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Abstract. The aim of the present study was to identify muta-
tions in the fibroblast growth factor receptor 2 (FGFR2) gene 
in patients with Crouzon syndrome and characterize the 
associated clinical features. A total of two Chinese patients 
diagnosed with Crouzon syndrome underwent complete 
examinations, including best‑corrected visual acuity, slit‑lamp, 
examination, fundus examination, optical coherence tomog-
raphy and computed tomography of the skull. Genomic 
DNA was extracted from peripheral blood samples collected 
from the patients, as well as their family members and 200 
unrelated control subjects from the same population. Exons 8 
and 10 in the FGFR2 gene were amplified by polymerase 
chain reaction and directly sequenced. Patient #1 had a hetero-
zygous missense mutation (c.1025G>A, p.C342Y) in exon 10 
of FGFR2. Patient #2 had a heterozygous mutation (c.1084+1 
G>T; IVS10+1G>T) in intron 10. The mutations were not 
present in any of the unaffected family members or unrelated 
control subjects. These findings expand the mutation spectrum 
of FGFR2, and are valuable for genetic counseling in addition 
to prenatal diagnosis in patients with Crouzon syndrome.

Introduction

Craniosynostosis is characterized by premature fusion of one or 
more cranial sutures, resulting in an abnormal growth pattern 
of the skull (1). Craniosynostosis can be clinically manifested 
as Crouzon syndrome, Jackson‑Weiss syndrome, or Pfeiffer 
syndrome. Crouzon syndrome, first reported by Louis Edouard 
Octave (2-5) in 1912, is recognized as one of the most common 
craniosynostosis syndromes (6). The prevalence of Crouzon 
syndrome is between 1/60,000 to 1/1,000 live birth, depending 
on race, region, and ethnicity (7-9). Crouzon syndrome is 
typically characterized by craniosynostosis, exorbitism, hyper-
telorism, midface hypoplasia, hooked nose, thin vermilion of 
the upper lip, and mandibular prognathism (10,11). Unlike 
Pfeiffer syndrome that can present hand abnormalities, such 
as wide and deviated thumbs, or Jackson‑Weiss syndrome 
that can present broad great toes with medial deviation and 
tarsal‑metatarsal coalescence, Crouzon syndrome usually does 
not present limb abnormalities (1,9). Most patients with Crouzon 
syndrome present altered ocular appearance such as ocular 
proptosis, and initially seek medical care from neurosurgeons 
or ophthalmologists, rather than orthopedists (8,12,13). Since 
Crouzon syndrome is a relatively rare syndrome, and is usually 
not easy to diagnose, molecular diagnosis will provide useful 
information for the disease diagnosis and genetic counseling.

Craniosynostosis is generally associated with abnormal 
function of fibroblast growth factor receptors (FGFRs) (14,15). 
To date, more than 50 distinct mutations in the FGFR2 gene 
have been linked to Crouzon syndrome. Approximately 95% 
of patients have a mutation in either 8 (IIIa) or exon 10 (IIIc), 
which encode the extracellular immunoglobulin‑like III 
(IgIII) domain of the receptor (14,16). Growth factors, such 
as FGF and TGF, play pivotal roles for controlling cell growth 
and differentiation (17-23). Mutations in FGFR2 can lead 
to increased ligand affinity and altered ligand specificity, 
disrupting the differentiation of mesenchymal stem cells, and 
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therefore causing developmental defects (24,25). Although 
Crouzon syndrome is often inherited as an autosomal dominant 
trait, de novo mutations at FGFR2 can also result in sporadic 
cases (3,5,26). Here, we report the results of a mutational 
analysis of two sporadic patients with Crouzon syndrome from 
two unrelated Chinese families.

Materials and methods

Patient recruitment and clinical evaluations. All experimental 
protocols and methods which were carried out in accordance 
with the guidelines were approved by the Ethics Committee 
of Zhongshan Ophthalmic Center. Informed consents were 
obtained from all participating subjects in accordance with the 
Declaration of Helsinki. The following series of ophthalmic 
tests were performed in patients and their family members. 
Visual acuity was examined using the Early Treatment Diabetic 
Retinopathy Study (EDTRS) chart (Precision Vision, LaSalle, 
IL, USA). Anterior segment photographs were captured by 
a BX 900 slit lamp (Haag‑Streit AG, Köniz, Switzerland). 
Anterior segment measurements were obtained by a Pentacam 
HR version 70700 (OCULUS Optikgeräte GmbH, Wetzlar, 
Germany). Optical coherence tomography (OCT) was carried 
out by Cirrus HD‑OCT (Carl Zeiss Meditec, Dublin, CA, 
USA). Computed tomography (CT) and physical examinations, 
including blood examination, urinalysis, electrocardiogram, 
chest X‑ray, blood biochemistry, blood lipid, and blood coagu-
lation tests, were conducted to exclude systemic diseases.

Sample collection and mutational screening. Genomic DNA 
samples were extracted from peripheral blood leucocytes of 
the patients and their relatives with the Qiagen kit (Qiagen 
Inc., Chatsworth, CA, USA) according to the manufacturer's 
instructions. DNA concentration and purity were measured 
by NanoDrop™ ND‑1000 spectrophotometer (Thermo Fisher 
Scientific Inc., Wilmington, DE, USA). In addition, DNA 
samples collected from 200 subjects from the same popula-
tion without diagnostic features of Crouzon syndrome were 
used as controls. Exons 8 and 10 in the FGFR2 gene were 
amplified using polymerase chain reaction (PCR) as described 
previously (24,25,27). Primers were obtained from the Beijing 
Genomics Institute (Guangzhou, China). The sequences of 
the primers are listed in Table I. All reagents used for the 
PCR reactions were purchased from Takara Bio Inc. (Tokyo, 
Japan). The amplification included a single 5‑min step at 94˚C; 
followed by 40 cycles of 94˚C for 45 sec, 61˚C for 45 sec, and 
72˚C for 45 sec; and finally a 10‑min step at 72˚C. The PCR 
products were sequenced in both directions using an ABI3730 
Automated Sequencer (PE Biosystems, Foster City, CA, USA). 
The sequencing results were analyzed using SeqMan (version 
2.3; Technelysium Pty, Ltd., Brisbane, QLD, Australia), 
and compared against reference sequences obtained from 
the National Center for Biotechnology Information (NCBI) 
database (accession no. NC_000010) (28).

Results

Clinical presentations. We diagnosed two patients of two 
unrelated families from the southern region of China. Systemic 
diseases were excluded upon examination.

Patient #1 was a two‑year‑old girl and was the only child of 
two healthy parents (Fig. 1). She was referred by her local pedia-
trician at two months of age due to concerns about an elongated 
head shape and the possible diagnosis of sagittal synostosis. 
Until this point, the patient's development was otherwise 
unremarkable, with normal feeding and steady weight gain 
after birth. Examination of this patient revealed shallow orbits 
and ocular proptosis, accompanied by midface hypoplasia, 
craniosynostosis, a curved beak‑like nose (Fig. 1A), and clini-
cally normal hands and feet. An approximately 2 mm gap was 
observed when she attempted to close her eyelids (Fig. 1B). The 
patient presented with exotropia in both eyes, but the corneas 
were transparent with normal size. Also, the lenses were 
transparent and normally positioned (Fig. 1C and D). Fundus 
examination showed normal retinas (Fig. 1E and F). Because 
of the patient was young, we were unable to measure visual 
acuity, but the child had normal visual tracking and the results 
of the optometry were +3.0 D (OD) and +3.25 D (OS). CT scan 
revealed shallow orbits and exotropia in both eyes (Fig. 1G). 
Both parents had normal visual acuity and unremarkable eye 
examinations, and all family members had no known history 
of learning difficulties or genetic problems.

Patient #2 was a 21‑year‑old woman and was also the 
only child of two healthy parents (Fig. 2). She presented 
with midface hypoplasia and craniosynostosis (Fig. 2A). 
She had normal visual acuity. Her hands and feet had 
normal flexibility. Radiography showed no obvious carpal 
fusion (Fig. 2B and C). No abnormalities were detected 
in the cornea or lens (Fig. 2D and E). CT scan revealed 
shallow orbits (Fig. 2F). OCT revealed normal retina in both 
eyes (Fig. 2G and H). In general, the clinical manifestations of 
this patient were less severe than patient #1.

Mutational screening. Patient #1 carried a heterozygous 
missense mutation (c.1025G>A; p.C342Y) in exon 10 of the 
FGFR2 gene (Fig. 3A). Patient #2 carried a heterozygous 
mutation (IVS10+1G>T; c.1084+1 G>T) in intron 10 of the 
FGFR2 gene (Fig. 3B). This mutation is located at a splicing 
site. Both mutations were not presented in any of the unaf-
fected family members or unrelated controls, therefore are 
considered de novo mutations.

Clinical manifestations and mutational screening results 
of the two patients in this study are summarized in Table II.

Discussion

Crouzon syndrome is a common autosomal dominant form of 
craniofacial complexes, characterized by premature cranio-
synostosis, orbital proptosis, and midface hypoplasia (7). Both 
patients we reported here do not present limb malformations, 
which differentiates Crouzon syndrome from other types of 
craniosynostosis (1,9).

In patient #1, the c.1025G>A mutation causes a 
cysteine‑to‑tyrosine substitution at amino acid 342 in 
FGFR2. The loss of this cysteine residue is one of the most 
frequent mutations in Crouzon syndrome patients and has 
been reported in French, British, and German popula-
tions (5,6,29-32). Therefore, the amino acid C342 in FGFR2 
is considered as a mutation ‘hotspot’. Several identified 
mutations at this position are C342R (c.1024T>C), C342Y 
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(c.1025G>A), C342S (c.1025G>C), C342F (c.1025G>T), 
and C342W (c.1026C>G) (30,32,33). Mutations at C342 can 
cause Crouzon syndrome as well as Pfeiffer syndrome (34). 
Studies have shown that C342 is part of the disulfide bridge 
that stabilizes the IgIII loop in all FGFR proteins and is 

the most conserved extracellular amino acid in the Ig 
superfamily. The loss of C342 leaves an unbridged C278, 
which may cause the ligand‑independent dimerization of 
receptor molecules, leading to constitutive receptor activa-
tion (35,36).

Table I. Summary of the primers and product length used for the amplification of the exons of FGFR 2.

   Product Annealing
Exon Forward (5'‑3') Reverse (5'‑3') size (bp) temperature (˚C)

FGFR2‑8 (IIIa) GGTCTCTCATTCTCCCATCCC CCAACAGGAAATCAAAGAACC 325 61
FGFR2‑10 (IIIc) CCTCCACAATCATTCCTGTGTC ATAGCAGTCAACCAAGAAAAGGG 257 61

Figure 1. Clinical manifestations of patient #1. (A and B) The patient presented with ocular proptosis (white arrows), extropia, midface hypoplasia (black 
asterisk), craniosynostosis (white arrowhead), and a curved, beak‑like nose (black arrowhead). An approximately 2 mm gap was observed when she attempted 
to close her eyelids. (C and D) The corneas of both eyes were transparent with normal size, and the lenses are clear and normally postioned. (E and F) Fundus 
examination showed normal retina in both eyes. (G) A CT scan reveals shallow orbits and exotropia in both eyes (white asterisks).
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The fidelity of the splice site sequence, particularly the 
first two nucleotides in the donor site, is essential for accurate 
splicing. The presence of a guanine base at the +1 position 
at the intron‑exon boundary of FGFR2 gene is essential for 
splice site recognition. In patient #2, the splicing site muta-
tion (c.1084+1 G>T) can cause alternative splicing, disrupt 
the third immunoglobulin‑like domain of FGF2, and generate 
pathogenic protein isoforms. However, compared to the 
cysteine mutation in Patient #1, mutations affecting FGFR2 
pre‑mRNA splicing usually cause relatively mild clinical 
manifestations (37-39). Interestingly, a similar mutation in the 
FGFR2 gene at the same position (c.1084+1 G>A) can cause 
mild bicoronal synostosis (38).

Craniosynostosis may be complicated with other ophthalmic 
anomalies. For example, some craniosynostosis patients with 
FGFR2 mutation can also present with Peters anomaly (a rare 

Table II. Summary of clinical manifestations and mutational screening results of the two patients.

 Clinical manifestations
 -----------------------------------------------------------------------------------------------------------------------------------------------------
Patient (#) Gender Age Facial characteristics Limbs Lens/cornea Fundus CT scan Mutation

1 Female 2 Midface hypoplasia,  Normal Normal Normal Shallow  c.1025G>A
   craniosynostosis,     orbits, 
   curved beak‑like    proptosis,  
   nose, lagophthalmus    exotropia 
2 Female 21 Midface Normal Normal Normal Shallow orbits c.1084+1
   hypoplasia,      G>T, IVS10
   craniosynostosis     +1G>T;

Figure 2. Clinical manifestations of patient #2. (A) The patient presented with midface hypoplasia (black asterisk). (B) Clinically normal hands. (C) Radiography 
revealed no obvious carpal fusions in this patient. (D and E) The cornea and lenses were normal. (F) CT scan revealed shallow orbits (white asterisks). 
(G and H) OCT examination revealed normal retina in both eyes.

Figure 3. Mutational screening results of the patients. (A) A heterozygous 
missense mutation (c.1025G>A; p.C342Y) in exon 10 of the FGFR2 gene 
was identified in patient #1. (B) A heterozygous mutation (IVS10+1 G>T; 
c.1084+1 G>T) in intron 10 of the FGFR2 gene was identified in patient #2. 
Yellow boxes denote exon regions. Pink boxes denote intron regions.
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form of anterior segment dysgenesis), optic nerve hypoplasia, 
scleralization of the cornea, and corectopia (13). In this study, 
patient #1 also had strabismus, which expands the list of clinical 
manifestations associated with Crouzon syndrome.

In summary, we identified two distinct mutations in the 
FGFR2 gene in two Chinese patients with Crouzon syndrome 
from unrelated families. These findings expand the mutational 
spectrum of FGFR2, and provide valuable information for 
genetic counseling and prenatal diagnosis in families with 
Crouzon syndrome. Although our understanding of the function 
of FGFR is still limited, the discovery of these mutant variants 
provides an opportunity and rationale for in‑depth mechanistic 
studies, and may help to reveal critical pathophysiology under-
lying related skull development disorders in general.
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