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Abstract. Embryonic stem cells (ESCs) have unlimited expan-
sion potential and the ability to differentiate into all somatic 
cell types for regenerative medicine and disease model studies. 
Octamer‑binding transcription factor 4 (OCT4), encoded by 
the POU domain, class 5, transcription factor 1 gene, is a tran-
scription factor vital for maintaining ESC pluripotency and 
somatic reprogramming. Many studies have established that 
the cell cycle of ESCs is featured with an abbreviated G1 phase 
and a prolonged S phase. Changes in cell cycle dynamics are 
intimately associated with the state of ESC pluripotency, and 
manipulating cell‑cycle regulators could enable a controlled 
differentiation of ESCs. The present review focused primarily 
on the emerging roles of OCT4 in coordinating the cell cycle 
progression, the maintenance of pluripotency and the glyco-
lytic metabolism in ESCs.
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1. Introduction

Embryonic stem cells (ESCs) are characterized by unlimited 
proliferation (self‑renewal) and the ability to differentiate into 
three primary germ layers, namely the endoderm, mesoderm 
and ectoderm (pluripotency)  (1‑4). It has been established 
that complicated regulatory networks are present in ESCs 
that critically maintain the state of self‑renewal and pluri-
potency for later development  (5,6). Several transcription 
factors (TFs), including octamer‑binding transcription factor 
4 (OCT4), SRY‑box 2 (SOX2) and homeobox protein NANOG 
(NANOG) are known to sit at the top of the regulatory 
hierarchy, regulating the expression of various downstream 
target genes (7,8). Among them, OCT4 serves an indispens-
able role in maintaining the pluripotency of ESCs (9,10) and 
in reprogramming the terminally‑differentiated somatic cells 
back into the ESC‑like cells (11‑13). Furthermore, OCT4 can 
mediate the differentiation of murine ESCs induced by reti-
noic acid or Wnt/β‑catenin in a manner that is independent of 
and distinct from other core TFs (14), indicating that OCT4 
may have unique and non‑substitutable roles in controlling the 
self‑renewal, pluripotency and differentiation of ESCs.

Cell cycle progression is required for ESCs to proliferate 
and avoid staying in a quiescent state. Multiple studies have 
demonstrated that cell cycle‑associated proteins can regulate 
various core TFs or differentiation markers (15). In a recip-
rocal manner, several TFs, such as NANOG and c‑MYC 
proto‑oncogene protein, can control the expression levels of 
multiple cell cycle‑associated target genes (16,17). This review 
will be focused on reciprocal interplays between OCT4 and 
cell cycle checkpoints and their connections with the ESC 
pluripotency.

2. Cell cycle and pluripotency in ESCs

Cell cycle comprises four different phases; the S phase for 
DNA replication, the M phase for cell mitosis, and two gap 
phases between S phase and M phase (G1 phase for synthesis 
of proteins and lipids, and G2 phase for checking DNA 
integrity). Ample evidence has revealed that the duration of 
cell cycle in murine somatic cells is relatively long (>16 h), 
which is dominated by the G1 phase (18); in contrast, the cell 
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cycle of murine ESCs progresses faster (~8‑10 h) (19), which 
is characterized by a truncated G1 phase and a prolonged S 
phase (20). Although the duration of cell cycle in human ESCs 
is significantly lengthened (~32‑38 h) (21), the time spent at 
G1 phase is minimal (3 h in human ESCs vs. 10 h in human 
somatic cells) (15,22), indicating that the cell cycle dynamics 
may crucially impact on the differentiation potential of plurip-
otent stem cells. Indeed, ~1‑5% of the total proteins differ their 
expression levels between ESCs and induced pluripotent (iPS) 
cells, and the majority of them are cell cycle proteins (23).

There is mounting evidence demonstrating that 
lengthening the G1 phase in ESCs contributes to inducing 
differentiation (24‑27), and distinct G1 phase profiles will lead 
to different lineage fates. Human ESCs in early G1 phase can 
only differentiate into endoderm, whereas in late G1 phase they 
were limited to neuroectodermal differentiation (28). In fact, 
all‑trans retinoic acid, a common differentiation inducer, can 
regulate the gene expression of Cyclin D1 (29,30) and result 
in G1 phase accumulation (31‑33). It is therefore reasonable to 
propose that during the G1 phase, ESCs sense and integrate 
various extracellular and intracellular signals to make the 
decisions on the timing and the fate of differentiation. A short-
ened G1 phase may minimize the exposure of ESCs to various 
signals, thereby preserving their pluripotency. In addition, it 
was demonstrated in a recent study that G2 cell cycle arrest 
is also required for endodermal development (34); further-
more, specific disruption of S and G2 phases will affect the 
pluripotent state of human ESCs in a G1 phase‑independent 
way  (35‑37). Gamma‑ray‑induced DNA damage induces 
G2/M blockage and the differentiation of ESCs (38,39). It is 
important that ESCs have a long enough G2 phase to check 
and restore the fidelity of the genome as a result of G1/S check-
point deficiency.

3. OCT4 and G1/S transition

The expression of Cyclin‑dependent kinase 4/6 (CDK4/6) 
and Cyclin D is increased in early G1 phase in somatic cells. 
Although the lack of Cyclin D expression was reported in 
murine ESCs (40), the mRNA levels of CDK4 and Cyclin 
D2 were increased in human ESCs (22,41). Further studies 
demonstrated that Cyclin D expression is enhanced in late 
G1 and G1/S phases in human ESCs. Notably, knocking 
down Cyclin D induces endodermal differentiation, whereas 
its overexpression promoted neuroectodermal differentia-
tion by inhibiting mothers against decapentaplegic (SMAD) 
2/3 nuclear translocation (28). In addition, Cyclin D can also 
recruit transcriptional co‑regulators to development‑assocaited 
gene loci and modify the epigenetics of target genes  (42). 
There is evidence demonstrating that a proper level of Cyclin 
D is necessary for maintaining the pluripotent state of ESCs, 
while overexpression of them may induce reprogramming of 
epidermal cells into stem‑like cells with higher expression levels 
of OCT4 and NANOG (43). In contrast, in adult stem cells or 
cancer cells, OCT4 can directly bind to the promoter region of 
Cyclin D1, thereby regulating its transcription and controlling 
G1/S transition (44‑46). Meanwhile, OCT4 can bind with the 
conserved promoter of microRNA (miR)‑302 (47), increasing 
the level of p16(Ink4a)/p19(Ink4d) and inhibiting the interac-
tion between CDK4/6 and Cyclin D (48). Furthermore, OCT4 

can also interact with SMAD2/3 to control the pluripotent state 
of ESCs (49,50). Taken together, these studies suggested that 
OCT4 is involved in the transcriptional regulation of Cyclin D 
as well as other target genes (Fig. 1).

CDK2‑Cyclin E is constitutively expressed and involved 
in the progression of G1/S transition (26). In human ESCs, 
inhibition of CDK2 will lead to G1 phase arrest, which is 
accompanied with apoptosis or differentiation. Inhibition of 
CDK2 can induce sustained genomic damage and elicit DNA 
damage response, thus contributing to apoptosis of impaired 
ESCs (51,52). As demonstrated in further studies, OCT4 expres-
sion can be suppressed by downregulating CDK2 (53,54), 
while CDK2 can enhance reprogramming efficiency by phos-
phorylating SOX2 at Ser‑39 and Ser‑253 sites (55). Although 
the regulation of CDK2‑Cyclin A/E by OCT4 in ESCs has 
not been reported, OCT4 can promote tumor proliferation by 
activating Cyclin E (56). Thus, it remains possible that OCT4 
may regulate the expression of CDK2‑Cyclin A/E in ESCs.

Retinoblastoma (RB) protein is a downstream target of 
CDK4/6‑Cyclin D, which can inhibit the transcription activity 
of E2F transcription factor 1 (E2F) in its hypophosphorylated 
state. After being hyperphosphorylated by CDK2‑Cyclin E, RB 
can release E2F for the ultimate regulation of a number of targets 
involved in G1 phase progression and S phase entry (Fig. 1). 
Therefore, it came as no surprise that the activity of RB‑E2F 
can influence the ESC self‑renewal and pluripotency (57,58). In 
fact, activated RB can directly bind to the promoter regions of 
OCT4 and SOX2, leading to their transcriptional suppression 
and a declined reprogramming efficiency (59); in contrast, the 
inactive RB allows for generation of iPS cells in the absence 
of exogenous SOX2 expression (60). Furthermore, RB can also 
regulate OCT4 level by suppressing the expression of forkhead 
box protein M1, which is a transcription factor promoting 
OCT4 expression (61,62). In addition, E2f will switch from an 
active state in stem cells to a suppressed state in differentiated 
cells through forming a complex with RB (63). Conversely, 
in murine ESCs, OCT4 maintains the hypo‑phosphorylated 
state of RB by inhibiting the activity of protein phosphatase 
1 (64), which is well‑known for its role in triggering mitotic 
exit (65). Additionally, OCT4 can also directly bind to the 
promoter region of E2f3a and increase its expression level in 
murine ESCs, which contributes to relieving the cell growth 
retardation caused by OCT4 knockdown (66). As inhibition 
of E2F2 can impair self‑renewal and cell cycle progression in 
human ESCs, the pluripotency is preserved in E2F2 silencing 
cells (67). Therefore, the effects of RB on the pluripotency of 
ESCs are unlikely mediated by E2F. The other roles of RB in 
ESCs will be discussed later.

4. OCT4 and G2/M transition

In somatic cells, CDK1‑Cyclin A/B is a critical cell cycle 
regulator that can promote G2/M transition. As has been 
demonstrated in multiple studies, CDK1‑Cyclins serve critical 
roles in the self‑renewal and development of ESCs. The 
expression level of Cyclin A, the first cloned Cyclin protein, 
is higher in ESCs in G2 phase than that in fibroblast cells (68), 
and resetting its expression level in early‑passage iPS cells can 
improve the pluripotency and reduce the tumorigenicity (23). 
In addition, the Cyclin B1 level is also upregulated in ESCs 
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in G2 phase compared with that in somatic cells. Increased 
expression of Cyclin B1 in G2 phase can delay the dissolu-
tion of pluripotent state in human ESCs, while knockdown 
of Cyclin B1 induces markedly declined expression of 
pluripotent markers in human ESCs (36). The same is true 
for CDK1. In human ESCs, down‑regulating CDK1 leads to 
loss of pluripotency, increased differentiation markers, accu-
mulation of double‑strand breaks, as well as the inability to 
arrest at G2 phase and commit to apoptosis (69,70). CDK1 can 
enhance the binding of OCT4 to the promoter and suppress the 
transcription of homeobox protein CDX2, a classic differentia-
tion marker (71). Furthermore, several markers of G2/M are 
expressed during the meso‑ and endodermal differentiation 
(e.g., WEE1 G2 checkpoint kinase blocks entry into mitosis 
by phosphorylating CDK1 at Y15), rather than the ectodermal 
differentiation (34). In contrast, OCT4 can inhibit the activa-
tion of CDK1 by cell division cycle 25 phosphorylation, which 
is independent of its transcriptional activity (Fig. 2). Thus, 
ESCs have to express more CDK1 to overcome the inhibitory 
effect of OCT4. Inhibition of CDK1 by OCT4 will lead to a 
prolonged duration of G2 phase, which allows for subsequent 
checking of genome integrity and reducing chromosomal 
mis‑segregation (72). Indeed, inhibition of CDK1 can activate 
the response to DNA damage and promote nuclear transloca-
tion and activation of p53, thereby maintaining the survival 
of ESCs (73). The potential connection between OCT4 and 
Cyclin A/B has not been elucidated in any study yet, but there 
is evidence that SOX2, a core TF frequently associated with 

OCT4, can promote the expression of Cyclin A/B in cancer 
cells (74‑76). The direct regulation of CDK1‑Cyclin by OCT4 
warrants further investigation.

Growth arrest and DNA‑damage‑inducible protein 45 
(GADD45), which includes several isoforms, is crucial for 
protecting genome stability in G2/M transition by suppressing 
cell cycle and repairing DNA. GADD45ag morpholino 
knockdown in Xenopus can induce differentiation of neural 
embryonic cells by inducing various cell cycle related inhibi-
tors, such as p53, p21 and Cyclin G1. Additionally, GADD45ag 
morphants exhibit increased expression of Xenopus OCT4 
homologs, indicating that GADD45ag is required for early 
embryonic cells to exit pluripotency and enter differen-
tiation (77). In addition, GADD45a can bind to the OCT4 
promoter and promote its demethylation in Xenopus oocytes, 
which is accompanied with DNA repair (78,79). Furthermore, 
studies in human cells indicated that GADD45 G is a down-
stream target of OCT4, which is significantly increased in the 
OCT4 knockdown system (80,81).

As discussed above, RB is a tumor‑suppressor gene control-
ling the activity of transcription factor of E2F family, which 
serves an indispensable role in G1/S transition. Increased 
activity of RB can trigger cell cycle arrest, differentiation or 
death of ESCs (82). However, the inactivation of RB family in 
ESCs can also induce G2/M arrest and cell death (57), which 
may be attributed to the loss of its function in maintaining 
the genetic stability  (83‑85). These findings indicated that 
the expression level of RB needs to be tightly controlled at a 

Figure 1. An overview of the roles of OCT4 in coordinating the G1/S transition and the maintenance of pluripotency. OCT4 promotes the phosphorylation of 
hypo‑phosphorylated RB (a prerequisite for the R‑point transition) by downregulating PP1 and upregulating CDK4/6‑Cyclin D in early and mid G1 phase. 
At this point, phosphorylated RB still binds to E2Fs and blocks their transcription‑activating domains, leading to suppressed expression of several cell‑cycle 
promoting genes, including OCT4. OCT4 can further promote RB hyperphosphorylation by upregulating CDK2‑Cyclin E complex, which leads to the E2F 
release, the R‑point transition, and the entry into the S phase. CDK2 can also phosphorylate SOX2 to enhance reprogramming efficiency. Black arrows indicate 
positive regulation, while red bar‑headed lines indicate negative regulation. PP1, protein phosphatase 1; CDK, cyclin‑dependent kinase; FOXM1, forkhead box 
protein M1; RB, retinoblastoma; E2F, E2F transcription factor 1; OCT4, octamer‑binding transcription factor 4; p, phosphorylated.
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proper level, so that the pluripotency and self‑renewal of ESCs 
can be maintained. Furthermore, overexpression of RB in S 
phase can lead to G2 phase arrest (86). Additionally, RB can 
directly bind to cohesin and condensin II, which can regulate 
centromere functions and control mitosis (87‑91).

5. OCT4 and p53‑p21 checkpoints

The p53‑p21 signaling pathway is a major checkpoint in cell 
cycle of G1/S and G2/M transition. The expression level of 
p53 is kept low in ESCs, which is predominantly present in 
the cytoplasm. The extremely low level of p53 in the nucleus 
is also inactivated. p53 will translocate to cell nucleus and 
initiate the transcription of its target genes in the event of DNA 
damage (92). In addition, p53 can promote the translocation of 
active Bcl‑2‑associated X protein from the Golgi to mitochon-
dria to initiate apoptosis under DNA damage stresses (93). 
It is demonstrated that p53 deficiency will lead to genomic 
instability in ESCs (94). In contrast, the activated p53 in ESCs 
will result in differentiation (31,95,96) or apoptosis (73,97). 
However, it has also been demonstrated in other studies that 
p53 has anti‑differentiation effects in ESCs (98), indicating 
that p53 exerts its functions in a context‑dependent manner, 
and that proper intracellular levels and subcellular localization 
of p53 are critical for its roles in maintaining the pluripotent 
state in ESCs.

In addition, p53 can regulate the expression of various 
key TFs in ESCs. For example, knockdown of p53 can lead 
to downregulated NANOG expression (99). As a common 

differentiation inducer of ESCs, p53 expression is activated 
after exposure to retinoic acid, which drives the expression 
of miR‑34a and miR‑145 and reduces the OCT4 expres-
sion (31). In addition, the differentiation‑activated p53 can 
recruit UTX and lysine‑specific demethylase 6B (JMJD3), 
the H3K27me3‑specific demethylases, bind to the promoter 
regions of developmental transcription factors that are 
repressed by OCT4, and increase the expression of various 
differentiation genes (100). p53 is also the downstream target 
of OCT4 (Fig. 2). Studies have revealed that silencing OCT4 
will lead to p53 activation and induce differentiation (101‑103). 
For instance, silencing OCT4 significantly reduces the expres-
sion of SIRT1, a deacetylase known to inhibit p53 activity and 
the differentiation of ESCs, leading to increased acetylation 
of p53 at lysine 120 and 164 that is required for its stabiliza-
tion and functionality (104). In addition, OCT4 can bind to the 
promoter region of CD49f (integrin subunit α6), which can 
also decrease the level of p53 (105).

p21, a downstream target of p53, can inhibit the activation 
of CDKs and result in cell cycle arrest (Fig. 2); in addition, it 
can also be regulated in a p53‑independent way. It has been 
revealed in studies that p21 is involved in DNA repair, tran-
scriptional regulation, differentiation and apoptosis. In ESCs, 
the expression level of p21 is compromised due to epigenetic 
modification (106), and the lack of p21 function is required 
for maintaining the pluripotent state (107). Ionizing radia-
tion‑induced DNA damage can lead to elevated p21 mRNA 
level and cell cycle arrest at G2 phase (108). Upregulation 
of p21 in human ESCs will induce G1 phase arrest and 

Figure 2. An overview of the roles of OCT4 in coordinating the G2/M transition and the maintenance of pluripotency. At the G2/M phase, via a non‑tran-
scriptional mechanism, OCT4 can inhibit the activation of CDK1 and lead to a prolonged G2 phase, allowing for subsequent checking of genome integrity 
and reducing chromosomal mis‑segregation. Reciprocally, CDK1 can enhance the binding of OCT4 to the CDX2 promoter and suppress its transcription, 
contributing to the maintenance of ESC pluripotency. Black arrows indicate positive regulation, while red bar‑headed lines indicate negative regulation. CDX2, 
homeobox protein CDX2; CDC25, cell cycle division 25; miR, microRNA; CDK1, cyclin‑dependent kinase 1; GADD45, DNA‑damage‑inducible protein 45; 
SOX2, SRY‑box 2; OCT4, octamer‑binding transcription factor 4.
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subsequent differentiation into multiple lineages (109). This 
result is consistent with the finding that p21 has multiple 
fuctions in both G1/S and G2/M checkpoints (110,111). p21 
can also mediate apoptosis in murine ESCs that are exposed 
to dihydrolipoic acid (112). In addition, increased p21 expres-
sion leads to decreased reprogramming efficiency in somatic 
cells (113). Conversely, OCT4 can inhibit the activity of p21 
by directly binding to its promoter region or by indirectly 
up‑regulating DNA (cytosine‑5)‑methyltransferase 1, a DNA 
methyltransferase, which can inhibit lineage differentia-
tion (114‑116).

6. OCT4 and ESC metabolism

A large amount of energy is generated in ESCs to meet the 
requirements for biosynthesis and cell cycle progression. The 
energy metabolism mode of primed ESCs is similar to that of 
other adult stem cells or cancer cells with a high glycolytic 
flux rather than oxidative phosphorylation (OXPHOS), which 
is known as the ‘Warburg effect’ (117‑121). This phenomenon 
can be partly attributed to the immature structure and func-
tion of mitochondria and a hypoxic niche (5% of physiological 
level) (122,123). Though glycolysis produces less ATPs than 
OXPHOS, it has faster rate of ATP generation, which makes 
it competent to support active cell proliferation. Additionally, 
pyruvate, the product of glycolysis, together with other inter-
mediate products of tricarboxylic acid (TCA) cycle, can be 
used for biosynthesis (such as DNA, protein and lipid) in ESCs 
as well as in cancer cells for shortening the G1 phase (123‑125). 
A high glycolytic flux metabolism in hypoxia may reduce the 
damages to DNA caused by reactive oxide species (ROS), 
which may impair the pluripotency ESCs and induce their 
differentiation (126,127).

Initial evidence indicated OCT4 may be involved in regu-
lating metabolism as its knockdown resulted in increases in 
TCA cycle activity and decreases in glycolytic flux (117). 
Further studies demonstrated that OCT4 can directly regu-
late the transcription of hexokinase 2 (HK2) and pyruvate 
kinase (PK) M2, the two key glycolytic enzymes that 
determine the rate of glycolysis. Overexpression of HK2 and 
PKM2 contributes to sustaining the high glycolysis level and 
preserving the pluripotency of ESCs (128). Notably, PKM2 
can directly bind to OCT4 and enhance OCT4‑mediated 
transcription (129,130).

7. Conclusion

It has been known for a while that ESCs are characterized by 
an abbreviated G1 phase and a prolonged S phase. However, 
the underlying mechanisms remain largely elusive. Emerging 
evidence has implicated a direct role of the master pluripo-
tency factor OCT4 in controlling the transcription of several 
key cell cycle regulators. In general, OCT4 appears to directly 
or indirectly activate the transcription of cell cycle machin-
eries that promote G1/S transition and avoid differentiation 
(Fig. 1). Meanwhile, by suppressing multiple cell cycle genes, 
OCT4 controls proper duration of G2 phase to ensure the 
genomic integrity via both the transcription‑dependent and 
‑independent mechanisms (Fig. 2). Reciprocally, the cell cycle 
regulators especially CDK1 can directly interact with OCT4 

and promote its suppressive binding to the differentiation 
genes and thereby maintaining the ESC pluripotency.

Another important feature of ESCs is their high glycolytic 
metabolism under hypoxic conditions that may minimize 
the oxidative damage of ROS to genetic material. Recent 
studies revealed that OCT4 can promote glycolysis by tran-
scriptionally upregulating the expression of several key 
glycolytic enzymes, directly linking ESC metabolism to their 
self‑renewal and pluripotency. Given the convergence of ESC 
pluripotency and cell cycle control on OCT4, it would be of 
interest to investigate in future studies how OCT4 and other 
master pluripotency factors coordinate ESC metabolism with 
their cell cycle progression.

The rapid cell cycle progression of ESCs requires 
high‑fidelity DNA replication and repair mechanisms. The 
investigation into the potential connection between ESC cell 
cycle control and DNA replication/repair is just at its infancy, 
and it remains to be seen if the master pluripotency factors 
such as OCT4 may also serve a role in these events.
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