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Abstract. Understanding the dynamic changes in connectivity 
of molecular pathways is important for determining disease 
prognosis. Thus, the current study used an inference of multiple 
differential modules (iMDM) algorithm to identify the connec-
tivity changes of sub‑network to predict the progression of 
osteosarcoma (OS) based on the microarray data of OS at four 
Huvos grades. Initially, multiple differential co‑expression 
networks (M‑DCNs) were constructed, and weight values were 
assigned for each edge, followed by detection of seed genes 
in M‑DCNs according to the topological properties. Using 
these seed gene as a start, an iMDM algorithm was utilized to 
identify the multiple candidate modules. The statistical signifi-
cance was determined to select multiple differential modules 
(M‑DMs) based on the null score distribution of candidate 
modules generated using randomized networks. Additionally, 
the significance of Module Connectivity Dynamic Score 
(MCDS) to quantify the dynamic change of M‑DMs connec-
tivity. Further, DAVID was employed for KEGG pathway 
enrichment analysis of genes in dynamic modules. In addition 
to the basal condition, four conditions, OS grade 1‑4, were 
also included (M=4). In total, 4 DCNs were constructed, and 
each of them included 2,138 edges and 272 nodes. A total of 
13 genes were identified and termed ʻseed genesʼ based on 
the z‑score distribution of 272 nodes in DCNs. Following the 
module search, module refinement and statistical significance 
analysis, a total of four 4‑DMs (modules 1, 2, 3 and 4) were 
identified. Only one significant 4‑DM (module 3 in the DCNs 
of grade 1, 2, 3 and 4 OS) with dynamic changes was detected 

when the MCDS of real 4‑DMs were compared to a null distri-
bution of MCDS of random 4‑DMs. Notably, the genes of the 
dynamic module (module 3) were enriched in two significant 
pathway terms, ubiquitin‑mediated proteolysis and ribosome. 
The seed genes with the highest degrees included protein 
phosphatase 1 regulatory subunit 12A (PPP1R12A), UTP3, 
small subunit processome component homolog (UTP3), pros-
taglandin E synthase 3 (PTGES3). Thus, pathway functions 
(ubiquitin‑mediated proteolysis and ribosome) and several 
seed genes (PPP1R12A, UTP3, and PTGES3) in the dynamic 
module 3 may be associated with the progression of OS and 
may serve as potential therapeutic targets in OS.

Introduction

Osteosarcoma (OS), as an aggressive malignant cancer, is the 
most frequent human primary bone neoplasm in children and 
in adolescents (1). Notably, OS has a high metastatic poten-
tial (2). Based on the available literature, ~45% patients with 
OS progressed to lung metastasis, which is the major cause of 
death in patients with OS (3). Currently, the standard therapy 
is radical surgery combined with chemotherapy (4). However, 
there is strong controversy over the role of chemotherapy in 
treating cancer. Further progress is required in the treatment 
of OS (5). Therefore, it is urgent to investigate the detailed 
molecular mechanisms underlying OS progression, which will 
facilitate the development of effective therapeutic strategies.

Many complex diseases, for example, cancer, involve 
a continuum of molecular events, which begin with early 
initiation events and progress to disastrous end‑stage events. 
Understanding the disease‑stage‑specific molecular events 
is vital for understanding disease pathology and developing 
efficient therapeutic strategies. Identification of disease‑asso-
ciated signatures can contribute to investigations into the 
process of tumorigenesis. However, it is difficult to identify 
novel biomarkers associated with OS, due to high costs and 
time‑consuming experiments (6). Computational methodolo-
gies counteract this. However, the majority of computational 
methods focus on the differential expression of genes and static 
regulation between genes (7,8), ignoring the network rewiring 
or dynamic regulation between molecules during different 
disease stages. Furthermore, it is well established that many 
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diseases are induced by perturbations of complex molecular 
networks, rather than the individual genes. Differential 
network analysis has been applied to protein‑protein interac-
tion networks (9), protein‑gene interaction networks (10), and 
functional gene interaction networks (11). However, only two 
conditions were considered (i.e., only one resulting differential 
network) in the former studies using computational methods. 
Generally, the interactions vary at different disease stages, 
and the changes in interactions are causally associated with 
disease progression. Thus, simultaneously analyzing network 
dynamics in the period of disease progression is of great 
importance for understanding disease mechanisms.

The current study attempted to detect dynamically contro
lled genes and modules associated with OS using a novel 
computational method. Inference of multiple differential 
modules (iMDM) (12) was presented to measure OS microarray 
data at four Huvos grades  (13) to capture the connectivity 
changes of sub‑networks during the process of OS development. 
Using iMDM, multiple sub‑networks were constructed from 
time‑course transcription data, and candidate genes that may 
underlie the OS were identified. Gene expression profile data of 
OS from the European Molecular Biology Laboratory‑European 
Bioinformatics Institute (EMBL‑EBI) database. The construc-
tion of multiple differential co‑expression networks (M‑DCNs) 
was performed using gene expression profiles across different 
OS conditions (grade 1, 2, 3 and 4 OS). Subsequently, iMDM 
was used to analyze the DCNs to identify shared candidate 
modules across different disease stages. Then, statistical analysis 
was performed to select multiple differential modules (M‑DMs) 
based on the null score distribution of candidate modules gener-
ated using randomized networks. Finally, Module Connectivity 
Dynamic Score (MCDS) was employed to quantify the change 
in the connectivity of shared gene modules among different 
conditions. It is believed that the findings of the current study 
may provide guidelines for experimental validation in the 
future, and shed light on the pathogenesis of OS.

Materials and methods

Analysis of microarray data. The gene expression profile of 
E‑GEOD‑33382 (13) was downloaded from the EMBL‑EBI 
database, which was based on the A‑GEOD‑10295 Illumina 
human‑6 v2.0 expression beadchip platform (using nuIDs as 
identifier). Gene microarray data of 45 OS samples (10 OS 
with grade 1, 13 with grade 2, 15 with grade 3, and 7 with 
grade 4) with 2 replicates, and osteoblast cell samples derived 
from mesenchymal stem cells (n=3) in duplicate as controls 
were obtained. Probe annotation files were downloaded. The 
probes were aligned to the gene symbols, and 13,326 genes 
were ultimately obtained.

STRING protein‑protein interactions. The original human 
protein‑protein interaction network (PPIN) involving 787,896 
interactions (16,730 genes) was downloaded from the STRING 
database (http://string‑db.org/), and only the proteins that were 
common with the microarray data were used to construct the 
background PPIN.

iMDM approach. A flowchart of the iMDM algorithm is 
presented in Fig. 1. This method used the input transcriptome 

data gathered in control and disease conditions. The following 
three steps were performed: Construction of the M‑DCNs, 
one for each condition; using the M‑module algorithm (14) to 
extract statistically significant M‑DMs in M‑DCNs; quantifi-
cation of the change in the connectivity of shared M‑DMs.

Construction of DCNs. For each disease grade, the DCN was 
constructed on the basis of differential expression in the OS 
and control conditions via two steps.

In step 1, a binary co‑expression network construction 
was implemented after edges were selected according to the 
absolute value of the Pearson correlation coefficient (PCC) of 
the microarray profiles of two genes. The 1st order partial PCC 
was utilized to remove indirect correlation induced by a third 
gene (15). In the current study, only edges with correlations 
greater than the predefined value δ(δ=0.9) were reserved to 
construct the co‑expression network.

In the second step, weight was assigned to the edge of the 
binary co‑expression network according to the P‑values of 
differential gene expression in the OS and control conditions. 
A one‑side t‑test was used to seek differential gene expression 
for microarray data. The weight wx,y on edge (x,y) in the DCN 
was defined:

In this formula, Px and Py were the P‑values for gene x and 
gene y, respectively. V was the nodes of the co‑expression 
network, and cor(x,y) was the absolute value of PCC between 
gene x and gene y on the basis of their expression profiles. Under 
the weighting, genes that were co‑expressed and markedly 
differentially expressed were assigned higher weight values.

Considering M‑DCNs, there were the same nodes, yet edges 
were different and defined as Hk=(V,Ek) (1≤k≤M). A multiple 
candidate module, C, was determined as a set of nodes whose 
connectivity among them was higher than random expectation 
across all M‑DCNs under consideration.

Identification of multiple candidate modules in M‑DCNs. 
Unique and shared modules were identified across the M‑DCNs, 
termed multiple candidate modules. The M‑module algorithm 
described by Ma et al (14) is designed to extract gene modules 
that have common members, yet different connectivity across 
multiple interaction networks. Based on this, this M‑module 
algorithm was adapted to detect the candidate modules. The 
identification of candidate modules consisted of three steps: 
i) Seed prioritization; ii) module search through seed expan-
sion; and iii) refinement of candidate modules.

Seed prioritization. With the aim of identifying seed genes, 
genes were sorted in the M‑DCNs based on the topological 
measurement (degree) feature. For each network Hk=(V,Ek) 
(1≤k≤M) with an adjacency matrix Ak=(axyk)n*n, a function 
was constructed to compute the importance of vertex x in the 
corresponding DCN, and this function was defined as:
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Where g(x) denoted the importance of vertex x in the DCN, 
Nk(x) denotes the set of neighbors of gene x in Hk; A’k was 
the degree normalized weighted adjacency matrix which was 
counted as A,

k=D‑1/2AkD1/2 where D was diagonal matrix with 
element Dxy=∑yAxyk. A,g was on behalf of the information 
propagation on network through the edges of networks, which 
meant the importance of a node depending on the number of 
the adjacent nodes, strength of connection and importance of 
its adjacent nodes.

For each gene, after acquiring its ranks in all individual 
DCNs, determined as g=[g(1),. . ., g(M)], a z‑score was calculated 
for each rank g(l). Subsequently, the sort order was obtained for 
that gene across all DCNs by means of averaging the z‑scores 
among all DCNs. The top 5% genes were identified, and 
named as seed genes.

Module search. Beginning with each seed gene, the stage of 
module search iteratively contained genes whose addition 
resulted in the maximum decrease in the graph entropy‑based 
function till no decrease was observed in the objective function. 
For a given vertex x ∈ C, Lk(x) was denoted as the total weight 
between vertex x as well as other vertices of the candidate module 
C in the network Hk. Similarly, L̅k(i) represented the weight value 
between vertex x as well as vertices outside of module C. Then, 
the entropy for connectivity of vertex x to module C was:

The objective for using graph entropy was to quantify the 
skewness of in‑module connectivity vs. out‑module connec-
tivity. Adding over all vertices in C and DCN k, the entropy 
for C across all DCNs and normalized for the size of C was 
shown as follows:

Where Gk(C) = ∑x∈CH(Cy).

The objective function was defined as:

Where Cx (1<x<τ) is a candidate module. i=[i1,. . .,iτ] was an 
index matrix where each column was a module and each row 
equaled to a gene. The constraint was that each gene belonged 
to one or more modules, and each module has to include at 
least one gene.

Refinement of candidate modules. During the refinement step, 
the multiple candidate modules with sizes <5 were eliminated. 
Furthermore, the Jaccard index (16), which is the ratio of inter-
section over union for two sets, was employed to merge the 
overlapping multiple candidate modules. In the current study, 
a Jaccard index ≥0.5 was set as the threshold.

Statistical significance of candidate modules. In this study, 
the statistical significance of multiple candidate modules was 
performed based on the null score distribution of candidate 
modules generated using randomized networks. Briefly, each 
network was randomized 100  times by degree‑preserved 
edge shuffling. In order to require the module scores for the 
null distribution, module search was implemented on the 
randomized networks. Significantly, the empirical P‑value 
of a candidate module was counted as the probability of the 
module having the observed score or smaller by chance using 
the formula below:

In which count (HR) stood for the number of modules produced 
by randomized networks, count (HDCN) represented the number 
of modules generated by DCN.

Then, P‑values were adjusted for multiple testing 
using false discovery rate (FDR) based on the method of 
Benjamini‑Hochberg (17). FDR≤0.05 was set as the signifi-
cance threshold.

Quantification of connectivity dynamics of shared M‑DMs. 
By definition, each M‑DM with M≥2 has multiple component 
modules from different DCNs. In an attempt to quantify the 
connectivity change of component modules, the MCDS as 
a graph‑theoretical measure was used. In detail, given an 
M‑DMC whose weighted adjacent matrices of the corre-
sponding induced subgraphs were denoted by AC

X(1≤x≤M), 
the MCDS between two adjacent component modules was 
determined as the L2 norm of the matrix subtraction norma
lized by the number of genes in the M‑DM. The overall MCDS 
of an M‑DM is defined as the mean MCDS of all pairwise 
comparisons, and computed based on the equation:

Similarly, the statistical significance of MCDS for an M‑DM 
was calculated as that for M‑DMs. Specifically, the null 
distribution for MCDS scores was firstly counted on the 
basis of the random M‑DMs. Then, the P‑value of an MCDS 
was calculated based on the null distribution. Finally, the 
Benjamini‑Hochberg was applied for correction. A FDR of 
0.05 was considered as the significance threshold.

In order to identify dynamically controlled genes in OS, 
topological parameters were utilized to deeply investigate 
biological significance of genes in dynamic module.

Pathway enrichment analysis for the genes in dynamic 
modules identified. Previously, several studies have demon-
strated that certain pathways are more dynamic than others 
in the progression of disease  (18,19). To reveal this, in the 
present study, Database for Annotation, Visualization and 
Integrated Discovery (DAVID; version 6.8; https://david.
ncifcrf.gov) (20,21) was employed for Kyoto Encyclopedia of 
Genes and Genomes (KEGG; http://www.genome.jp/kegg) 
pathway enrichment analysis of genes in dynamic modules 
obtained above, which provides analytic tools for extracting 
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biological meaning from large list of genes (20). Expression 
Analysis Systematic Explorer (EASE) was utilized to evaluate 
the significant pathways. Significant terms were determined 
according to the presence of at least two genes and P<0.05 in 
the pathways.

Results

M‑DCNs construction. In our study, in addition to basal 
conditions, four conditions, OS grades 1‑4, were also included 
(M=4). Thus, 4 DCNs would be acquired, and identify 4‑DMs. 
Subsequently, the significance of DMs and MCDS was used 
to further extract significant genes. These significant genes 
across four conditions may shed light on the molecular mecha-
nism underlying OS progression in different grades.

The microarray data were aligned to the original PPIN, 
then the background PPIN was identified, which contained 
400,797 interactions and 11,863 genes. In order to elimi-
nate indirect correlations and to make this network more 
confident, only interactions with δ≥0.9 in the background 
PPIN were selected to construct DCNs, Thus, 4 DCNs 
were constructed, and each of them included 2,138 edges  
and 272 nodes.

Identification of multiple candidate modules in‑M DCNs and 
statistical significance of candidate modules. Based on the 
z‑score distribution of 272 nodes in DCNs, 13 genes had top 
5% z‑score value, which were termed as seed genes (Table I). 
The z‑scores of all seed genes were >200. Subsequently, the 

steps of module search and module refinement were imple-
mented. Subsequently, 4 candidate modules in the DCNs of all 
grade 1, 2, 3, and 4 OS conditions were screened out.

Next, empirical P‑values of these 4 candidate modules were 
calculated using randomized networks. At a FDR criterion of 
0.05, these 4 candidate modules including module 1, 2, 3 and 4 
were significant, as presented in Table II.

Shared 4‑DMs can be utilized to uncover dynamics in the 
process of OS progression. Since component modules of a 
4‑DM had the same gene set in M‑DCNs, yet were different 
in the connectivity, 4‑DM offers a natural way to obtain the 
changes in dynamic connectivity. Thus, to this end, MCDS 
were used to quantify the dynamics of 4‑DMs in the current 
study. Because the DCNs were weighted on the basis of the 
degree of gene expression correlation, MCDS quantified not 
only the presence and absence of edges, but also the changes 
in edge weights, which can be regarded as the interaction 
strength among genes.

In order to extract M‑DMs that exhibit significantly 
different dynamics than would be expected by chance, the 
MCDS of real 4‑DMs were compared to a null distribution of 
MCDS of random 4‑DMs. At an FDR‑value threshold of 0.05, 
only module 3 observed in the DCNs of grade 1, 2, 3 and 4 OS 
was dynamic. This dynamic DM involved 103 nodes and 870 
edges, as presented in Fig. 2. As OS progression increased, 
the connectivity of multiple interactions in this module was 
markedly changed, which indicated that network rewiring has 
important roles during OS progression.

Figure 1. Summary of the inference of multiple differential modules approach. This approach includes two main steps. In the first step, differential gene 
co‑expression networks are constructed using microarray data across multiple conditions. To construct differential gene co‑expression networks, a binary 
co‑expression network is built where edges are selected according to the absolute value of Pearson correlation coefficient of the expression profiles of two 
genes. Only edges with correlation higher than the pre‑defined threshold δ are chosen in the co‑expression network. Then, edges in the binary co‑expression 
network are weighted (Wx,y) on the basis of the P‑values (Px and Py) of differential gene expression between control and disease conditions. During the second 
step, multiple differential gene co‑expression networks are analyzed to extract shared multiple differential modules across different conditions. multiple 
differential modules with M=4 are the modules that are screened out under 4 conditions (grade 1, 2, 3, and 4 osteosarcoma).
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Since the edge weight in DCNs is a degree of differential 
expression between disease and control conditions, the mean 
edge weight serves as a measure of differential activity of 
the module. Fig. 3 presents the distribution of edge weight 
in the dynamic 4‑DMs for grade 1, 2, 3 and 4 OS. For the 
sake of clarity, only edges that had significant weight changes 
(P<0.05) were exhibited. As presented in Fig. 3A, the number 
of interactions in the grade 4 OS network was greater than 
that in the other networks in the weight distribution of 0.1‑0.2; 
particularly higher compared with grade 1 and 2 OS networks. 
Furthermore, the count of interactions in grade 2 OS network 
was greater than that in other networks in the weight distribu-
tion of 0.3‑0.5. Similarly, the number of interactions in grade 3 
OS network was higher in the distribution of 0.2‑0.3, relative 
to the other conditions.

For this dynamic module, the majority of the changed 
edges with increased weight were detected in the grade 2 OS, 
relative to the other three OS conditions (Fig. 3B). Accordingly, 
these connectivity changes demonstrated that the pathway was 
rewired between different OS grades.

By analyzing the topological centrality (degree) for genes, 
if was determined that seed genes, including protein phos-
phatase 1 regulatory subunit 12A (PPP1R12A), UTP3, small 
subunit processome component homolog (UTP3), prosta-
glandin E synthase 3 (PTGES3) and ubiquitination factor E4A 
had the highest degrees among the genes.

Pathway enrichment analysis. Previously, several studies have 
demonstrated that certain pathways are more dynamic than 
others during the progression of disease (18,19). To investigate 
this in OS, pathway enrichment analysis was performed for 

dynamic module 3. Based on the presence of at least two 
genes and a P<0.05 in the pathways, a total of two significant 
pathway terms (ubiquitin‑mediated proteolysis and ribosome) 
were identified to be enriched in this module.

Discussion

From a biological perspective, numerous diseases are 
induced by perturbations to the gene network. Such perturba-
tions change dynamically as the disease develops. However, 
the knowledge about the dynamics of gene networks in 
the process of disease progression is rather limited. Thus, 
in the current study, an iMDM algorithm was created to 
analyze the microarray data from OS at four clinical stages 
to capture the connectivity changes of sub‑networks in 
the process of OS development, and to identify candidate 
genes that may be useful for OS treatment. Based on the 
z‑score distribution of 272 nodes in DCNs, 13 seed genes 
were identified. Following the determination of statistical 
significance of multiple candidate modules, a total of four 
candidate modules, modules 1, 2, 3 and 4, were significant. 
Furthermore, module 3 observed in the DCNs of grade 1, 2, 
3 and 4 OS were dynamic when the MCDS of real 4‑DMs 
were compared with a null distribution of MCDS of random 
4‑DMs. The initial seed gene of this module was PPP1R12A. 
Notably, the functions of the dynamic module 3 included 
ubiquitin‑mediated proteolysis and ribosome. Seed genes 
with the highest degrees included PPP1R12A, UTP3 and 
PTGES3. The results demonstrated that pathway functions 
(ubiquitin‑mediated proteolysis and ribosome) and several 
seed genes (PPP1R12A, UTP3 and PTGES3) may have 
important roles in the progression of OS.

The ubiquitin‑mediated proteolysis system has impor-
tant functions in various basic cellular processes, for 
instance regulation of cell cycle, immune and inflam-
matory responses, modulation of development and 
differentiation (22). Considering its role in numerous processes, 
it is unsurprising that ubiquitin‑mediated proteolysis has been 
implicated in the progression of various diseases. Alterations 
in ubiquitin‑mediated proteolysis has been suggested to be 
significantly associated with overexpression of hypoxia induc-
ible factor (HIF)‑1α and HIF‑2α (23). Notably, HIF‑1α has 
been demonstrated to induce a hypoxic microenvironment 

Table II. The significant modules based on FDR. 

	 FDR 			   Initial seed
Modules	 values	 Nodes	 Edges	 gene

Module 1	 0	 166	 1731	 KPNA3
Module 2	 9.78E‑03	 140	 1539	 UTP3
Module 3	 0	 103	   870	 PPP1R12A
Module 4	 0	   71	   578	 YEATS4

FDR, false discovery rate; KPNA, karyopherin subunit α 3; UTP3, 
UTP3 small subunit processome component homolog; PPP1R12A, 
protein phosphatase 1 regulatory subunit 12A; YEATS4, YEATS 
domain containing 4.

Table  I. Seed genes and the distribution of their average 
z‑scores.

Gene name (gene symbol)	 Average z‑score

Karyopherin subunit α 3 (KPNA3)	 354.1070
UTP3, small subunit processome 	 304.5631
component homolog (UTP3)
Asparaginyl‑tRNA synthetase (NARS)	 273.5091
Prostaglandin E synthase 3 (PTGES3)	 268.3388
ARP6 actin‑related protein 6 homolog 	 256.8489
(ACTR6)
ALG5, dolichyl‑phosphate 	 233.6674
β‑glucosyltransferase (ALG5)
Protein phosphatase 1 regulatory subunit	 229.4946
12A (PPP1R12A)
Ubiquitination factor E4A (UBE4A)	 227.2643
Immediate early response 3 interacting	 219.0473
protein 1 (IER3IP1)
YEATS domain containing 4 (YEATS4)	 209.6316
Chromosome 14 open reading frame 166	 207.9445
(C14orf166)
Activating transcription factor 1 (ATF1)	 207.7166
RAP1B, member of RAS oncogene 	 205.7397
family (RAP1B)
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via coordinated regulation of hypoxia‑responsive genes, and 
adaptation to a hypoxic microenvironment is crucial for the 

tumor progression (24). Additionally, Guo et al (25) have indi-
cated that HIF‑1α is activated in human OS. Thus, it is inferred 

Figure 3. (A) Distribution for edge weight of identified dynamic modules. (B) Histograms of the edge weight for dynamic 4‑differential modules in the respec-
tive networks. DCN, differential co‑expression network; OS, osteosarcoma.

Figure 2. One dynamics 4‑DMs extracted from DCNs, each of which contained 103 nodes and 870 edges. (A) A 4‑DM identified in grade 1 OS and control 
DCNs. (B) A 4‑DM identified in grade 2 OS and control DCNs. (C) A 4‑DM identified in grade 3 OS and control DCNs. (D) A 4‑DM identified in grade 4 OS and 
control DCNs. Only edges showing significant changes in edge weights between the four DCNs were exhibited. Edge thickness is proportional to the absolute 
value of difference of Pearson correlation coefficient of two genes. Difference was counted as ̒ OS‑control .̓ Unconnected nodes demonstrated that there was no 
edge connected to the nodes that displayed significance change in weight value between the two conditions. Yellow nodes are the seed genes. DM, differential 
module; DCN, differential co‑expression network; OS, osteosarcoma.
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that the ubiquitin‑mediated proteolysis pathway may have an 
important role in OS progression.

PPP1R12A, a member of myosin phosphatase target 
(MYPT) family, is also termed MYPT1. PPP1R12A is part of 
a Rho kinase pathway (26). As previously reported, PPP1R12A 
participates in diverse cellular functions, including cell cycle 
regulation (27,28), and cell migration and adhesion (29). In 
cancer cells, abnormal regulation of cell division contributes to 
metastatic potential (30). It is demonstrated that the cell cycle 
regulatory pathway is often somatically inactivated in OS (31). 
Furthermore, suppression of Notch signaling inhibits OS 
growth by changing the expression of cell cycle regulators (32). 
Cell migration is a multistep process that requires alterations of 
cell‑substrate adhesions, cytoskeleton and extracellular matrix. 
Aberrant migration is associated with inflammatory disorders 
and cancer (33‑35). Specifically, 82% pancreatic cancers have 
enhanced expression of PPP1R12A (36). Currently, knowledge 
of the involvement of PPP1R12A in OS progression is limited. 
In light of these results, we hypothesize that PPP1R12A may 
be a potential gene involved OS progression, partially via 
altered regulation of the cell cycle and cell migration.

UTP3 is a component of the small subunit (SSU) proces-
some. The SSU processome, consisting of 40 proteins and the 
U3 small nucleolar RNA, is required for ribosome biosyn-
thesis (37). Ribosomes are vital for the translation of mRNA 
into protein and are essential for cell growth. Dysregulation 
of ribosome biosynthesis has been indicated to be connected 
with alterations in cell proliferation, cell cycle and cell 
growth (38,39). Changing the dynamics of ribosome production 
can frequently accelerate cell transformation and contribute 
to increased susceptibility to cancer  (40). Furthermore, 
Jorgensen et al (41) used microarray data to demonstrated that 
deletion of UTP4, UTP6, and UTP10, which are all involved 
in ribosome biogenesis, suppresses cancer cell proliferation. 
Bernstein and Baserga (42) indicated that when SSU proces-
some proteins are detected, ribosomes are no longer generated 
and cells stall in G1. In the current study, dynamic module 
3, which was observed in all grade 1, 2, 3, and 4 OS DCNs, 
was enriched for genes involved in the ribosome pathway. 
Accordingly, it is inferred that UTP3 may have important roles 
in OS development via regulating ribosome biogenesis, which 
further mediates cell cycle progression.

PTGES3 is a prostaglandin E synthase enzyme. Dysre
gulation of the prostaglandin‑endoperoxide synthase pathway 
may cause the accumulation of pro‑inflammatory signals, 
which is characteristic of cancer (43,44). Recently, PTGES3 
has been suggested to be overexpressed in multiple cancers, 
including colorectal (45) and non‑small cell lung cancer (46). 
Notably, a previous study demonstrated that the high expres-
sion of PTGES3 is associated with the stage of endometrioid 
endometrial cancer (47). Taken together, the findings of the 
current study indicate that PTGES3 may affect the progression 
of OS by regulating inflammatory responses.

In conclusion, the data of the present study offers a compre
hensive bioinformatics analysis of OS, which may provide new 
insights into the understanding of the mechanism underlying 
OS progression. There are multiple directions whereby the 
iMDM concept can be extended in future work. For instance, 
genetic mutation data from exomes can be applied as prior 
information to guide module searching, under the hypothesis 

that mutated sequences are potentially involved in the diseases 
being investigated. In addition, transcriptome information can 
be integrated with epigenomic data to understand how environ-
mental factors disrupt gene networks. Furthermore, comparing 
dynamic events referring to different molecular types may 
provide new mechanistic insights into the interactions in 
the progression of disease. Finally, the iMDM framework is 
widely applicable to other tumor samples for which disease 
stage‑specific transcriptome data are available. The genes and 
pathways identified using iMDM may be used as potential 
biomarkers in clinics. Thus, in the current study, pathway 
functions (ubiquitin‑mediated proteolysis and ribosome) and 
several seed genes (PPP1R12A, UTP3, and PTGES3) in the 
dynamic module (module 3) are associated with the progres-
sion of OS and may serve as potential therapeutic targets in 
this disease. Nevertheless, further experimental studies are 
still required to verify these findings.
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