
MOLECULAR MEDICINE REPORTS  16:  4403-4412,  2017

Abstract. The renin-angiotensin system (RAS) serves a critical 
role in blood pressure regulation and prevention of cardiovas-
cular diseases. Efforts to develop functional foods that enhance 
the RAS have focused on inhibition of angiotensin-converting 
enzyme (ACE) activity in the ACE-angiotensin II (Ang 
II)-Ang II type 1 receptor axis. ACE2 and the Mas receptor 
are important components of this axis. ACE2 catalyzes Ang 
II into Ang-(1-7), which then binds to the G-protein-coupled 
receptor Mas. In addition, it induces nitric oxide release from 
endothelial cells and exerts antiproliferative, vasodilatory and 
antihypertensive effects. The present review examined recent 

findings regarding the physiological and biological roles of 
the ACE2-Ang-(1-7)-Mas axis in the cardiovascular system, 
discussed potential food-derived ACE2-activating agents, and 
highlighted initiatives, based on this axis, that aim to develop 
functional foods for the treatment of hypertension.
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1. Introduction

Cardiovascular disease (CVD) was responsible for 31% of 
all cases of mortality worldwide (~17.5 million) in 2012 (1). 
Hypertension is a chronic symptom, which is strongly associ-
ated with CVD, and contributes to half of all cases of heart 
disease-associated mortality (2,3). According to the World 
Health Organization, the total number of patients with hyper-
tension will reach 1.56 billion in 2025 (4). As a major risk 
factor for CVD, hypertension may lead to stroke, coronary 
heart disease and peripheral artery disease, and the symptom 
severity intensifies with age (5,6). Accordingly, ~40% of adults 
worldwide ≥25 years old have been diagnosed with hyperten-
sion, whereas CVD accounts for ~80% of cases of mortality in 
low- and middle-income countries (7). Therefore, agents that 
regulate blood pressure and reduce hypertension are essential 
for controlling CVD (2,3).

The pathogenesis of hypertension is incompletely under-
stood. Hypertension is reportedly associated with numerous 
factors, including eating behavior, environmental parameters 
and familial inheritance (8,9). In addition, it has been demon-
strated that food peptides and their enzymatic hydrolysates 
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exert an antihypertensive effect via numerous mechanisms, 
including angiotensin-converting enzyme (ACE) inhibition, 
renin and endothelin system suppression, supply of arginine 
for nitric oxide production, and inhibition of angiotensin 
receptors and calcium channels (2,10,11).

The renin-angiotensin system (RAS) was discovered in 
1898 (12), and serves various physiological and biological 
roles in blood pressure regulation, water-electrolyte metabo-
lism, vascular tone, electrolyte balance, and heart and kidney 
signaling homeostasis by regulating the function of myocar-
dial cells, fibroblasts and blood cells (13).

The ACE-angiotensin II (Ang II)-Ang II type 1 receptor 
(AT1) axis concept is based on the function of several of the 
main components of the RAS (14). In systemic circulation, 
angiotensinogen forms a decapeptide, Ang I, by interacting 
with renin. Subsequently, ACE generates a physiologically 
active octapeptide, Ang II, by cleaving the C-terminal dipep-
tide His-Leu from Ang I (15). The physiological action of Ang 
II is mediated by AT1 and Ang II type 2 receptor (AT2). AT1 
is responsible for the majority of the physiological effects, 
such as regulating regional blood flow through binding of 
Ang II to AT1, leading to vasoconstriction and oxidative 
stress; accelerating thrombosis formation by stimulating 
adhesion molecules; and producing plasminogen activator 
inhibitor (13,16,17). Conversely, AT2 in combination with Ang 
II lowers blood pressure and inhibits proliferation of malig-
nant cells (18,19). In addition, ACE induces vasoconstriction 
and blood pressure elevation by degrading bradykinin into 
inactivated fragments (20).

Treatment for hypertension tends to focus on the RAS, 
specifically ACE inhibitors (ACEi), Ang receptor blocker 
(ARB) and renin inhibitors (13). Food products, such as milk, 
fish, meat, egg, cereal, seeds, vegetables and fruits, exert anti-
hypertensive effects via various mechanisms (21). Bioactive 
compounds, particularly food protein-derived peptides, 
contribute to regulation of blood pressure by interacting with 
the RAS and its associated pathways in the vascular system (2). 
Among these compounds, various food-derived ACE inhibi-
tory peptides have been comprehensively studied (22). At 
present, there are two axes known to regulate the RAS: The 
classical ACE-Ang II-AT1 axis and the ACE2-Ang-(1-7)-Mas 
axis (14,17). The ACE-Ang II-AT1 axis may lead to CVD, 
including hypertension, stroke and coronary heart disease (19). 
Conversely, the ACE2-Ang-(1-7)-Mas axis serve a role in 
blood vessel protection, an effect reportedly mediated by 
hydrolysis of ACE2 (19,20,23). ACE2 catalyzes degradation 
of Ang II into a heptapeptide, Ang-(1-7), which binds to the 
G-protein-coupled receptor Mas. Unlike Ang II, Ang-(1-7) 
reduces oxidative stress and protects the cardiovascular 
system (24). Therefore, the physiological balance between the 
ACE-Ang II-AT1 and ACE2-Ang-(1-7)-Mas axes is critical 
for the regulation of blood pressure and the prevention of 
CVD (25).

Knowledge of the ACE2-Ang-(1-7)-Mas axis has enabled 
development of functional foods that aim to prevent and/or 
regulate hypertension. ACE2, which is a major component of 
the ACE2-Ang-(1-7)-Mas axis, is a multifunctional enzyme 
that interacts with numerous biologically active substrates to 
exert its physiological effects; these substrates are considered 
activators of ACE2 and are abundant in natural food sources. 

Compared with ACE, food protein-derived peptides that acti-
vate ACE2 have not yet been comprehensively studied. The 
present review discusses natural food substances that have 
the potential to activate ACE2, and highlights the biological 
characteristics, antihypertensive mechanisms and possible 
applications of the ACE2-Ang-(1-7)-Mas axis.

2. ACE2‑Ang‑(1‑7)‑Mas axis and its biological 
characteristics

Biological characteristics of ACE2. A comprehensive under-
standing of the biological characteristics of ACE2 is required 
for its therapeutic application. ACE2 is a human ACE-related 
carboxypeptidase that was discovered in 2000 by two research 
groups: By Tipnis et al (26) from a human lymphoma cDNA 
library and by Donoghue et al (27) from a human cardiac left 
ventricle cDNA library. The carboxypeptidase was named ACE 
homolog by Tipnis et al (26) and ACE2 by Donoghue et al (27); 
ACE2 was later adopted as the name. The ACE2 gene is local-
ized to chromosome X (Xp22), contains 18 exons interspersed 
with 17 introns, and spans ~40 kb. The ACE2 gene product is 
a type I transmembrane glycoprotein of 805 amino acids. This 
glycoprotein includes a cytoplasmic end, a transmembrane 
domain and a conserved zinc metalloprotease consensus 
sequence. The predicted amino acid sequence of zinc metal-
loprotease exhibits significant homology with those of other 
members of the ACE family, with 42% similarity to human 
ACE (15,28). The exons of the ACE2 gene have high sequence 
similarity to the first 17 exons of the ACE gene, suggesting a 
common ancestor gene (15).

Although the ACE and ACE2 genes have similar sequences, 
the physiological roles of their products vary. ACE increases 
blood pressure by hydrolyzing Ang I into Ang II, which 
binds to AT1 and AT2 receptors; however, ACE2 catalyzes the 
breakdown of Ang II to the counter-regulatory RAS peptides, 
Ang-(1-7) and Ang-(1-9) (29,30). This counter-regulatory 
effect occurs throughout the body: ACE2 has been observed 
in the plasma membrane of cells, in various organs and as a 
solute in plasma and urine (29,30). ACE2 is known to have 
a regulatory function in the heart of ACE2 knockout mRen2 
transgenic rats (31).

Ang I and Ang II are the primary substrates of ACE2 and 
necessary precursors of counter-regulatory RAS peptides: 
ACE2 catalyzes loss of one peptide from the C-terminal end 
of Ang I to generate Ang-(1-9), whereas a phenylalanine is 
lost from the C-terminal end of Ang II to form Ang-(1-7). 
The rate of catalysis of Ang II by ACE2 is 400-fold that of 
Ang I; therefore, the major role of ACE2 is to convert Ang II 
to Ang-(1-7) (32).

Synthesis and metabolism of Ang‑(1‑7). Other metabolites, 
such as Ang-(1-9), Ang-(1-7), Ang-(1-5), Ang-(2-8) and 
Ang-(3-8), exert regulatory activities similar to Ang I and 
Ang II. Research is at present focusing on Ang-(1-7), which 
is a heptapeptide consisting of aspartic acid, arginine, valine, 
tyrosine, isoleucine, histidine and proline (10,33).

ACE2 provides an endogenous source of Ang-(1-7). 
Generation of Ang-(1-7) proceeds via at least three pathways 
(Fig. 1). Firstly, catalyzed by ACE2, prolyl endopeptidase or 
prolyl carboxypeptidase, the C-terminal residue of Ang II 
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(Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) is transformed into 
Ang-(1-7) (32,34). Secondly, cleavage of Ang I (Asp-Arg-Val-
Tyr-Ile-His-Pro-Phe-His-Leu) by ACE2 generates the biologi-
cally inactive Ang-(1-9), and further cleavage of Ang-(1-9) by 
ACE or neutral endopeptidase (NEP) forms Ang-(1-7) (35). 
Thirdly, hydrolysis of the Pro-Phe bond of Ang I catalyzed 
by NEP or proline endopeptidase (PEP) results in produc-
tion of Ang-(1-7). Since ACE2 has significantly greater 
catalytic activity with Ang II than Ang I, Ang-(1-7) is 
considered to be predominantly generated by the first 
synthesis pathway (26,27,32). Hydrolysis of Ang I produces 
two peptides: Ang II and Ang-(1-7), which have mutually 
antagonistic physiological activities and are present in plasma 
at similar concentrations (36). Therefore, food-derived ACEi 
not only elevate the levels of Ang I by inducing Ang I forma-
tion through suppressing Ang II synthesis but also increase the 
plasma Ang-(1-7) level by reducing the rate of degradation of 
Ang-(1-7) to Ang-(1-5).

Ang‑(1‑7)‑specific receptor and Mas receptor. In 1997, a 
high-affinity Ang-(1-7) receptor was detected in cultured 
bovine aortic endothelial cells by Tallant et al (37) using a 
radioimmunoassay. Subsequently, D-Ala7-Ang-(1-7) (A779) 
and D‑Pro7‑Ang‑(1‑7) were reported to exert specific antago-
nistic effects on Ang-(1-7) (38). In 2003, Santos et al (34) 
identified Mas as a functional receptor for Ang-(1-7). 
The Mas receptor is encoded by seven transmembrane 
G-protein-coupled receptors, and its endogenous conjugate. 
Fraga-Silva et al (39) initially reported a link between the Mas 
receptor and Ang-(1-7); expression of Ang-(1-7) was reduced 
in Mas receptor-deficient mice. In addition, concentration 
of the Mas receptor varied among rat cardiac cell types; the 
mRNA expression levels of the Mas receptor were low in 
cardiomyocytes, and high in coronary endothelial cells (39). 
Furthermore, high mRNA expression levels of the Mas receptor 
have been detected in coronary artery endothelial cells and 

smooth muscle cells (40). The Mas receptor is expressed in 
the human heart, thus suggesting an important role in cardiac 
function (41), and is also expressed in the brain, testis, kidney 
and blood vessels (42-44).

Following activation by Ang-(1-7), the Mas receptor 
induces vasodilation, and exerts antiproliferative, antifi-
brotic and antioxidative effects (42-44). Ferreira et al (45) 
suggested that Ang-(1-7) functions via Mas-mediated and 
non-Mas-mediated pathways. The predominant pathway 
involves Ang-(1-7) in Mas-mediated NO release, and this 
pathway can be partially suppressed by A-779 (46). Therefore, 
G protein-coupled receptor Mas appears to be a functional 
receptor of Ang-(1-7) (47).

3. ACE2‑Ang‑(1‑7)‑Mas axis and regulation of blood 
pressure

The role of ACE2 in blood pressure regulation. The biological 
characteristics of ACE2 are important for understanding the 
regulation of blood pressure. For example, ACE2 mRNA 
and protein levels are closely associated with blood pressure. 
Crackower et al (48) reported that ACE2 mRNA and protein 
levels were markedly reduced in strains of hypertensive rats, 
such as Sabra hypertensive rats, spontaneous hypertensive 
rats (SHRs) and spontaneously hypertensive stroke-prone rats. 
However, whether ACE2 contributes to reduced blood pres-
sure, or reduced blood pressure suppresses ACE2 expression, 
is unclear.

The ACE2 gene is located on the X chromosome 
(Xp22) (48,49), and is present in several hypertensive rat 
models (43), supporting a role for ACE2 in regulation of blood 
pressure. Crackower et al (48) reported significantly reduced 
myocardial contractility, and arterial and ventricular pressure, 
in ACE2‑deficient C57BL/6 mice.

Knowledge of the physiological role of ACE2 in blood 
pressure regulation has facilitated the development of novel 

Figure 1. Renin-angiotensin system. ATG, angiotensinogen; Ang, angiotensin; ACE, Ang-converting enzyme; ACEi, ACE inhibitor; AT1, Ang II type 1 
receptor; AT2, Ang II type 2 receptor; NEP, neutral endopeptidase; PEP, proline endopeptidase; XNT, xanthone; HPβCD, hydroxypropyl-β-cyclodextrin; 
cAng-(1-7), cyclic Ang-(1-7).
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approaches for the prevention and treatment of hypertension, as 
well as novel antihypertensive functional foods. ACE2 exerts 
vasodilatory and cardioprotective effects, which not only 
affect resting blood pressure or cardiac contractility, but also 
significantly inhibit ventricular hypertrophy and renal fibrosis. 
ACE2 exerts dose-dependent effects in endogenous antihy-
pertensive rats and SHRs. Therefore, ACE2 overexpression 
is typically used in investigations of hypertension regulation. 
Mercure et al (50) indicated that overexpression of Ang-(1-7) 
reduced Ang II-induced cardiac remodeling and relieved hyper-
tension. Rentzsch et al (51) using an SHR model, demonstrated 
that overexpression of ACE2 in blood vessels reduced blood 
pressure and improved endothelial function. Overexpression 
of ACE2 may also protect the heart against myocardial remod-
eling after infarction in SHR models. Furthermore, ACE2 
reduced hyperglycemia by preventing pancreatic RAS over-
activation in high-fat diet-mediated type 2 diabetes (52). In the 
pancreas of mice administered ACE2, reduced Ang II levels 
and increased ACE2 activity were detected (52). However, it 
has been reported that arrhythmias may occur in mice with 
ACE2-overexpressing cardiac myocytes (53). This discrepancy 
is likely to be due to a difference in Ang-(1-7) concentrations, 
since Ang-(1-7) causes arrhythmia at higher concentrations 
but not at lower concentrations (54,55). Díez-Freire et al (56) 
reported that overexpression of ACE2 in SHRs using lentiviral 
vector; they concluded a protective effects on high blood pres-
sure in lenti-ACE2-treated SHRs.

4. Role of Ang‑(1‑7) in vasodilation and blood pressure 
regulation

Ang-(1-7) exerts a vasodilatory effect on the arteries of pigs, 
dogs, cats and rats. This effect is associated with nitric oxide 
(NO), bradykinin, prostaglandin and endothelium-derived 
hyperpolarizing factor (46,57-60).

The vasodilatory effects of Ang-(1-7) are endothe-
lium-dependent; it is absent when endothelial cells are 
removed or following application of l-nitro-arginine methyl 
ester (L-NAME). Pinheiro et al (43) reported that short-term 
administration of Ang-(1-7) to C57BL/6 mice resulted in 
activation of the Mas receptor, which increased NO release 
and enhanced endothelial function. Conversely, Mas-knockout 
mice exhibited a greater release of reactive oxygen species and 
reduced release of NO. This imbalance between NO release 
and oxidative stress may result in endothelial dysfunction and 
hypertension in rats. Ang-(1-7) activates the Mas receptor 
in human vascular endothelial cells and causes vasodilation 
through renal hemodynamics by activating endothelial NO 
synthase (43).

Under normal physiological conditions, Ang-(1-7) in the 
plasma serves an important role in vasodilation and maintains 
a dynamic equilibrium with Ang II. This antagonistic effect of 
Ang-(1-7) with Ang II was reported by Roks et al (60) in the 
human thoracic artery, cardiac cells, vascular smooth muscle 
cells and fibroblasts.

Ang-(1-7) has a vital role in the central regulation of blood 
pressure. It increases baroreceptor sensitivity and regulates 
biological rhythms, such as blood pressure and heart rate. A 
previous study on SHRs and (mRen-2)27 hypertensive trans-
genic rats reported that cerebroventricular administration of 

an affinity‑purified Ang‑(1‑7) antibody resulted in significant 
dose-related elevations in blood pressure, which were associ-
ated with tachycardia. Conversely, an anti-Ang II antibody 
induced a hemodynamic response that significantly decreased 
arterial pressure and heart rate (61).

Gironacci et al (62) proposed another mechanism under-
lying the effects of Ang-(1-7) using normotensive rats and 
SHRs. Administration of Ang-(1-7) significantly reduced 
the release of hypothalamic norepinephrine. This effect was 
reported to be blocked by NO synthase inhibitor, guanylate 
cyclase inhibitor, AT2 receptor antagonist, Ang-(1-7) receptor 
antagonist and bradykinin receptor antagonist, indicating that 
Ang-(1-7) suppresses norepinephrine release in the hypo-
thalamus with the combined function of NO. This suggests the 
existence of a novel mechanism by which Ang-(1-7) regulates 
central blood pressure.

Ang-(1-7) also controls blood pressure by regulating 
electrolyte balance. Ang-(1-7) reportedly exerts diuretic and 
natriuretic effects, and regulates sodium and bicarbonate reab-
sorption in renal tubules (63). The effect was more marked 
in SHRs; i.e., Ang-(1-7) inhibited the release of antidiuretic 
hormone, which regulated aldosterone release and influenced 
reabsorption of tubular sodium and bicarbonate. However, 
this effect was relatively weak in normal rats. In cultured 
renal tubular epithelial cells, Ang-(1-7) increased the amount 
of arachidonic acid via the phospholipase A2 pathway, which 
inhibited intracellular and extracellular transport of sodium 
ions, and indirectly increased prostacyclin levels (64). 
Prostacyclin also facilitated the diuretic and natriuretic 
effects of Ang-(1-7) by dilating blood vessels and increasing 
membrane permeability (65).

Fontes et al (66) reported an indirect mechanism of 
Ang-(1-7)-Max axis regulation based on pulmonary endothe-
lial cells; i.e., a reduction in cardiovascular risk by attenuation 
of emotional stress. Ang-(1-7) interacts with the Mas receptor 
in the basolateral amygdala, which attenuates anxiety in 
the brain and suppresses the cardiovascular response by 
regulating sympathetic outflow (67). Gironacci (68) provided 
evidence for this mechanism in the nucleus of the brain, 
baroreflex controlled heart rate and glucose metabolism 
in Sprague-Dawley rats, and blocked tachycardia and the 
pressor response in conscious male Wistar rats. These studies 
suggest novel mechanisms by which the ACE2-Ang-(1-7)-Mas 
axis regulates blood pressure; however, the site of action of 
Ang-(1-7) remains unclear (66,67).

Role of the ACE2‑Ang‑(1‑7)‑Mas and ACE‑Ang II‑AT1 axes 
in blood pressure regulation. The kidneys of SHRs have 
decreased ACE2 mRNA and protein expression levels, and 
increased ACE mRNA and protein expression levels (56,69,70). 
In addition, elevated concentrations of Ang II and Ang II-AT1 
receptor have been observed in SHRs (71). This alteration 
is reflected by increased ACE‑Ang II‑AT1 axis activity and 
decreased ACE2-Ang-(1-7)-Mas axis activity (13,14,20). 
Therefore, an imbalance between the ACE-Ang II-AT1 
and ACE2-Ang-(1-7)-Mas axes is an important factor in 
hypertension.

The physiological balance between the two axes remains 
unclear. ACE2 functions as an endogenous enzyme that regu-
lates RAS and the balance between the two axes (72). The 
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latter depends predominantly on Ang-(1-7) and Ang II concen-
trations. Therefore, maintaining the balance between Ang II 
and Ang-(1-7) is important for regulating blood pressure (20). 
A slight imbalance of ACE2/Ang-(1-7) ratio can result in 
disease in the cardiovascular, kidney, lung and central nervous 
systems. However, the RAS system is not regulated by a single 
compound. Although Ang-(1-7) has an antagonistic effect on 
Ang II, increases in Ang-(1-7) levels do not necessarily lead 
to an antihypertensive effect. A high concentration of ACE2 
and Ang-(1-7) may be harmful and result in fatal arrhythmias. 
Therefore, alteration of the concentration of any component 
of the angiotensin system could influence the expression of 
others. Ensuring the overall balance of the angiotensin system 
is considered the best solution for maintaining blood pressure 
homeostasis and normal physiological functions. In addition, 
the angiotensin system balance should be taken into consider-
ation in the development of drugs and functional foods.

Targeting the ACE2‑Ang‑(1‑7)‑Mas axis. Antihypertensive 
drugs and functional foods typically target the ACE-Ang 
II-AT1 axis; e.g., ACEi, ARB and renin (Fig. 1). Although 
Ang-(1-7) has a marked effect on blood pressure, its use is 
subject to several limitations. For example, Ang-(1-7) has 
a short half-life (10-15 sec), and it is rapidly degraded by 
peptidases in the gastrointestinal tract (73). Therefore, it is 
necessary to develop a feasible method for increasing the 
stability of Ang-(1-7). Lula et al (74) prepared an Ang-(1-7) and 
hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complex, 
which increased the stability and absorption of Ang-(1-7). 
After oral administration, Ang-(1-7) was released and exerted 
an antihypertensive effect in the stomach and small intestine. 
A pharmacokinetic study also reported a long-term effect of 
orally administered HPβCD/Ang-(1-7) in terms of an increased 
plasma Ang-(1-7) concentration, and enhanced myocardial 
remodeling and cardiac function (75).

Cyclization is another approach to preventing rapid 
degradation of Ang-(1-7) in the stomach and small intestine. 
A thioether-bridged analogue of Ang-(1-7), cyclic Ang-(1-7) 
[cAng-(1-7)], exhibited internal cyclization and increased 
biological stability (76). In the aorta of rats, the angiectatic 
effect of cAng-(1-7) was double that of Ang-(1-7). A study 
involving a rat model of myocardial infarction demonstrated 
that a subcutaneous injection of cAng-(1-7) suppressed left 
ventricular end-diastolic pressure and facilitated endothelial 
function (77). However, the infarct size was relatively small, 
and no evaluation of systolic function or cardiac fibrosis was 
performed. Further testing in numerous models is essen-
tial to enhance understanding of the beneficial effects of 
cAng-(1-7) (77).

Ang-(1-7) analogs also exert antihypertensive activity. 
The first Ang-(1-7) analog, AVE0991, was synthesized by 
Wiemer et al (78) in 2002. It is a non-peptide Mas receptor 
agonist that has the same active site as Ang-(1-7) and exerts 
similar effects in endothelial cells. Previous studies have 
demonstrated the antihypertensive effects of this agonist: 
i) AVE0991 stimulated the release of NO by bovine aortic 
endothelial cells, as well as in the blood vessels, kidneys and 
heart of mice (45,79-81); ii) AVE0991 exerted a vasodilatory 
effect on endothelial cells in the aortas of rats and mice; this 
effect was absent in Mas-knockout mice (79); iii) AVE0991 

inhibited hypertension and organ damage of L-NAME in 
SHRs (82); iv) short-term administration of AVE0991 increased 
NO release and strengthened endothelial function (83); and 
v) AVE0991 exhibited a dose-dependent antihypertensive 
effect on deoxycorticosterone acetate-salt-induced hyperten-
sive rats, which was amplified by aliskiren (84). Therefore, the 
combination of a renin inhibitor and Mas receptor agonist may 
be considered a potential treatment for hypertension.

ACE2 activators exert antihypertensive effects by increasing 
the expression of Ang-(1-7) and inhibiting extracellular 
regulated protein kinases (85). Therefore, ACE2 accelera-
tors may be effective against hypertension. Prada et al (86) 
proposed the use of the ACE2 activator, xanthone (XNT), to 
activate the ACE2-Ang-(1-7)-Mas axis. Although the peptide 
sequence was not identified, XNT bound to an ACE2‑specific 
pocket (86). Bolus injection of XNT to male Wistar-Kyoto 
rats and SHRs induced conformational changes in ACE2, 
which enhanced ACE2 activity and induced dose-dependent 
increases in bradykinin concentration (86,87). In addition, 
XNT may reduce Ang II plasma concentrations and increase 
Ang-(1-7) concentration. The physiological functions of XNT 
include enhancing cardiac functionality and inhibiting renal 
fibrosis (86); however, XNT loses its activity when combined 
with A-779, a selective Ang-(1-7) antagonist (72). Although 
the mechanisms underlying ACE2 activation have not yet 
been clarified, analogues have been suggested to be a good 
entry point for developing plant-derived ACE2-activating 
agents (22). XNT and its analogues are abundant in numerous 
plants, and some have antifungal, antibacterial, antiviral, anti-
malarial, anti‑inflammatory and antioxidant activities (88). 
Therefore, further research on the mechanism of action of 
XNT is required.

5. Hypertensive activity and functional foods

Functional foods with antihypertensive activity have been 
investigated for the prevention and treatment of CVD (89). 
Food-derived proteins/peptides are alternatives to phar-
maceutical therapeutics for regulating blood pressure (90). 
The antihypertensive ability of protein hydrolysates is due 
to their chain length and physicochemical characteristics, 
including hydrophobicity, molecular charge and side-chain 
bulkiness (91). Typically, ACE inhibitory proteins range 
between 3 and 10 kDa (6). The protein is digested in vivo 
into 2-50-amino-acid peptides (92). Antihypertensive food 
peptides reportedly share structural motifs with endogenous 
peptides and, therefore, regulate receptors or control regula-
tory enzymes (93). Sources of food-derived peptides that 
function as ACEi include animal and plant hydrolysates, and 
synthetic peptides (93-95). Marine protein is a primary source 
of cardioprotective peptides. Proteins in fish muscle and skin, 
and shellfish, serve as resources for the generation of antihy-
pertensive peptides (96-98). Functional products derived from 
animal proteins, such as milk protein, egg white, poultry and 
meat are also advertised to have health benefits. Milk protein 
hydrolysates from casein, whey protein and β-lactoglobulin 
are commercialized as a bioactive ingredient of a milk-based 
supplement for patients with mild hypertension. Examples 
of such peptides include Leu-Gln-Lys-Trp, Leu-Leu-Phe and 
Leu-His-Leu-Pro-Leu-Pro (93-95).
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Compared with milk and other animal proteins, vegetable 
proteins have been investigated less extensively (99). However, 
peptides from plant sources, such as soy, peas and broccoli, 
exert marked antihypertensive effects via mechanisms, 
including inhibition of ACE and vasorelaxation (2,94,100,101). 
Several ACEi candidates within the aforementioned catego-
ries have been reported. For example, enzymatic hydrolysates 
from leguminous plants, such as soybeans, mung beans, 
rice, peas and common beans (Phaseolus vulgaris L.) (99), 
neo-Fermented buckwheat sprouts (102), fruiting bodies of 
edible mushrooms (6) and peanuts (Arachis hypogaea) (103). 
In general, the enzymatic activity (degree of hydrolysis value) 
of those peptides is typically >15%, and is mediated by 
C-terminal Phe, Leu and Tyr residues (104-106).

Other than peptides, phenolic compounds and flavonoids 
from food resources exert antihypertensive effects (107,108), 
which may be associated with their antioxidant and antimicro-
bial activities. For instance, flavonoids inhibit ACE through the 
development of complexes with metal ions in the active center 
of ACE in vitro. Inhibition of ACE by flavonoids is dependent 
on the hydroxyl groups at the 3,5- and 3',4'-positions (107).

Competitive inhibition of C-terminal peptides with hydro-
phobic (aromatic or branched side chain) amino acid residues 
results in inhibition of ACE. Tripeptides with C-terminal amino 
acids (e.g., Trp, Tyr or Pro), and branched aliphatic amino 
acids at the N-terminal, can interact with the three subsites of 
an active ACE catalytic site (109). For example, casein-derived 
antihypertensive peptides; i.e., Val-Ala-Pro, Ile-Pro-Pro, and 
Val-Pro-Pro, exert antihypertensive effects through interaction 
with enzyme catalytic sites. Furthermore, some peptide substi-
tutions, even with isomers, can greatly influence the nature 
of interactions, leading to non-competitive (e.g., Leu-Trp and 
Ile-Tyr) and uncompetitive (e.g., Ile-Trp and Phe-Tyr) inhibi-
tion. These modes of inhibition are characterized by binding of 
peptides with other sites on the enzyme, leading to changes in 
ACE conformation and decreased activity (91). An investiga-
tion into the interactions between ACE and active site‑specific 
inhibitors (peptides) was performed through energy analysis. 
Dipeptides, such as Val-Pro, Lys-Pro and Tyr-Pro, were found 
to form a relatively stable molecular docking with ACE in 
a Caco-2 intestinal model, indicating that hydrogen bonds, 
hydrophobic, hydrophilic and electrostatic interactions, and 
van der Waals forces were involved in numerous molecular 
interactions (110). Although the correlation between affinity 
binding energy and ACE inhibitory activity was not conclu-
sively demonstrated, the study provided valuable information.

Food-derived peptides can also inhibit ACE and renin. 
Flaxseed protein fractions, pea hydrolysates and hemp seed 
protein isolates have been reported to exhibit renin-inhibitory 
activities (111). The mechanisms of action of these peptides 
may depend on their structural features (90). C-terminal 
bulky amino acids (e.g., Trp, Phe, and Tyr) and hydrophobic 
N-terminal amino acids (e.g., Ile, Leu, Ala, and Val) are asso-
ciated with activity against human renin (111).

Due to differences in active sites, ACEi are generally 
unable to bind to ACE2. Egg white hydrolysate, for example, 
which is a source of ACEi, did not affect ACE2 expres-
sion in SHRs (112). ACE2 cleaves specific peptides at a 
Pro-X-Pro-hydrophobic/basic consensus sequence, and this 
activity is inhibited by dipeptides; e.g., Pro-Phe, and involves 

Ang II as the substrate (113). Several small molecules, such 
as calactin, calotoxin, calotropin, uscharidin, uscharin and 
uzarigenin derived from latex (Calotropis procera), activate 
ACE2 through hydrogen bonding with alanine, histidine and 
aspartic acid (114). ACE2 is directly regulated by dietary 
amino acid tryptophan; i.e., amino acid deficiency affects the 
intestinal microbiota, inhibiting the synthesis of ACE2 (115). 
Fatty acids (palmitic acid, stearic acid, docosahexaenoic acid 
and linoleic acid) can also increase the abundance and activity 
of ACE2 (28).

Few investigations have focused on food-derived substances 
that can activate ACE2, possibly since the mechanisms and 
characteristics of ACE2 are not yet fully understood. ACE 
and ACE2 form hydrogen bonds with various amino acids, 
including asparagine, arginine, glutamic acid, threonine and 
tyrosine (114). Amino acid transport proteins are also associ-
ated with ACE2 expression. The expression of neutral amino 
acid transporter solute carrier family 6 member 19 (SLC6A19) 
is downregulated in the kidney and small intestine of ACE2 
knockout animals. A study of the influence of the source of 
dietary protein (soybean proteins and green pea meal) on 
the expression of SLC6A19 and other transporters in the 
intestinal tract of European sea bass (Dicentrarchus labrax), 
reported that feed absorption was strongly associated with the 
expression levels of intestinal amino acid and oligopeptide trans-
porters (116). Hernández Prada et al (86) proposed the use of 
the ACE2 activator XNT to activate the ACE2-Ang-(1-7)-Mas 
axis. XNT interacts with ACE2, which alters the conforma-
tion of the latter (86). Due to their abundance in many natural 
plant materials, XNT analogues may be a good entry point for 
developing plant-derived ACE2-activating agents (110).

Some of the peptides with ACE inhibitory activity 
may also serve as ACE2 activators. The casein peptide 
Ile-Pro-Pro resulted in ACE inhibition and ACE2 upregula-
tion in SHRs (117). Therefore, a better understanding of the 
ACE2-Ang-(1-7)-Mas axis would assist development of 
novel food-derived sources of antihypertensive peptides. 
Majumder et al (118) reported a food protein-derived ACE 
inhibitory peptide with a novel mechanism of action. Egg 
ovotransferrin-derived peptides increased the expression of 
ACE2 in SHRs. Subsequently, ACE2 was reported to degrade 
the vasoconstrictor Ang II and reduce activity of the RAS. 
Similarly, the level of a casein-derived ACE inhibitory peptide 
(Ile-Pro-Pro or Pro) was correlated with ACE2 expression in 
SHRs, which enhances the vasodilatory effect of Ang-(1-7) and 
bradykininin, indicating that ACE inhibitory peptides have 
the potential to activate the ACE-2-Ang-(1-7)-Mas axis (119). 
Feeding of the bioactive tripeptides Ile-Gln-Pro (IQP) and 
Val-Glu-Pro (VEP) in combination with captopril to spon-
taneously hypertensive rats resulted in a relatively long-term 
(8 weeks) effect on RAS regulation. ACE, Ang II and AT1 
levels were decreased, and those of the ACE2-Ang-(1-7)-Mas 
axis components ACE2, Ang-(1-7), AT2 and Mas receptor 
were increased (106). Therefore, oral administration of 
food-derived bioactive peptides may benefit patients with 
hypertension. Food-derived bioactive peptides may be effec-
tive nutraceuticals for CVD (119).

The structure-activity relationship of the ACE active site 
has been the focus of studies aiming to discover natural antihy-
pertensive agents. ACE inhibition has been investigated using 
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competitive and non-competitive models (120). Molecular 
simulation enables analysis of the mechanisms of ACE inhibi-
tion, and has been applied to analysis of peanut proteins. The 
active pocket of ACE was found to be occupied by a peanut 
peptide (103). Hydrogen, electrostatic and Pi bonds, as well 
as Zn+‑ligand interactions, influence the level of ACE activity. 
Several peptide carboxyl-terminal amino acids, such as Ala, 
Val, Glu, Gln and Arg, can form hydrogen bonds as either 
an H donor or receptor (103). Although they have different 
substrate specificities, the amino acid sequence of ACE shares 
40% homology with that of ACE2 (121); therefore, a similar 
approach may also facilitate studies of the mechanism of 
action of ACE2.

Recently, ACE2 therapy for CVD has been investigated. 
ACE2 treatment exerted a long-term effect (6 months) in bile 
duct ligation mice. The increased ACE2 activity was associ-
ated with a marked reduction in the Ang II to Ang-(1-7) ratio, 
resulting in degradation of Ang II and an increased Ang-(1-7) 
level (122). Oral feeding of bio-encapsulated ACE2/Ang-(1-7) 
to wild type C57Bl/6J mice and B10. RIII mice has been 
found to protect the RAS axis (123). In addition, negative regu-
lation of Ang II may act as a positive feedback mechanism for 
the RAS by activating ACE2 shedding via the AT1 receptor. 
Therefore, increased plasma ACE2 activity is suggestive of 
cardioprotective effects (124).

Augmentation of ACE2 is a promising therapeutic approach 
as it reduces the Ang II level and increases the Ang-(1-7)/Ang 
II ratio. ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) 
and almandine are counter-regulators of the ACE-Ang II 
axis, and regulate blood pressure, and cardiovascular and 
renal remodeling in rats, mice and humans. ACE2 acts as an 
ACE inhibitor, has a single active site and a ~400-fold greater 
affinity for Ang II compared with Ang I (121).

Food‑derived peptides have efficacies similar to synthetic 
drugs (108). Notably, several peptides derived from food 
protein have antihypertensive effects in animal studies, most 
of which involved SHRs; hypertension in human subjects prob-
ably has a different etiology. Therefore, clinical trials of the 
pharmacokinetics and pharmacodynamics of antihypertensive 
peptides are required (90). Several other clinical studies have 
reported a beneficial effect of intravenous or oral administra-
tion, or as a component of the diet, of food-derived peptides. 
Peptide-based food products with antihypertensive effects that 
target the RAS system have been developed (22,91). Recent 
advances in biochemical techniques have enabled further 
insight into the molecular mechanisms of antihypertensive 
agents (90). A systematic study of ACE inhibitory peptides 
reported that the amino acid sequence of a peptide influences 
its antihypertensive activity. Substitution or addition of a single 
amino acid residue increased the ACE inhibitory activity of 
the peptide (125). ACEi provokes a sharp increase in ACE2 
expression in rats that regulates the balance of ACE and ACE2 
in the circulatory angiotensin levels (126). Activation of AT2 
increased the ACE2/ACE and Mas/AT1 ratios in the heart, 
which serve as negative regulators of the RAS (126). A similar 
study involving ACEi (ACEi and ARBs) reported increased 
ACE2 expression in rodent hearts and clinical studies. This 
finding suggested that ACE2 is also involved in formation of 
the protein complex that influences intestinal absorption of 
other drugs and amino acids (127).

6. Conclusions

The discovery of ACE2 and the ACE2-Ang-(1-7)-Mas axis has 
enhanced understanding of the RAS. The ACE-Ang II-AT1 and 
ACE2-Ang-(1-7)-Mas axes serve a pivotal role in regulation of 
blood pressure and fluid balance. An improved understanding 
of the ACE2-Ang-(1-7)-Mas axis and the RAS will assist the 
treatment of hypertension and CVD by enabling development 
of novel peptide-based functional foods.

A growing number of natural resources, particularly 
food-derived compounds, are capable of regulating the RAS. 
Further research into the mechanisms of the ACE-Ang II-AT1 
and ACE2-Ang-(1-7)-Mas axes may facilitate discovery of 
potent and safe antihypertensive agents.

The ACE2-Ang-(1-7)-Mas axis has potential as a target 
for the development of drugs and functional foods. However, 
prior to commercialization of pharmaceutical-grade bioactive 
peptides, further research is required on their efficacy and 
potential adverse or toxic effects.
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