliferation in 
various cancer cell types (34). Thus, differential expression of 
KIRREL may be regulated by methylation and transcription 
factors that promote tumor development. In addition, 
CEP72, CDK4 and BOP1 were differentially methylated and 
regulated by transcription factors, including STAT3, MEF2 
and AP1. CEP72 encodes a protein that is a member of the 
leucine-rich-repeat superfamily. CEP72 has been identified 

as possessing a high incidence of genomic copy number 
changes in the 5p15.33 region in patients with non-small 
cell lung cancer (35). As osteosarcoma has a high tendency 
for metastatic spread and predominantly arises in the lungs, 
CEP72 may have a key role in cancer metastasis. In addition, 
it was previously demonstrated that CEP72 was regulated by 
AP1, which is involved in the ERK signaling pathway (36). 
It is well established that CDKs are essential drivers of cell 
cycle progression and are commonly dysregulated during 

Table II. Functional annotation of downregulated genes in the transcriptional regulatory network.

 Term
----------------------------------------------------------------------------------------------------------------------------------------------------
ID Name Count P-value

GOTERM_BP_FAT   
  GO:0006954  Inflammatory response 4 0.01325742
  GO:0002920  Regulation of humoral immune response 2 0.018477257
  GO:0009611 Response to wounding 4 0.047076136
GOTERM_MF_FAT   
  GO:0005496  Steroid binding 3 0.004729209

GO, gene ontology; BP, biological process; MF, molecular function.

Table I. GO function and pathway enrichment analysis of upregulated genes in the transcriptional regulatory network.

 Term
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
ID Name Count P-value

REACTOME_PATHWAY   
  REACT_152 Cell cycle, mitotic   4 0.028263722
GOTERM_BP_FAT   
  GO:0034660 ncRNA metabolic process Maturation of LSU-rRNA   5 0.002014149
  GO:0000463  from tricistronic rRNA transcript (small subunit-rRNA,   2 0.007080142
 5.8S rRNA and LSU-rRNA)  
  GO:0000470  Maturation of LSU-rRNA   2 0.007080142
  GO:0006396  RNA processing   6 0.008649471
  GO:0034470 ncRNA processing   4 0.009603024
GOTERM_CC_FAT   
  GO:0070013 Intracellular organelle lumen 12 0.002136088
  GO:0043233  Organelle lumen 12 0.002571635
  GO:0031974  Membrane-enclosed lumen 12 0.00301231
  GO:0005654  Nucleoplasm   8 0.004426136
  GO:0031981 Nuclear lumen 10 0.006006103
GOTERM_MF_FAT   
  GO:0005524  ATP binding   9 0.019812363
  GO:0032559  Adenyl ribonucleotide binding   9 0.021338813
  GO:0008026  ATP-dependent helicase activity   3 0.022750064
  GO:0070035  Purine nucleotide triphosphate-dependent helicase activity   3 0.022750064
  GO:0042623  ATPase activity, coupled   4 0.026532158

REACT, reactome; GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function; ncRNA, non‑coding RNA; 
LSU-rRNA, large subunit ribosomal RNA.
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tumorigenesis (37). CDK4 and other CDK inhibitors have been 
identified as a class of promising anticancer agents in cancer 
treatment (38). Furthermore, regulated transcription factors 
STAT3 and AP1 have been demonstrated to be involved in 
cancer development and progression via promotion of the 
cell cycle (39,40). The functional annotation performed in the 
present study was consistent with a previous study about the 
enriched pathway of CEP72 and CDK4 (41).

In conclusion, methylation of SEZ6L2, KIRREL, CEP72 
and CDK4 may have an important role in the pathogenesis of 
osteosarcomas through promotion of cell proliferation and 
metastasis. However, further study into the results is required 
and may provide further insight into the molecular mechanism 
of osteosarcoma. In addition, further experiments, including 
western blot analysis and reverse transcription-polymerase 
chain reaction will be performed in the future to validate the 
changes in gene expression.
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