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Abstract. It has been shown that oxidative damage and 
inflammation caused by hyperglycemia in endothelial cells 
are key factors triggering diabetic vascular complications. 
The aim of the present study was to investigate the antioxidant 
and anti‑inflammatory effects of Danhong Huayu Koufuye 
(DHK)‑medicated serum on high glucose (HG)‑induced injury 
in endothelial cells, and examine its underlying mechanisms. 
EA. hy926 cells were treated with normal glucose, HG, or HG 
with DHK‑medicated serum. Cell viability was assessed using 
the MTT method. Apoptosis was detected using flow cytom-
etry. Intracellular reactive oxygen species (ROS) levels were 
measured using the 2',7'‑dichlorodihydrofluorescein method. 
Cell culture supernatant was collected for detecting the activi-
ties of glutathione peroxidase (GPx) and superoxide dismutase 
(SOD), and the levels of malondialdehyde (MDA). The protein 
expression levels of intercellular adhesion molecule‑1 (ICAM‑1), 
nuclear factor‑κB (NF‑κB), hypoxia‑inducible factor‑1α 
(HIF‑1α) and vascular endothelial growth factor (VEGF) were 
determined using western blot analysis. The results revealed 
that DHK‑medicated serum accelerated the proliferation and 
inhibited the apoptosis of cells treated with HG (P<0.01) in a 
dose‑dependent manner. Compared with the HG group, the 
high levels of ROS and MDA were significantly reduced by 
DHK‑medicated serum (P<0.01). A 10% concentration of 
DHK‑medicated serum increased the activities of SOD and GPx 
by 59.4 and 95.5%, respectively. The high protein expression 
levels of ICAM‑1, NF‑κB, VEGF and HIF‑1α were significantly 
ameliorated by DHK‑medicated serum (P<0.01, vs. HG group). 
These findings indicated that DHK‑medicated serum protected 
EA. hy926 cells from HG‑induced injury and apoptosis through 
antioxidation and anti‑inflammatory effects.

Introduction

Diabetes mellitus (DM) is characterized by chronic high blood 
glucose, which causes injuries to vessels and lead to the develop-
ment of vascular complications in tissues, including the heart, 
kidney and eye (1‑4). The vascular complications of diabetes 
have become a serious health concern in humans.

The damage of endothelial cells is observed in the early 
stages of diabetic vascular complications (1,3‑6). The endo-
thelial dysfunction, which is triggered by hyperglycemia, 
includes increased endothelial oxidative stress, inflammation 
and cell apoptosis, decreased nitric oxide (NO) bioavail-
ability, and high expression levels of hypoxia‑inducible 
factor‑1α (HIF‑1α) and vascular endothelial growth factor 
(VEGF) (1,5,6). Increasing evidence indicates that endothe-
lial dysfunction is important in the pathogenesis of diabetic 
vascular complications (2,3).

The levels of superoxide are elevated and the activities of 
antioxidant defense substances are reduced in the vessels of 
diabetic patients and rats, and in endothelial cells exposed 
to high glucose (HG) (7‑10). Elevated oxidative stress may 
cause injuries in vascular endothelial cells during the process 
of diabetic vascular complications (11‑13). Excessive reac-
tive oxygen species (ROS) and lipid peroxide initiate and 
promote endotheliocyte damage (1,7). The antioxidant status 
of diabetic patients is crucial in preventing oxidative stress 
and the process of vascular complications. Antioxidative 
enzymes, including superoxide dismutase (SOD), glutathione 
peroxidase (GPx) and catalase (CAT), inhibit the genera-
tion of ROS (14‑17), which prevents against endothelial cell 
injury. Therefore, the correlations among hyperglycemia, 
redox imbalance and oxidative stress constitute the main 
pathological mechanism underlying diabetic vascular 
complications (2).

There are several similarities between diabetic vascular 
complications and chronic inflammatory diseases (7,10). The 
inflammation triggered by hyperglycemia can cause damage to 
endothelial cells, which then increases vascular permeability and 
accelerates the release of proinflammatory mediators (18,19). 
Nuclear factor‑κB (NF‑κB), activated by hyperglycemia, 
elevates the levels of proinflammatory mediators, including 
intercellular adhesion molecule‑1 (ICAM‑1), interleukins (ILs), 
VEGF and tumor necrosis factor‑α (TNF‑α) (18‑20). Therefore, 
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inflammation and diabetic vascular complications are linked, 
and excessive inflammatory factors may predict the onset and 
progression of diabetic vascular complications.

Danhong Huayu Koufuye (DHK) has long been used clini-
cally in China (21‑24). It contains 29% Salvia miltiorrhiza radix, 
11.5% Angelicae sinensis radix, 15% Chuanxiong rhizoma, 
11.5% Persicae semen, 11.5% Carthami flos, 11.5% Bupleuri 
radix and 10% Aurantii fructus. DHK had the ability to promote 
blood circulation to overcome blood stasis and, in Traditional 
Chinese medicine, is believed to promote qi circulation and 
remove meridian obstruction. Our previous studies showed that 
DHK prevented the process of diabetic retinopathy in diabetic 
Sprague‑Dawley (SD) (22) and Zucker diabetic fatty (ZDF) 
rats (23). It was also found that DHK inhibited the formation 
of deep venous thrombosis via anti‑inflammatory activity in 
rats (24).

The present study investigated the protective effect of 
DHK‑medicated serum on HG‑induced injury and apoptosis 
in EA. hy926 cells, and examined whether the antioxidative 
and anti‑inflammatory activities of DHK were involved in the 
mechanisms.

Materials and methods

Materials. DHK was provided by Hutchison Whampoa 
Guangzhou Baiyunshan Chinese Medicine Co., Ltd. (Guangzhou, 
China). Pentobarbital sodium salt and xylazine hydrochlo-
ride injection were purchased from Merck Serono Co., Ltd. 
(Beijing, China) and Dunhua Shengda Pharmaceutical Co., Ltd. 
(Dunhua, China), respectively. Cell culture reagents, including 
Dulbecco's modified Eagle's medium (DMEM), penicillin 
and streptomycin were purchased from Gibco; Thermo Fisher 
Scientific, Inc. (Waltham, MA, USA), and fetal bovine serum 
(FBS) was obtained from Biological Industries (Kibbutz Beit 
Haemek, Israel). The Annexin V/Fluorescein Isothiocyanate 
Apoptosis Detection kit was purchased from eBioscience, 
Inc. (San Diego, CA, USA). 2',7'‑Dichlorodihydrofluorescein 
diacetate (H2DCFDA) was purchased from Sigma‑Aldrich; 
Merck KGaA (Darmstadt, Germany). The SOD assay kit, 
thiobarbituric acid reactive substance (TBARS) assay kit 
and GPx assay kit were purchased from Cayman Chemical 
Company (Ann Arbor, MI, USA). Rabbit polyclonal antibodies 
against ICAM‑1 (cat. no. ab7815), NF‑κB (cat. no. ab28835), 
HIF‑1α (cat. no. ab82832), glyceraldehyde‑3‑phosphate dehy-
drogenase (GAPDH; cat. no. ab37168), and goat anti‑rabbit IgG 
conjugated with horseradish peroxidase (cat. no. ab6721) were 
purchased from Abcam (Cambridge, UK). The rabbit poly-
clonal antibody against VEGF (cat. no. sc507) was purchased 
from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). 
Enhanced chemiluminescence (ECL) reagent was purchased 
from Pierce; Thermo Fisher Scientific, Inc.

Animals. Male SD rats (200‑250 g; n=10) were obtained from 
the Experimental Animal Center, Guangzhou University of 
Chinese Medicine (Guangzhou, China). All rats (approval 
no. SCXK 2013‑0020) had free access to a standard diet and 
drinking water, and were housed in a room at 24.0±0.5˚C 
and with a 12:12 h light/dark schedule. The experiments were 
performed in accordance with the Animal Ethics Committee 
of Guangzhou University of Chinese Medicine.

Cell culture. EA. hy926 cells, a hybrid human umbilical vein 
endothelial cell line, were purchased from the Type Culture 
Collection of the Chinese Academy of Sciences (Shanghai, 
China). The cells were cultured in DMEM with 5  mM 
glucose, essential and non‑essential amino acids (8.9 mg/l 
L‑alanine, 13.3 mg/l aspartic acid, 15 mg/l L‑asparagine, 
14.7 mg/l monosodium glutamate and 11.5 mg/l proline), 
sodium selenite (0.02 mg/l), ascorbic acid (10 mg/l), 10% 
FBS (v/v) and antibiotics (100 Ul penicillin and 100 mg/l 
streptomycin) at 37˚C in an atmosphere containing 5% CO2 

and 95% air. EA. hy926 cells at passages 3‑5 were used in all 
experiments.

Preparation of DHK‑medicated serum. The rats were 
randomly divided into two groups: Vehicle group and DHK 
group, in which the rats were intragastrically administered 
with distilled water or DHK (3.20 ml/kg), respectively, for 
5 days consecutively (once per day). Blood was collected 
from the carotid artery 1 h following the fifth administration, 
and was centrifuged at 1,000 x g at room temperature for 
10 min to obtain serum. The serum was sterilized at 56˚C for 
30 min, and then mixed with complete medium to prepare 
the DHK‑medicated serum, according to the volume ratio 
(v/v) to give 1, 5, 10 and 20% solutions.

Cell viability assay. The viability of EA. hy926 cells treated 
with various concentrations of glucose, DHK‑medicated 
serum, or the two in combination, was measured using a colo-
rimetric MTT assay (7,11). Briefly, the cells (3,000 cells/well) 
were seeded into 96‑well plates and cultured in complete 
DMEM. The cells were treated with glucose at concentrations 
of 5, 25, 40 and 60 mM, isotonic mannitol at concentrations 
of 35 and 55 mM, DHK‑medicated serum (1, 2, 5, 10 and 
20%) alone, and DHK‑medicated serum (1, 5 and 10%) 
combined with 40 mM glucose for 48, 72 and 96 h at 37˚C in 
an atmosphere containing 5% CO2 and 95% air. MTT solu-
tion (5 mg/ml; 10 µl) was added into each well containing the 
cells, and was incubated at 37˚C for 4 h in a humidified atmo-
sphere containing 5% CO2 and 95% air. Following removal 
of the medium, formazan crystals were solubilized by adding 
100 µl of dimethylsulfoxide and oscillating for 10 min. The 
absorbance at 490  nm was measured using a microplate 
reader (Multiskan GO; Thermo Fisher Scientific. Inc.).

Cell apoptosis analysis. The cells were divided into five 
experimental groups: Normal group (5  mM glucose), 
model group (40 mM glucose), and 1, 5 or 10% medicated 
serum + 40 mM glucose groups. Apoptosis was evaluated with 
an Annexin V/fluorescein isothiocyanate apoptosis detection 
kit using flow cytometry (25). The cells were detached and 
stained according to the manufacturer's protocol and then 
measured using a flow cytometer (FACSCanto™ II; BD 
Biosciences, Franklin Lakes, NJ, USA).

Lipid peroxidation assay. Lipid peroxidation was assayed 
using a TBARS method (7,18). The samples collected from 
the culture medium were used to measure the malondial-
dehyde (MDA) formed in a peroxidizing lipid system. The 
quantities of TBARS were calculated according to a standard 
curve of 1,1,3, 3‑tetramethoxypropane.



MOLECULAR MEDICINE REPORTS  16:  7745-7751,  2017 7747

Measurement of the activities of GPx and SOD. The activities 
of GPx and SOD in the culture medium were measured using 
a spectrophotometric method according to the manufacturer's 
protocol.

Measurement of intracellular ROS. Intracellular ROS levels 
were measured using the oxidation‑sensitive fluorescent 
probe dye H2DCFDA (Ex/Em = 488 nm/525 nm). The cell 
suspension was inoculated into a 96‑well plate at a density 
of 1x104  cells/well. The cells were rinsed with PBS and 
then incubated with 10 µM H2DCFDA at 37˚C for 30 min 
according to the manufacturer's protocol. The fluorescence 
intensities were detected using a multiscan spectrum 
(2300‑001M; PerkinElmer, Inc., Waltham, MA, USA) and 
images were captured under an inverted light microscope 
(BDS 300; Optec Instrument, Co., Ltd., Chongqing, China).

Western blot analysis. Western blot analysis was performed 
as previously described  (7,18,19,25). Cells grown on 
6‑well plates were harvested using 200 µl ice‑cold Pierce 
Radioimmunoprecipitation Assay Buffer (Thermo Fisher 
Scientific, Inc.) supplemented with 10  µl/ml protease 
inhibitor cocktail (Sigma‑Aldrich, Merck KGaA). Following 
centrifugation at 12,000 x g for 30 min at 4˚C, the super-
natants were collected and the total protein content was 
quantified using a Bradford protein assay. A total of 50 µg 
total protein extract was separated by SDS‑PAGE on a 10% 
gel and transferred onto a PVDF membrane using Hoefer 
miniVE transfer system (170‑4467; Bio‑Rad Laboratories, 
Inc., Hercules, CA, USA). The membranes were blocked with 
5% non‑fat milk for 1 h at room temperature. The membrane 
was incubated with ICAM‑1 antibody (1:1,000), NF‑κB p65 
antibody (1:1,000), VEGF antibody (1:1,000), HIF‑1α anti-
body (1:1,000) or GAPDH (1:1,000) antibody overnight at 4˚ 
following blocking. The membrane was then incubated with 
secondary antibodies conjugated to horseradish peroxidase 
at room temperature for 1 h. The bound antibodies were 
detected using ECL reagent. The quantity of immunoreactive 
protein was assessed using scanning densitometry (1658001; 
Bio‑Rad Laboratories, Inc). All blots were normalized with 
an antibody against GAPDH and average band intensities 
relative to total proteins were determined using Image J soft-
ware (version 1.43; National Institutes of Health, Bethesda, 
MD, USA).

Statistical analysis. Each experiment was repeated at least 
three times. All data are expressed as the mean ± standard 
error of the mean and were analyzed using the Statistical 
Package for the Social Sciences version 20.0 (IBM SPSS, 
Armonk, NY, USA). One‑way analysis of variance was 
performed and an LSD post hoc test was used for multiple 
comparisons. P<0.05 was considered to indicate a statisti-
cally significant difference.

Results

Effect of DHK‑medicated serum on the viability of 
HG‑treated EA. hy926 cells. Compared with the normal cells, 
the inhibitory rates of cell viability were 17.1, 24.9 and 37.7% 
when the cells were incubated with 40 mM glucose for 48, 

72 and 96 h, respectively (Fig. 1). Compared with the corre-
sponding isotonic group, cell viability in the 40 mM glucose 
group was significantly decreased (P<0.01). Therefore, the 
EA. hy926 cells were cultured with 40 mM glucose for 96 h 
in the following experiments.

The viability of the normal cells was not altered by 
DHK‑medicated serum at concentrations of 1‑10% for 
48, 72 and 96  h (Fig.  2). However, the viability of cells 
incubated with 40 mM glucose for 96 h was increased by 
DHK‑medicated serum in a concentration‑dependent manner 
(P<0.01, vs. model group; Fig. 3).

Figure 1. Viability of EA. hy926 cells treated with various concentrations 
of glucose and mannitol. Data are expressed as the mean ± standard error 
of the mean (n=6). *P<0.05 and **P<0.01, vs. 5 mM glucose group; bP<0.01, 
vs. corresponding isotonic group. OD, optical density.

Figure 2. Effect of DHK‑medicated serum on the viability of normal EA. 
hy926 cells. Data are expressed as the mean ± standard error of the mean 
(n=6). **P<0.01, vs. normal group. DHK, Danhong Huayu Koufuye; OD, 
optical density.

Figure 3. Effect of DHK‑medicated serum on the viability of high 
glucose‑treated EA. hy926 cells. Data are expressed as the mean ± standard 
error of the mean (n=6). **P<0.01, vs. normal group; aP<0.01, vs. model 
group. bP<0.01, vs. corresponding volume blank serum group; cP<0.01, vs. 1% 
DHK‑medicated serum group; dP<0.01, vs. 5% DHK‑medicated serum group. 
DHK, Danhong Huayu Koufuye; OD, optical density.
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Effect of DHK‑medicated serum on HG‑induced apoptosis 
of EA. hy926 cells. The incubation of EA. hy926 cells with 
40 mM glucose for 96 h significantly increased apoptosis 
(P<0.01), compared with that in the normal group, whereas 
DHK‑medicated serum significantly decreased the apoptotic 
rate in a concentration‑dependent manner. A 1% concentra-
tion of DHK‑medicated serum reduced the apoptotic rate by 
42.8% (Fig. 4A‑E).

Effects of DHK‑medicated serum on levels of ROS and 
MDA in HG‑treated EA. hy926 cells. The intracellular ROS 
level in the HG‑treated cells was significantly elevated by 
~3‑fold (P<0.01), compared with that in the normal group. 
DHK‑medicated serum concentration‑dependently reduced the 
ROS levels. DHK‑medicated serum at concentrations of 5 and 
10% decreased the ROS levels by 33.7 and 51.9%, respectively 
(P<0.01, vs. model group; Fig. 5).

Figure 4. Effect of DHK‑medicated serum on the high glucose‑induced apoptosis of EA. hy926 cells. Q1, necrotic and dead cells; Q2, late apoptotic cells; 
Q3, living cells; Q4, early apoptotic cells. (A) normal group; (B) model group; (C) 1% DHK‑medicated serum group; (D) 5% DHK‑medicated serum group; 
(E) 10% DHK‑medicated serum group. Data are expressed as the mean ± standard error of the mean (n=6). **P<0.01, vs. normal group; bP<0.01, vs. model group 
DHK, Danhong Huayu Koufuye; PI, propidium iodide; FITC, fluorescein isothiocyanate; Q, quadrant.

Figure 5. Effect of DHK‑medicated serum on high glucose‑induced ROS levels in EA. hy926 cells. Data are expressed as the mean ± standard error of 
the mean (n=6). Magnification, x200. **P<0.01, vs. normal group; bP<0.01, vs. model group; dP<0.01, vs. 1% DHK‑medicated serum group; fP<0.01, vs. 5% 
DHK‑medicated serum group. DHK, Danhong Huayu Koufuye; ROS, reactive oxygen species.
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Compared with the normal cells, the MDA level in the 
model group was significantly increased by ~2‑fold (P<0.01). 
DHK‑medicated serum significantly decreased the level of 
MDA (P<0.01, vs. model group; Fig. 6).

Effects of DHK‑medicated serum on the activities of GPx 
and SOD in HG‑treated cells. As shown in Fig. 7, the activi-
ties of GPx and SOD in the HG‑treated EA. hy926 cells were 

significantly reduced by 60.8 and 35.4%, respectively (P<0.01, 
vs. normal group). A 10% concentration of DHK‑medicated 
serum significantly increased the activities of GPx and SOD by 
95.5 and 59.4%, respectively (P<0.01, vs. model group).

Effects of DHK‑medicated serum on protein expression levels of 
ICAM‑1, NF‑κB, HIF‑1α and VEGF in HG‑treated EA. hy926 
cells. Compared with normal cells, the protein expression levels 
of ICAM‑1, NF‑κB, HIF‑1α and VEGF in the model group were 
significantly increased by ~3‑, 1.5‑, 2.2‑ and 1.5‑fold, respectively 
(P<0.01). DHK‑medicated serum concentration‑dependently 
decreased the protein expression levels of ICAM‑1, NF‑κB, 
HIF‑1α and VEGF (P<0.05 or P<0.01, vs. model group; Fig. 8).

Discussion

Endothelial cell proliferation is inhibited and apoptosis is induced 
when the cells are exposed to a HG environment (7,18,26). The 
results of the present study showed that cell viability was signifi-
cantly decreased (Fig. 3) and apoptosis was increased (Fig. 4) 
when EA. hy926 cells were incubated with 40 mM glucose for 
96 h, which suggested that the hyperglycemic cell model had 
been successfully established.

Elevated oxidative stress can cause injury to vascular 
endothelial cells during the process of diabetic vascular 
complications (11‑13). The imbalance between the increased 
production of oxidants and decreased activity of antioxidants 
has been a focus of attention in understanding the pathological 
mechanisms of diabetic vascular complications (7,10,18,27).

The excessive production of ROS is one of the most 
common contributors to endothelial damage. The hypergly-
cemia‑induced generation of ROS is considered to be causal 
link between elevated glucose and the pathways of develop-
ment of diabetic vascular complications (27‑30). In the present 
study, DHK‑medicated serum significantly decreased the 
HG‑induced generation of ROS (Fig. 5). This result suggested 
that DHK‑medicated serum reduced cell oxidative stress via 
inhibiting the generation of ROS and then facilitating the inhibi-
tion of endothelial cell apoptosis.

Cellular lipid peroxidation, an activity induced by oxida-
tive stress, is known to be important in the complications of 
DM. Lipid peroxidation is initiated when free radicals attack 
membrane lipids. This attack generates increased quantities of 
reactive products, which have been implicated in endotheliocyte 
damage of tissues, including the heart, kidney and eye. MDA, 
a secondary product of lipid peroxidation, is a common index 
used to evaluate excess oxidative stress (7,8,25). Excessive quan-
tities of MDA in serum and tissues lead to the development of 
diabetic vascular complications (14,15,31). In the present study, 
DHK‑medicated serum led to a reduction in the level of MDA 
(Fig. 6), which suggested that certain antioxidant components 
in DHK‑medicated serum contribute to the inhibition of lipid 
peroxide production.

The free radicals created from the metabolic system cause 
injury to cell membranes and ageing of the body, and induce 
vascular diseases. The antioxidant status in diabetic patients is 
crucial in preventing oxidative stress and vascular complications. 
Antioxidative enzymes, including SOD, GPx and CAT, inhibit 
ROS generation. SOD is a major antioxidant enzyme, which 
protects endothelial cells from damage (32‑35). GPx reduces 

Figure 6. Effect of DHK‑medicated serum on the high glucose‑induced MDA 
level in EA. hy926 cells. Data are expressed as the mean ± standard error of 
the mean (n=6). **P<0.01, vs. normal group; bP<0.01, vs. model group; dP<0.01, 
vs. 1% DHK‑medicated serum group; fP<0.01, vs. 5% DHK‑medicated serum 
group. DHK, Danhong Huayu Koufuye; MDA, malondialdehyde.

Figure 7. Effects of DHK‑medicated serum on the activities of GPx and 
SOD in high glucose‑treated EA. hy926 cells. Data are expressed as the 
mean ± standard error of the mean (n=6). **P<0.01, vs. normal group; bP<0.01, 
vs. model group; cP<0.05 and dP<0.01, vs. 1% DHK‑medicated serum group; 
eP<0.05, vs. 5% DHK‑medicated serum group. DHK‑medicated serum 
group. DHK, Danhong Huayu Koufuye; GPx, glutathione peroxidase; SOD, 
superoxide dismutase.
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the numbers of free radicals, and SOD works in conjunction 
with CAT and GPx to reduce ROS levels. The results of the 
present study revealed that the activities of SOD and GPx 
were significantly decreased in the HG‑treated EA. hy926 
cells, which was consistent with previous reports  (7,32). 
The DHK‑medicated serum increased the activities of these 
enzymes (Fig.  7), which indicated that DHK‑medicated 
serum attenuated HG‑induced oxidative stress to maintain 
the stability of vascular endotheliocytes.

Endothelial function can be impaired by ROS via 
numerous mechanisms, including lipid peroxidation, activa-
tion of NF‑κB, and inactivation of NO (7,8). In addition to 
biomarkers of oxidative stress, inflammatory substances are 
responsible for the development of vascular complications in 
diabetic patients (10,18,20). The NF‑κB transcription factor 
has been recognized as an important controller of the inflam-
matory process  (33‑36). In the present study, the protein 
expression of NF‑κB was high in HG‑treated cells and was 
inhibited by treatment with DHK‑medicated serum (Fig. 8). 
This indicated that DHK suppressed the expression of NF‑κB 
p65 in the diabetic endothelial inflammation process.

The levels of ICAM‑1 are increased through the activa-
tion of NF‑κB, which is a crucial mechanism of cell injury 
when exposed to a HG environment, and an important event 
during the inflammatory process of diabetic vascular compli-
cations (34,35,37). In line with previous reports (35,37), the 
present study found that the protein expression of ICAM‑1 was 
high in the HG‑treated cells. DHK‑medicated serum notably 
downregulated the protein expression of ICAM‑1 (Fig. 8), 
which suggested that DHK‑medicated serum protected 
vascular endothelial cells from injury via its anti‑inflammatory 
effects.

Diabetic factors result in the production of HIF‑1α and 
angiogenesis  (38). The high expression of VEGF, induced 
by hyperglycemia, is one of the most important pathophysi-
ological stimuli in diabetic vascular complications (39,40). The 
expression of VEGF appears to be regulated through two inter-
dependent pathways: Directly via HIF‑1α and indirectly via the 
activation of NF‑κB. In the present study, the protein expression 
levels of VEGF and HIF‑1α were upregulated by HG in the cells, 
and this was reversed by DHK‑medicated serum (Fig. 8). These 
results suggested that DHK protected the endothelial cells from 
damage via inhibiting the activation of HIF‑1α and VEGF.

In conclusion, the present study showed that DHK‑medicated 
serum had a marked effect on inhibiting HG‑induced oxida-
tive stress and inflammation in EA. hy926 cells, which may 
be important mechanisms underlying the effect of DHK in 
preventing diabetic vascular complications in STZ‑induced 
diabetic rats and ZDF rats.
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