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Abstract. Patients with respiratory overlap syndrome (OS), 
defined as concomitant chronic obstructive pulmonary 
disease and obstructive sleep apnea syndrome, may exhibit 
an increased blood concentration of ingested drugs. This poor 
elimination of drugs is primarily attributed to downregu-
lated gene expression of the drug‑metabolizing cytochrome 
P450 enzymes (CYPs) in the liver. However, the underlying 
mechanisms of the decreased expression of CYPs in OS are 
poorly understood. In order to address this, a rat model of 
intermittent hypoxia with emphysema was evaluated in the 
present study, by analyzing liver gene expression using the 
reverse transcription‑quantitative polymerase chain reaction. 
Intermittent hypoxia and cigarette smoke exposure caused 
upregulation of hepatic inflammatory cytokines, while CYPs 
were downregulated. This downregulation of CYPs was 
associated with an increase in nuclear factor (NF)‑κB expres-
sion and a decrease in the expression of nuclear receptors 
pregnane X receptor, constitutive androstane receptor and 
glucocorticoid receptor, which are the upstream regulatory 
molecules of CYPs. The results of the present study indicated 
that, during the development of OS, systematic inflammatory 
reactions may downregulate hepatic CYP gene expression via 
the NF‑κB signaling pathway.

Introduction

Chronic obstructive pulmonary disease (COPD) and obstruc-
tive sleep apnea syndrome (OSAS) represent two of the most 
prevalent chronic respiratory disorders in clinical practice. 
Respiratory overlap syndrome (OS), defined as the coexistence 
of these two diseases, occurs in ~1% of adults and leads to 
the development of increased nocturnal oxygen desaturation 
compared with mono‑COPD or OSAS  (1‑3). The possible 
coexistence of COPD with OSAS is notable, as systemic inflam-
mation develops in each disorder (3,4) and may contribute to 
the pathogenesis of associated comorbidities. Hypoxia induces 
systemic inflammatory reactions and acts as an aggravating 
factor of liver injury (5,6). It has been hypothesized that, in 
patients with mono‑COPD or OSAS, inflammatory mediators 
generated in the lung may ‘spill over’ into the bloodstream and 
promote the release of inflammatory proteins from the liver, 
which may cause damage to target organs and act as a source 
of systemic inflammation (7,8).

Inf lammation modulates the expression of hepatic 
metabolizing enzymes. Cytochrome p450 enzymes (CYPs) 
catalyze the oxidative metabolism of numerous drugs, and 
the level of CYP expression may affect drug efficacy, toxicity 
and consequently, therapeutic outcome (9). Previous studies 
demonstrated that the blood concentration of theophylline 
was above the normal range when the expression and activity 
of CYP1A2 was inhibited (10,11). A further previous study 
demonstrated that sleep hypoxia combined with emphysema 
synergistically enhanced hepatic inflammation and produced 
a more apparent liver‑derived inflammatory state (12). It has 
been reported that inflammatory challenges may suppress 
the expression of major CYPs (13). Underexpression of the 
nuclear receptors pregnane X receptor (PXR) and constitutive 
androstane receptor (CAR), as upstream regulatory molecules, 
may inhibit the transcription of CYPs (11‑13) by attenuating 
nuclear translocation (14,15). It is hypothesized that severe 
inflammation in the liver tissues of patients with OS alters 
hepatic metabolism via nuclear receptors.

In the present study, a previously‑published rat model of OS 
was developed by exposing rats to intermittent hypoxia (IH) 
and cigarette smoke (CS). Gene expression analysis of liver 
samples with reverse transcription‑quantitative polymerase 
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chain reaction (RT‑qPCR) was used to evaluate the effect of 
IH with CS on inflammatory cytokines and CYPs. The present 
study may provide a molecular mechanism to explain adverse 
drug reactions in patients with OS.

Materials and methods

Ethics statement. Rats were used in accordance with the 
protocol approved by the Animal Care Committee of Tianjin 
Medical University (permit no. 2010‑0002).

Animals and treatments. Rats were provided by the Model 
Animal Center of the Radiological Medicine Research Insti-
tute, Chinese Academy of Medical Science (Beijing, China), 
and housed in standard laboratory cages (5 rats/cage) with 
food and water available ad libitum. As described previ-
ously (12), a total of 30 male Wistar rats weighing 180±20 g 
at age 6 weeks were divided into two groups of 15 according 
to exposure condition, as follows: i) Control group; ii) IH 
with CS experimental group. For IH, the rats were treated 
in a 120 sec cycle, comprising 30 sec nitrogen followed by 
90 sec air, between 9:00 a.m. and 5:00 p.m. daily. For CS 
exposure, the rats underwent whole‑body exposure to the 
smoke of five unfiltered cigarettes (Daqianmen, Yunnan, 
China; ≤15 mg tar, ≤1.1 mg nicotine and ≤13 mg CO) for 
30 min twice‑daily (before 9:00 a.m. and after 5:00 p.m.), 
7 days/week for 14 weeks, inside a 0.6 m3 custom‑made plexi-
glas chamber (16,17).

Measurement of serum liver enzymes. Blood samples from 
control and experimental rats were centrifuged at 600 g for 
15 min at 4˚C, and the serum was stored at ‑80˚C prior to 
being assayed. The serum alanine aminotransferase (ALT) 
and aspartate aminotransferase (AST) concentrations were 
quantified using a transaminase CII test, according to the 
manufacturer's protocol (Wako Pure Chemical Industries, 
Ltd., Osaka, Japan).

Liver tissue sampling. Following treatment, 10 rats from the 
control and experimental groups were anesthetized with 10% 
chloral hydrate (0.3 ml/100 g body weight) and sacrificed. For 
gene expression analysis using reverse transcription‑quantita-
tive polymerase chain reaction (RT‑qPCR), liver tissues were 
excised, rinsed in ice‑cold PBS, frozen in liquid nitrogen and 
stored at ‑80˚C prior to analysis. For hematoxylin and eosin 
staining, liver tissues were fixed in 10% formalin at 4˚C 
overnight, embedded in paraffin, and sliced into 5‑µm‑thick 
sections. Sections were then stained with 1% hematoxylin and 
eosin solution for 5 min at room temperature, according to the 
manufacturer's protocol.

Preparation of RNA from tissue samples. RNA was extracted 
from liver tissues using TRIzol® reagent (Invitrogen; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA). The 
extract yield and quality were determined by measuring the  
absorbance at 260 and 280  nm using the Maestro Nano 
Micro‑Volume Spectrophotometer (Maestrogen, Inc., 
Hsinchu, Taiwan). The absorbance ratio at 260:280  nm 
was between 1.8 and 2.0. The RNA was subsequently 
reverse‑transcribed into cDNA.

RT‑qPCR. mRNA (3 µg) was reverse‑transcribed into cDNA 
using oligo(dT) primers for 1 h at 50˚C, with the TIAN Script 
RT kit (Tiangen Biotech Co., Ltd., Beijing, China), according 
to the manufacturer's protocol. The cDNA served as a template 
for qPCR, which was performed using SYBR Green PCR core 
reagents (Bio‑Rad Laboratories, Inc., Hercules, CA, USA). 
Specific gene primers were designed using the PrimerQuest 
SM software (http://sg.idtdna.com/Primerquest/Home/Index; 
Integrated DNA Technologies, Inc., Coralville, IA, USA) and 
commercially produced (BGI Tech, Shenzen, China) (Table I). 
DNA amplification was performed using a CFX96 Real‑Time 
System (Bio‑Rad Laboratories, Inc.) with the following reac-
tion conditions: An initial heating cycle of 95˚C for 2 min; 
40 cycles, alternating between denaturation at 95˚C for 25 sec 
and primer annealing at 60˚C for 25 sec; and final extension at 
72˚C for 20 sec. Melt curves were used to clarify the identity of 
the amplicons and the housekeeping gene GAPDH served as 
an internal control. The relative mRNA expression of targeted 
genes was calculated using the comparative Cq (threshold 
cycle) method and normalized to GAPDH mRNA in the same 
sample  (18). The specific ΔCq was calculated as follows: 
[ΔCq=(CqGAPDH)‑(Cqtarget)]; relative expression was defined as 
2‑ΔΔCq.

Statistical analysis. The numerical data are presented as the 
mean ± standard error of the mean. The statistical significance 
of the differences between the two groups was assessed using 
Student's t‑test. P<0.05 was considered to indicate a statisti-
cally significant difference. Statistical analysis was performed 
using Microsoft Excel software version 2007 (Microsoft 
Corporation, Redmond, WA, USA).

Results

IH with CS exposure causes elevated expression of liver 
enzymes, upregulated mRNA expression of inflamma‑
tory cytokines and hepatocyte damage. Consistent with a 
previous study (12), IH with CS exposure resulted in apparent 
emphysemic alterations in rat lungs and decreased blood 
gas concentration, indicating that the rat model of IH with 
emphysema was successfully established (data not presented). 
Hematoxylin and eosin staining of the liver demonstrated 
that various hepatic lesions were observed in the IH with CS 
group, and not in the control group (Fig. 1A and B). Compared 
with the control group, hepatic lobules in the IH with CS 
group exhibited partial clarity and integrity, sinusoids were 
broadened, inflammatory cell infiltration was observed in the 
periportal space and various foci of lobular inflammatory cell 
accumulation were noted. Inflammatory cell infiltrates were 
observed in the portal area and light staining of the cytoplasm 
of liver cells suggested cytoplasmic loss (Fig. 1C).

The concentration of serum ALT and AST in the experi-
mental group was increased compared with the control group 
(P<0.05; Table II), which suggested a more severe impairment 
of hepatocyte function. Additionally, the mRNA expression 
levels of interleukin (IL)‑1β, IL‑6, and tumor necrosis factor 
(TNF)‑α in the livers of the experimental rats were significantly 
increased compared with the control group (P<0.05; Fig. 2). 
The results of the present study suggested that early‑phase 
inflammation and mild hepatocyte damage had occurred.
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Underexpressed mRNA levels of CYPs in the injured liver. 
Expression of each CYP is influenced by a unique combination 
of mechanisms and factors, including genetic polymorphisms, 
xenobiotic induction, regulation by cytokines, hormones and 
disease states, in addition to sex, age, and others (13). Compared 
with the control group, the IH with CS group exhibited mark-
edly increased mRNA expression of CYP1A2, CYP2C9, 
CYP2C19, CYP2D4, and CYP3A2 (Fig. 3). The results of 
the present study demonstrated that liver inflammation and 
hepatocyte damage affect the transcription of major CYPs in 
a rat model of IH with emphysema, which was consistent with 
the previous literature suggesting inflammation may induce 
downregulation of CYP expression (19,20).

Upregulation of nuclear factor (NF)‑κB and subsequent down‑
regulation of nuclear receptors in the liver. Transcription factor 
NF‑κB serves a role in inflammatory reactions and oxidative 
stress  (21,22). CYP3A expression is modulated by nuclear 
receptors, including PXR and CAR (23‑25). If the nuclear trans-
location of these receptors is decreased, CYP3A expression will 

consequently decrease. In addition, the synthesis and nuclear 
translocation of these receptors is negatively‑associated with 
NF‑κB nuclear translocation  (14,26). Consequently, NF‑κB 
expression was significantly increased in the IH with CS rats, 
compared with the control group (P<0.05; Fig. 4). Additionally, 
in the IH with CS group, the hepatic mRNA expression of PXR, 
CAR and the glucocorticoid receptor (GR) was significantly 
decreased compared with that in the control group (P<0.05; 
Fig. 5). The results of the present study demonstrated that 
upregulated NF‑κB may be involved in reduced hepatic CYP 
expression, by negatively impacting the synthesis and nuclear 
translocation of PXR, CAR and GR.

Discussion

The emerging pathophysiology of OS encompasses intermit-
tent hypoxia and emphysema (27). In the present study, a rat 
model of intermittent hypoxia with emphysema was developed. 
The results of the present study suggested that an early phase 
of inflammation and mild hepatocyte damage had occurred in 

Figure 1. Liver pathology of rat exposed to IH and CS. Control rats or rats exposed to IH+CS were sacrificed and liver tissues were processed to conduct 
hematoxylin and eosin staining. Compared with the integrity and clarity of the liver tissues in (A) the control group, the liver tissues from (B) the IH+CS group 
demonstrated hepatocytes which were arranged in rows around central veins, and were visible as polygons in the sinusoid; magnification, x200. (C) Further 
magnification of a section of IH+CS liver tissue; magnification, x400. IH, intermittent hypoxia; CS, cigarette smoke.

Table I. Primer sequences for the present study.

Genes	 Forward (5'‑3')	 Reverse (5'‑3')

IL‑1β	 TCCCTGAACTCAACTGTGAAATA	 GGCTTGGAAGCAATCCTTAATC
IL‑6	 GAAGTTAGAGTCACAGAAGGAGTG	 GTTTGCCGAGTAGACCTCATAG
TNF‑α	 ACCTTATCTACTCCCAGGTTCT	 GGCTGACTTTCTCCTGGTATG
NF‑κB	 AGACATCCTTCCGCAAACTC	 TAGGTCCATCCTGCCCATAA
PXR	 GAAGATCATGGCTGTCCTCAC	 CGTCCGTGCTGCTGAATAA
CAR	 GAGACCATGACCAGTGAAGAAG	 AGTCAGGGCATGGAAATGATAG
GR	 CAGCAGTGAAATGGGCAAAG	 GGGCAAATGCCATGAGAAAC
CYP1A2	 GACAAGACCCTGAGTGAGAAG	 GAGGATGGCTAAGAAGAGGAAG
CYP2C9	 CCCAAGGGCACAACCATATTA	 CTTTCTGGATGAAGGTGGCA
CYP2C19	 CCCAAGGGCACAACCATATTA	 TTTGACCCTCGTCACTTTCTG
CYP2D4	 CCTTTCAGCCCTAACACTCTAC	 ATGAAGCGTGGGTCATTGT
CYP3A2	 GGAAACCCGTCTGGATTCTAAG	 GAAGTGTCTCATAAAGCCCTGT
GAPDH	 ACTCCCATTCTTCCACCTTTG	 AATATGGCTACAGCAACAGGG

IL, interleukin; TNF, tumor necrosis factor; NF, nuclear factor; PXR, pregnane X receptor; CAR, constitutive androstane receptor; GR, gluco-
corticoid receptor; CYP, cytochrome P450. 
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the liver. The results of the present study were consistent with 
previous studies, which stated that hypoxia contributes to liver 
injury (28,29). Alterations in hepatic CYP expression, and the 
mechanisms underlying these alterations, were analyzed in the 
present study using the IH with CS rat model. In the IH with 
CS group, the hepatic mRNA expression levels of a number 
of CYP molecular species, specifically CYP1A2, CYP2C9, 
CYP2C19, CYP2D4 and CYP3A2, were markedly decreased 
compared with the control group.

The present study sought to analyze why the expression 
of hepatic CYPs decreased in the rat model of intermittent 
hypoxia with emphysema. It is known that CYPs are generated 
in damaged hepatocytes, where the degree of damage may 
affect the quantity and quality of CYPs. Previous studies have 
demonstrated that the severity of liver injury is positively‑asso-
ciated with levels of hypoxia and inflammation  (30,31). 
Compared with patients with only COPD or OSAS, nocturnal 
hypoxemia, hypoxia and hypercapnia are more severe in 
patients with OS (32), and the present study demonstrated 
that intermittent hypoxia and emphysema interact synergisti-
cally. The mechanism of the decrease in CYP expression 
was analyzed by focusing on hepatic inflammation, as the 
pathological conditions of early‑phase hepatic inflammation 
and mild hepatocyte damage were detected in the present 
experimental model. Hepatic inflammation is promoted by 
the binding of cyclic pro‑inflammatory factors to Toll‑like 
receptor 4 in hepatic Kupffer cells. The activated Kupffer cells 
subsequently initiate the secretion of inflammatory cytokines, 
which promote the activity of NF‑κB (21). Activated NF‑κB 
dissociates from the inhibitor of NF‑κB and translocates to 
the nucleus (33). Nuclear NF‑κB forms a complex with the 
transcription factor GR and prevents the binding of GR to 

Figure 3. mRNA expression levels of CYPs in the liver. The mRNA expres-
sion levels of (A) CYP1A2, (B) CYP2C9, (C) CYP2C19, (D) CYP2D4 and 
(E) CYP3A2 were measured using the reverse transcription‑quantitative 
polymerase chain reaction. GAPDH was used as an internal reference. 
The data are presented as the mean ± standard error of the mean, and were 
obtained from 10 rats/group. Student's t‑test; *P<0.05, **P<0.01 vs. the control. 
CYP, cytochrome P450; IH, intermittent hypoxia.

Figure 4. mRNA expression level of NF‑κB in the liver. Following the estab-
lishment of the rat model, the liver was removed and the mRNA expression 
level of NF‑κB was measured using the reverse transcription‑quantitative 
polymerase chain reaction. GAPDH was used as an internal reference. 
The data are presented as the mean ± standard error of the mean, and were 
obtained from ten rats per group. Student's t‑test; **P<0.01 vs. the control. 
NF‑κB, nuclear factor‑κB; IH, intermittent hypoxia.

Figure 5. mRNA expression levels of (A) PXR, (B) CAR, and (C) GR in the 
liver. After established successfully model, the liver was removed, and the 
mRNA expression levels of PXR, CAR, and GR were measured using the 
reverse transcription‑quantitative polymerase chain reaction. GAPDH was 
used as an internal reference. The data are presented as the mean ± standard 
error of the mean, and were obtained from ten rats per group. Student's t‑test; 
*P<0.05, **P<0.01 vs. the control. PXR, pregnane X receptor; CAR, constitutive 
androstane receptor; GR, glucocorticoid receptor; IH, intermittent hypoxia.

Table II. Serum ALT and AST levels in the liver.

Group	 n	 ALT, U/l	 AST, U/l

Contro	 15	 21.0±5.3 l	 17.8±3.0
IH+CS	 15	 50.5±2.1a	 26.0±3.2a

aP<0.05. IH, intermittent hypoxia; CS, cigarette smoke; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase. 

Figure 2. mRNA expression levels of inflammatory cytokines in the liver. The 
mRNA expression levels of the inflammatory cytokines (A) IL‑1β, (B) IL‑6, 
and (C)  TNF‑α in the liver were measured using the reverse transcrip-
tion‑quantitative polymerase chain reaction. GAPDH was used as an internal 
reference. The data are presented as the mean ± standard error of the mean, and 
were obtained from 10 rats/group. Student's t‑test. *P<0.05 vs. the control. IL, 
interleukin; TNF, tumor necrosis factor; IH, intermittent hypoxia.
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GR‑responsive elements, thereby inhibiting the transcription 
of PXR and CAR (14,15). The decrease in PXR and CAR 
expression causes a decrease in nuclear translocations (26,34). 
Additionally, the decrease in the expression of PXR and CAR, 
which bind to the responsive elements of DNA, results in the 
inhibition of CYP3A transcription and a subsequent decrease 
in its expression (35‑37). Hepatic NF‑κB nuclear translocation 
was examined in the present study, and was observed to be 
increased in the experimental group compared with the control 
group. By contrast, the hepatic mRNA expression of PXR, 
CAR and GR was decreased in the experimental group. The 
results of the present study demonstrated that, in a rat model of 
intermittent hypoxia with emphysema, hepatic inflammatory 
cytokines activate NF‑κB, which inhibits the transcription 
of PXR and CAR. This inhibited transcription subsequently 
leads to a decrease in nuclear translocation, which inhibits the 
transcription of CYP3A.

The transcription of CYP2C is modified by CAR (38,39). 
Therefore, it is hypothesized that the mechanism underlying 
the decrease in the expression level of CYP2C is identical to 
that underlying the decrease in the CYP3A expression level. 
However, the transcription of CYP1A and CYP2D is not 
primarily regulated by PXR and CAR (40,41). Therefore, the 
decrease in the nuclear translocation of these CYP molecular 
species cannot be explained by the decrease in the nuclear 
translocation of PXR and CAR. However, it has been previously 
demonstrated that the expression levels of these CYP molecular 
species are downregulated by inflammatory cytokines (42). It is 
therefore hypothesized that the decrease in the hepatic expres-
sion levels of CYP1A and CYP2D in the IH with CS group, in 
the present study, may be triggered by inflammatory cytokines, 
as is the case with other CYP molecular species.

In conclusion, early‑phase hepatic inflammation and mild 
hepatocyte damage was detected in the rat model of intermit-
tent hypoxia with emphysema generated in the present study; 
additionally, hepatic CYP expression was markedly decreased. 
Based on the results of the present study, it is hypothesized 
that, during the development of OS, systematic inflammatory 
reactions may downregulate hepatic CYP gene expression via 
the NF‑κB signaling pathway. The results of the present study 
may provide an important molecular mechanism to explain 
adverse drug reactions in patients with OS.
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