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Abstract. Prostate cancer (PCa) is the most commonly diag-
nosed cancer in males worldwide. MicroRNAs (miRNAs/miRs) 
are small non‑coding RNAs that participate in the regulation of 
various biological processes by regulating post‑transcriptional 
gene expression. However, whether dysregulation of miRNA 
expression may be associated with the carcinogenesis of PCa 
remains to be elucidated. The present study identified differ-
entially expressed miRNAs in PCa by analyzing two publicly 
available gene expression datasets, GSE14857 and GSE21036. 
The results demonstrated that miR‑512‑3p was significantly 
upregulated in PCa. Furthermore, the present study explored the 
molecular functions of miR‑512‑3p in PCa, and demonstrated 
that overexpression of miR‑512‑3p promoted PCa cell prolifera-
tion and reduced G1 phase cell cycle arrest in PCa. These results 
indicated that miR‑512‑3p may act as an oncogene in PCa. To 
the best of our knowledge, this is the first study revealed the 
molecular functions of miR‑512‑3p in PCa. To obtain valu-
able insights into the potential mechanisms of miR‑512‑3p, 
bioinformatics analyses were performed to identify the targets 
of miR‑512‑3p. Kyoto Encyclopedia of Genes and Genomes 
pathway and Gene Ontology category analyses revealed that 
miR‑512‑3p may be associated with the mitogen‑activated 
protein kinase signaling pathway and numerous biological 
processes, including cell adhesion, cell proliferation, cell cycle 
and apoptosis. These results suggested that miR‑512‑3p may be 
considered a potential diagnostic and therapeutic target of PCa.

Introduction

Prostate cancer (PCa) is one of the most common types of cancer, 
and the leading cause of cancer‑associated mortality in men 
worldwide (1,2). The molecular mechanisms that underlie the 
tumorigenesis, progression and metastasis of PCa remain unclear, 
regardless of a large number of research studies. Noncoding 
RNAs have been reported to serve pivotal roles in the patho-
genesis of numerous types of cancer via regulating the diversity 
of biological processes. Therefore, identifying the noncoding 
RNAs associated with PCa may provide a novel insight into the 
mechanisms underlying PCa carcinogenesis (3‑6).

MicroRNAs (miRNAs/miRs) are small post‑transcriptional 
regulatory noncoding RNAs, 20‑22 nt in length. Previous studies 
have reported the aberrant expression of miRNAs in numerous 
types of human malignancy, including breast and lung cancer, 
and PCa  (7‑11). In PCa, numerous dysregulated miRNAs, 
inducing miR‑27a  (12,13), miR‑135a  (14), miR‑186  (15), 
miR‑4638‑5p (16), miR‑124 (17‑19) and miR‑320 (20,21), have 
been reported to regulate cell growth, apoptosis, migration and 
invasion. These findings indicated that dysregulation of miRNA 
expression may be associated with carcinogenesis of PCa.

miR‑512‑3p has been reported to act as a tumor suppressor in 
hepatocellular carcinoma (22) and lung adenocarcinoma (23). In 
addition, miR‑512‑3p has also been revealed to be upregulated 
in non‑small cell lung cancer (NSCLC) A549 cells following 
retinoic acid (RA) treatment, and has been demonstrated 
to inhibit the adhesion, migration and invasion of NSCLC 
cells (23). However, the role of miR‑512‑3p in PCa remains 
poorly understood and therefore requires further investigation.

The present study identified differentially expressed 
miRNAs in PCa, by analyzing two publicly available gene 
expression datasets, GSE14857  (24) and GSE21036  (25). 
Furthermore, the molecular functions of miR‑512‑3p in PCa 
were investigated, in order to identify their potential roles in 
the carcinogenesis of PCa.

Materials and methods

miRNA profile data collection. miRNA profile datasets 
(GSE14857 and GSE21036) were collected from the Gene 
Expression Omnibus database (www.ncbi.nlm.nih.gov/gds). 
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Comparison of the miRNA profiles between PCa samples and 
normal tissue samples was performed with limma package in 
R software using raw microarray data. Significantly differen-
tially expressed miRNAs were identified with thresholds of 
|logFC|>1.0 and P<0.05.

Cell culture. LNCaP cells were purchased from the American 
Type Culture Collection (Manassas, VA, USA). PC‑3 and 22RV1 
cells, and the noncancerous prostatic cell line WPMY‑1, were 
obtained from the Cell Bank of Chinese Academy of Sciences 
(Shanghai, China). All cell lines were confirmed by short tandem 
repeat analysis. The four cell lines were cultured in Ham's F12K 
media (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) supplemented with 10% (vol/vol) fetal bovine serum 
(cat. no. 10099141M; Gibco; Thermo Fisher Scientific, Inc.), at 
37˚C in a humidified atmosphere containing 5% CO2.

Cell transfection. The synthetic miR‑512‑3p mimics and a 
scrambled control miRNA [miR‑negative control (NC)] were 
purchased from Shanghai GenePharma Co., Ltd. (Shanghai, 
China). The sequences were as follows: miR‑512‑3p mimics, 
5'‑AAG​UGC​UGU​CAU​AGC​UGA​GGU​C‑3' (sense) and 
5'‑CCU​CAG​CUA​UGA​CAG​CAC​UUU​U‑3' (antisense); NC 
mimics, 5'‑UUC​UCC​GAA​CGU​GUC​ACG​UTT‑3' (sense) and 
5'‑ACG​UGA​CAC​GUU​CGG​AGA​ATT‑3' (antisense). PCa cells 
were seeded at 3x105 cells/wells in 6‑well plates and were incu-
bated at 37˚C in a humidified atmosphere containing 5% CO2 
overnight. Subsequently, transfection with the miR‑512‑3p 
mimic or miR‑NC was performed using Lipofectamine 2000 
transfection reagent (Invitrogen; Thermo Fisher Scientific, 
Inc.). The cells were transfected with 300  nmol miRNA 
according to the manufacturer's protocol. Total RNA was 
extracted from the cells 48 h post‑transfection and western 
blotting was also performed.

RNA extraction and reverse transcription‑quantitative poly‑
merase chain reaction (RT‑qPCR). Total RNA, which was 
used for RT‑qPCR analysis, was extracted from the cells using 
TRIzol reagent (Invitrogen; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's protocol. RT was performed 
using the PrimeScript™ RT reagent kit (Takara Bio, Inc., 
Otsu, Japan) according to the manufacturer's protocol. The 
sequence of the miR‑512‑3p‑specific RT primer was 5'‑GTC​
GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​
ACG​ACG​ACC​TC‑3'. To analyze miRNA expression, RT‑qPCR 
was performed using SYBR‑Green Reagents (Bio‑Rad 
Laboratories, Inc., Hercules, CA, USA) on a LightCycler 480 
system (Roche Diagnostics, Basel, Switzerland). The expres-
sion levels of miR‑512‑3p were normalized to U6. The PCR 
primers for mature miR‑512‑3p, Rho family GTPase 3 (RND3), 
MX dynamin like GTPase 1 (MXI1), mitofusin 2 (MFN2), 
forkhead box O1 (FOXO1), RNA binding motif protein38 
(RBM38), transforming coiled‑coil containing protein  1 
(TACC1) and U6 were as follows: miR‑512‑3p forward, 5'‑CGG​
CGG​CAC​TCA​GCC​TTG​AGG​G‑3' and reverse, 5'‑GTG​CAG​
GGT​CCG​AGG​T‑3'; RND3 forward, 5'‑AAA​AAC​TGC​GCT​
GCT​CCA​T‑3' and reverse, 5'‑TCA​AAA​CTG​GCC​GTG​TAA​
TTC‑3'; MXI1 forward, 5'‑CAT​GGA​GCG​GGT​GAA​GAT‑3' 
and reverse, 5'‑ATG​AAG​AGG​CGT​AGC​CAT​GT‑3'; MFN2 
forward, 5'‑TGC​CTC​AGA​GCC​CGA​GTA‑3' and reverse, 

5'‑CTG​GTA​CAA​CGC​TCC​ATG​TG‑3'; FOXO1 forward, 
5'‑AAG​GGT​GAC​AGC​AAC​AGC​TC‑3' and reverse, 5'‑TTC​
CTT​CAT​TCT​GCA​CAC​GA‑3'; RBM38 forward, 5'‑TTG​ATC​
CAG​CGG​ACT​TAC​G‑3' and reverse, 5'‑AAT​GTA​GGG​CGA​
GGA​CAG​C‑3'; TAC​C1 forward, 5'‑GCG​AAA​TGG​ACG​TGG​
TCT‑3' and reverse, 5'‑CAC​CTT​ACA​GCC​ACT​CCT​GAA‑3'; 
and U6 forward, 5'‑CGC​TTC​GGC​AGC​ACA​TAT​ACT​AA‑3' 
and reverse 5'‑TAT​GGA​ACG​CTT​CAC​GAA​TTT​GC‑3'. The 
results were normalized to those of β‑actin or U6 as the 
internal control to estimate the different expression of genes. 
Relative mRNA and miRNA expression was calculated using 
the 2‑ΔΔCq method (26). Each sample was assayed in triplicate 
to ensure quantitative accuracy.

Western blot analysis. Cells were lysed in radioimmunopre-
cipitation assay buffer (Boston Bioproducts, Inc., Ashland, MA, 
USA) supplemented with cOmplete™, EDTA‑free Protease 
Inhibitors (Roche Diagnostics) and phenylmethylsulfonyl 
fluoride (Calbiochem; EMD Millipore, Billerica, MA, USA). 
The protein concentration was determined using the Pierce™ 
Bicinchoninic acid Protein Assay (cat. no.  23222; Thermo 
Fisher Scientific, Inc.), in accordance with the manufacturer's 
instructions. A total of 30 µg/lane protein was loaded and sepa-
rated by 12% SDS‑PAGE, which was then transferred to PVDF 
membranes. Membranes were blocked in Tris buffered saline 
with 0.05% Tween‑20 containing 5% non‑fat dry milk at room 
temperature for 1 h. Immunoblots were incubated overnight at 
4˚C with the following primary antibodies: Anti‑p21 (1:1,000; cat. 
no. ab109520; Abcam, Cambridge, MA, USA) and anti‑β‑actin 
(1:3,000; cat. no.  A1978; Sigma‑Aldrich; Merck KGaA, 
Darmstadt, Germany). Subsequently, the blots were incubated at 
room temperature for 1 h with goat anti‑mouse immunoglobulin 
(Ig)G‑horseradish peroxidase (HRP)‑conjugated and goat 
anti‑rabbit IgG‑HRP‑conjugated secondary antibodies (1:4,000; 
cat.  nos. A4416 and A6154, respectively; Sigma‑Aldrich; 
Merck KGaA). An Electrochemiluminescence Plus kit (cat. 
no. RPN2132; GE Healthcare Life Sciences, Uppsala, Sweden) 
was used for visualization.

Cell proliferation assay. Cells were seeded into 96‑well 
plates at 2,000  cells/well 6  h post‑transfection. The Cell 
Counting kit‑8 (CCK‑8; Dojindo Molecular Technologies, Inc., 
Kumamoto, Japan) was used to detect relative cell prolifera-
tion for 4 days. Briefly, 10 µl/well CCK‑8 agent was added to 
the cells, which were incubated for 2 h at 37˚C; subsequently, 
absorbance was measured at 450 nm using an ELx808 micro-
plate reader (BioTek Instruments, Inc., Winooski, VT, USA).

Cell cycle analysis. Transfected LNCaP, 22Rv1 and PC‑3 
cells in the log phase of growth were collected and fixed in 
0.03% Triton X‑100 and propidium iodide (PI; 50 ng/ml) at 
room temperature for 15 min, 48 h post‑transfection. For cell 
cycle analysis, the transfected cells were examined using a 
FACSCalibur flow cytometer (BD Biosciences, San Jose, CA, 
USA) and were analyzed with ModFit version 4.1 software 
(Verity Software House, ME, USA). Each test was performed 
in triplicate.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis. The Molecule 
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Annotation System (MAS; version 3.0), provided by CapitalBio 
Corporation (Beijing, China; bioinfo.capitalbio.com/mas3/) 
was used to determine the biological roles of differentially 
expressed mRNAs. Gene functions were classified in to three 
subgroups: Biological process, cellular component and molec-
ular function. The enriched GO terms were presented by 
enrichment scores. KEGG pathway analysis was carried 
out to determine the involvement of differentially expressed 
mRNAs in different biological pathways. The recommended 
hypergeometric‑P‑value used as the cut‑off was P<0.05.

Statistical analysis. Numerical data were presented as 
the mean  ±  standard deviation of at least three deter-
minations. Statistical comparisons between groups of 
normalized data were performed using an unpaired Student's 
t‑test and SPSS v13.0 software (SPSS, Inc., Chicago, IL, USA) 
or a Mann‑Whitney U‑test according to the test condition. 
Statistical comparisons among multiple groups of normal-
ized data were performed using one‑way analysis of variance 

followed by a Dunnett's post hoc test. P<0.05 was considered 
to indicate a statistically significant difference with a 95% 
confidence level.

Results

miR‑512‑3p is overexpressed in PCa. To identify the differen-
tially expressed miRNAs in PCa, two publicly available gene 
expression datasets, GSE14857 and GSE21036, were analyzed 
(Fig. 1A). A total of 17 miRNAs were downregulated and 
17 miRNAs were overexpressed in PCa in both databases. 
The present study primarily focused on the 17 upregulated 
miRNAs (miR‑106b, miR‑93, miR‑148a, miR‑25, miR‑375, 
miR‑130b, miR‑512‑3p, miR‑18a, miR‑518c*, miR‑7, miR‑95, 
miR‑96, miR‑32, miR‑663, miR‑182, miR‑183 and miR‑153) as 
putative biomarkers. The majority of these miRNAs have been 
reported to be involved in the carcinogenesis of PCa (27‑37); 
however, the molecular functions of miR‑512‑3p and miR‑518c* 
in PCa remained unclear.

Figure 1. miR‑512‑3p is overexpressed in prostate cancer. (A‑C) miR‑512‑3p was overexpressed in two publicly available gene expression datasets, GSE14857 
and GSE21036. (D) miR‑512‑3p expression levels were overexpressed in patients with T2 (P<0.05), T3 (P<0.01) and T4 (P<0.05) prostate cancer compared with 
the normal controls. (E) Expression levels of miR‑512‑3p were upregulated in Gleason 6 (P<0.05), Gleason 7 (P<0.01) and Gleason 8 (P<0.05) prostate cancer 
when compared with the normal controls (all vs. NC). (F) Expression levels of miR‑512‑3p were upregulated in LNCaP (P<0.001) and PC‑3 (P<0.01) when 
compared with the WPMY‑1 normal prostate cell line (both vs. WPMY‑1). *P<0.05, **P<0.01 and ***P<0.001, as indicated. miR, microRNA; T2, intraprostatic 
localized tumors; T3+T4, invasive extraprostatic tumors.
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Analysis of the GSE14857 and GSE21036 datasets indi-
cated that miR‑512‑3p expression was significantly upregulated 
in tumor samples compared with in normal samples (P<0.01; 
Fig.  1B), and was overexpressed in metastatic samples 
compared with in primary tumor tissues (P<0.001; Fig. 1C). A 
clinical significance analysis of GSE21036 demonstrated that 
miR‑512‑3p expression levels were overexpressed in patients 
with T2 (P<0.05), T3 (P<0.01) and T4 (P<0.05) PCa compared 
with the normal controls (Fig. 1D). Subsequently, the patients 
in GSE21036 were categorized based on Gleason grades, 
and the results demonstrated that tissues from patients with 
Gleason grades 6, 7, 8 and 9 PCa exhibited significantly higher 
levels of miR‑512‑3p compared with the matched normal 
tissues (Fig. 1E).

The present study also detected miR‑512‑3p expression in 
PCa cell lines. RT‑qPCR was conducted to detect the expres-
sion levels of miR‑512‑3p in PCa cell lines LNCaP, 22Rv1 and 
PC‑3, and in the noncancerous prostatic cells WPMY‑1 cell line. 
The results demonstrated that miR‑512‑3p was upregulated in 
PCa cells (including LNCaP and PC‑3; Fig. 1F). However, no 
significant upregulation of miR‑512‑3p was observed in 22Rv1 
cells. These results were consistent with the previous findings 
in PCa and normal tissues.

Overexpression of miR‑512‑3p promotes PCa cell prolifera‑
tion. The present study aimed to explore the potential effects 
of miR‑512‑3p on the proliferation of PCa cells. Initially, 
the effects of a miR‑512‑3p mimic were determined on the 
expression of miR‑512‑3p. LNCaP, 22Rv1 and PC‑3 cells 
were transfected with NC or miR‑512‑3p mimics. A total of 

48 h post‑transfection, the expression levels of miR‑512‑3p 
were significantly increased in the miR‑512‑3p mimic 
group compared with the NC group (P<0.001; Fig. 2A‑C). 
Subsequently, cell proliferation was investigated using a 
CCK‑8 assay, overexpression of miR‑512‑3p significantly 
promoted the proliferation of LNCaP, 22Rv1and PC‑3 cells 
(P<0.01 and P<0.001; Fig. 2D‑F).

Overexpression of miR‑512‑3p prevents G1 phase cell cycle 
arrest in vitro. The present study assessed the function of 
miR‑512‑3p on cell cycle progression in LNCaP, 22Rv1 and 
PC‑3 cells. Flow cytometric analysis revealed that overexpres-
sion of miR‑512‑3p in LNCaP and 22RV1 cells resulted in a 
significant increase in the proportion of cells in S phase and 
a decrease in the proportion of cells in G1 phase. However, 
overexpression of miR‑512‑3p in PC‑3 cells decreased the 
proportion of cells in S phase and increased the proportion 
of cells in the G2/M phase (P<0.05; Fig. 3A‑C). In addition, a 
decrease in the protein expression levels of cell cycle inhibitor 
p21 was detected in cells overexpressing miR‑512‑3p (Fig. 3D). 
Downregulation of p21 promotes cell cycle progression, thus 
these results suggest that the overexpression of miR‑512‑3p 
may promote cell cycle progression by inhibiting p21 (38,39).

GO category and KEGG pathway analyses. To obtain valu-
able insights into the potential mechanisms of miR‑512‑3p, 
a bioinformatics analysis was performed to identify the 
target genes of miR‑512‑3p using starBase (40). starBase is 
a database that combines data from six prediction programs 
TargetScan  (41), PicTar (www.pictar.org/), miRanda 

Figure 2. miR‑512‑3p promotes prostate cancer cell proliferation. miR‑512‑3p expression was significantly upregulated in (A) LNCaP, (B) 22Rv1 and 
(C) PC‑3 prostate cancer cells following transfection with miR‑512‑3p mimics for 48 h using reverse transcription‑quantitative polymerase chain reaction. 
Overexpression of miR‑512‑3p promoted (D) LNCaP, (E) 22Rv1 and (F) PC‑3 prostate cancer cell proliferation via a CCK‑8 assay. Data are presented as the 
mean ± standard deviation (n=8). **P<0.01 and ***P<0.001 vs. NC. CCK‑8, Cell Counting kit‑8; miR, microRNA; NC, negative control; OD, optical density.
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(www.microrna.org/microrna/home.do), PITA (https://genie.
weizmann.ac.il/), RNA22 (https://cm.jefferson.edu/rna22/) 
and CLIP‑Seq (www.starbase.sysu.edu.cn/). A total of 663 
targets of miR‑512‑3p were used to perform the KEGG pathway 
(www.genome.jp/kegg/) and GO category (www.geneontology.

org/) analyses using MAS 3.0 system (http://bioinfo.capitalbio.
com/mas3/). The results revealed that miR‑512‑3p may 
affect numerous biological processes, including cell adhe-
sion, cell proliferation, cell cycle and apoptosis (Fig. 4A). 
Pathway enrichment analysis demonstrated that miR‑512‑3p 

Figure 3. Cell cycle analysis was performed in LNCaP, 22RV1 and PC‑3 cells. (A‑C) Cells were transfected with a miR‑512‑3p mimic for 48 h, and were then 
stained with propidium iodide and evaluated using a FACSCalibur flow cytometer. (D) Protein expression levels of p21 were detected in cells overexpressing 
miR‑512‑3p. A western blot assay revealed that overexpression of miR‑512‑3p inhibited p21 expression. Data are presented as the mean ± standard deviation 
(n=3). *P<0.05 vs. NC. ACTB, β‑actin; miR, microRNA; NC, negative control.
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predominantly participated in the mitogen‑activated protein 
kinase (MAPK) signaling pathway, focal adhesion, cell cycle 
and transforming growth factor (TGF)‑β pathway (Fig. 4B). 
To further validate these findings the present study detected 
the expression of numerous pathway‑associated genes using 
RT‑qPCR. LNCaP cell lines retain characteristics associated 
with early androgen‑dependent molecular biology and tumor 
cytology (42), and LNCaP is one of the most commonly used 
cell lines in the PCa research field (43). Thus, LNCaP cell 
selected for further validation. Overexpression of miR‑512‑3p 
was able to significantly reduce the expression levels of Rho 
family GTPase 3, MAX interactor 1, dimerization protein, 
MFN2 and forkhead box O1 (Fig. 4C).

Discussion

PCa is a leading cause of cancer‑associated mortality in 
men worldwide; however, the precise molecular mechanisms 
underlying the progression of PCa remain unclear. Numerous 
studies have revealed that miRNAs regulate several biological 
processes in PCa, including proliferation, cell cycle progression 
and metastasis (44‑47). miRNA expression profiles provide 
valuable insights into the molecular mechanisms of PCa, and 

may be used to identify novel biomarkers of PCa. The present 
study analyzed two publicly available gene expression datasets 
and screened differentially expressed miRNAs in PCa.

A total of 17 miRNAs were downregulated and 17 miRNAs 
were overexpressed in PCa samples compared with normal 
controls in both datasets. The present study primarily focused 
on the 17 upregulated miRNAs (miR‑106b, miR‑93, miR‑148a, 
miR‑25, miR‑375, miR‑130b, miR‑512‑3p, miR‑18a, miR‑518c*, 
miR‑7, miR‑95, miR‑96, miR‑32, miR‑663, miR‑182, miR‑183 
and miR‑153) as putative biomarkers. The majority of these 
miRNAs have been reported to be involved in the carcinogen-
esis of PCa (27‑37).

The present study revealed that miR‑512‑3p was signifi-
cantly upregulated in PCa compared with in normal tissues; 
however, to the best of our knowledge, the molecular func-
tions of miR‑512‑3p in PCa have yet to be reported in PCa. 
In lung adenocarcinoma, miR‑512‑3p has been reported to 
act as a tumor suppressor that inhibits cell adhesion, migra-
tion and invasion of NSCLC cells (23). However, the roles 
of miR‑512‑3p in PCa remain unclear. The present study 
demonstrated that overexpression of miR‑512‑3p promoted 
PCa cell proliferation and reduced G1 phase cell cycle arrest 
in PCa. The results indicated that miR‑512‑3p may act as an 

Figure 4. (A) Biological processes and (B) KEGG pathway analyses of miR‑512‑3p. (C) mRNA expression levels of numerous pathway‑related genes following 
overexpression of miR‑512‑3p. *P<0.05 and **P<0.01 vs. NC. AVPI1, arginine vasopressin induced 1; CLIC4, chloride intracellular channel 4; FOXO1, forkhead 
box O1; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MAPK, mitogen‑activated protein kinase; miR, microRNA; MXI1, MX 
dynamin like GTPase 1; NC, negative control; PARVA, parvin α; PPAR, peroxisome proliferator‑activated receptor; QKI, QKI, KH domain containing RNA 
binding; RBM38, RNA binding motif protein 38; RND3, Rho family GTPase 3; TACC1, transforming coiled‑coil containing protein 1; TGF, transforming 
growth factor; MFN2, mitofusin 2; RHOA, Ras homolog family member A; RTKN2, rhotekin 2.
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oncogene in PCa and may serve varying roles in different 
types of cancers.

To obtain valuable insights into the potential mechanisms of 
miR‑512‑3p, a bioinformatics analysis was conducted to iden-
tify miR‑512‑3p target genes using starBase (40). A total of 663 
targets of miR‑512‑3p were used to perform KEGG pathway 
and GO category analyses. The results revealed that miR‑512‑3p 
may affect numerous biological processes, including cell 
adhesion, cell proliferation, cell cycle and apoptosis. Pathway 
enrichment analyses demonstrated that miR‑512‑3p was 
associated with the MAPK signaling pathway, focal adhesion, 
cell cycle and TGF‑β pathway. Further validation revealed 
that overexpression of miR‑512‑3p significantly reduced the 
expression levels of RND3, MXI1, MFN2 and FOXO1. These 
results suggest that miR‑512‑3p may serve an important role in 
the regulation of PCa progression by regulating several genes, 
including RND3, MXI1, MFN2 and FOXO1.

In conclusion, the present study analyzed two publicly 
available gene expression datasets, and screened differentially 
expressed miRNAs in PCa. The results demonstrated that 
miR‑512‑3p may promote PCa cell proliferation and cell cycle 
progression, thus suggesting that miR‑512‑3p may be consid-
ered a potential diagnostic and therapeutic target of PCa.
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