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Abstract. The aim of the present study was to identify risk 
genes in myocardial infarction. Microarray data GSE34198, 
containing data from the peripheral blood of 49 myocardial 
infarction samples and 48 corresponding control samples, 
were downloaded from the Gene Expression Omnibus data-
base to screen the differentially expressed genes (DEGs). 
The DEGs were used to construct a protein‑protein inter-
action (PPI) network of patient samples, from which the 
feature genes were identified using the neighboring score 
method. The recursive feature elimination (RFE) algorithm 
was employed to select the risk genes among feature genes, 
which were subsequently applied to perform a support vector 
machine (SVM) classifier to identify the specific signature in 
myocardial infarction samples. Another dataset, GSE61144, 
was also downloaded to verify the efficacy of the classifier. A 
total of 724 downregulated and 483 upregulated DEGs were 
screened in patient samples compared with control samples 
in the GSE34198 dataset. The PPI network of myocardial 
infarction was comprised of 1,083 nodes (genes) and 46,363 
lines (connections). Using the neighborhood scoring method, 
the top 100 feature genes in myocardial infarction samples 
were identified as the disease feature genes, which distin-
guish the myocardial infarction samples from the control 
samples. The RFE algorithm screened 15 risk genes, which 
were employed to construct a SVM classifier with an average 
precision of 88% to the patient sample following visualization 
by a confusion matrix. The predictive precision of the clas-
sifier on another microarray dataset, GSE61144, was 0.92, 
with an average true positive of 0.9278 and an average false 

positive of 0.2361. A‑kinase‑anchoring protein 12 (AKAP12) 
and glycine receptor α2 (GLRA2) were two risk genes in 
the SVM classifier. Therefore, AKAP12 and GLRA2 exert 
potential roles in the development of myocardial infarction, 
potentially by influencing cardiac contractility and protecting 
against ischemia‑reperfusion injury, which may provide clues 
in developing potential diagnostic biomarkers or therapeutic 
targets for myocardial infarction.

Introduction

Myocardial infarction is a result of interrupted blood flow 
to a certain area of the heart, which subsequently damages 
heart muscle. Among the various symptoms, chest pain or 
discomfort that may travel to the shoulder, arm, neck, back or 
jaw is the most common (1). Shortness of breath, feeling faint, 
nausea and cold sweats may also be experienced by patients 
suffering a myocardial infarction. Myocardial infarction may 
trigger heart failure, cardiac arrest, an irregular heartbeat 
or cardiogenic shock (2), and, as a life‑threatening disease 
that may lead to severe hemodynamic instability or sudden 
death, is one of the major causes of mortality worldwide (3). 
According to an estimation by the World Bank, the number 
of individuals experiencing myocardial infarction may reach 
>23 million by 2030 in China  (4). Globally, the mortality 
associated with acute myocardial infarction has reduced in the 
past few decades, however, as a result, the incidence of heart 
failure has increased (5). Heart failure following myocardial 
infarction is associated with cardiac remodeling, which leads 
to ventricular dysfunction and chamber dilation (6).

Clinically, the occurrence of myocardial infarction is often 
unexpected and sudden, which makes it difficult to prevent 
and diagnose. Cardiovascular risk factors for heart disease 
include circulating blood lipid levels (7), smoking (8), heavy 
drinking (9), oral contraceptives (10), high intake of anthocya-
nins (11), human immunodeficiency virus infection (12) and a 
family history or genetic alterations. A positive family history 
is among the strongest cardiovascular risk factors for heart 
disease, therefore, numerous studies have aimed to determine 
the associated genetic factors of myocardial infarction. For 
example, Helgadottir et al  (13) reported that arachidonate 
5‑lipoxygenase‑activating protein variants are involved in 
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the pathogenesis of myocardial infarction by increasing the 
inflammation in the arterial wall and the production of leukot-
rienes. In addition, Do et al (14) identified that multiple rare 
alleles of the low‑density lipoprotein receptor and apolipopro-
tein A5 confer risk for early‑onset myocardial infarction, and 
a meta‑analysis demonstrated that the rs671 aldehyde dehydro-
genase 2 family (mitochondrial) polymorphism increases the 
risk of myocardial infarction (15).

Despites the current findings, reliable molecular predic-
tion in the diagnosis and prevention of myocardial infarction 
remains to be discovered. In the present study, using the feature 
genes selected from differentially expressed genes (DEGs) in 
patients with myocardial infarction compared with controls, 
a support vector machine (SVM) classifier and certain risk 
genes were screened. These risk genes allow patient samples 
to be distinguished from normal controls.

Materials and methods

Microarray data. The GSE34198 microarray dataset  (16) 
was downloaded from the Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/geo) and included 
49 samples from the peripheral blood of patients with myocar-
dial infarction and 48 control samples. The platform for 
GSE34198 was Illumina human‑6 v2.0 expression BeadChip. 
Affy package RMA in R version 3.3.1  (17) (http://biocon-
ductor.org/packages/release/bioc/html/affy.html) was utilized 
to transfer the array data in GSE34198 into expression 
data, which was subsequently normalized by the Z‑score 
method (18).

DEG identification. The DEGs between patients with 
myocardial infarction and control subjects were identified 
using the Limma version 3.32.8 (http://bioconductor.org/pack-
ages/release/bioc/html/limma.html) (19) with a threshold of 
P<0.05 and log|fold change (FC)|>1.

Protein‑protein interaction (PPI) network construction. 
All screened DEGs were subjected to the human protein 
interaction network Human Protein Reference Database (20) 
(http://www.hprd.org/) for the identification of their interac-
tions. Subsequently, the interactions were visualized using 
Cytoscape 3.4 software (http://www.cytoscape.org/) as the PPI 
network of DEGs in myocardial infarction.

Feature gene selection. Usually, significant expression connec-
tions exist between disease feature genes and their connected 
genes. To identify the feature genes in myocardial infarction, 
the neighborhood score  (21) was employed to identify the 
feature genes in the PPI network. The formula for calculating 
the score was as follows:

Where i represents the node in the network, FC represents 
the fold change value for the expression level of the node, N(i) 
represents the number of the connection nodes to the selected 
node and score(i) represents the correlations between the 
node(i) and the disease.

By the neighborhood scoring algorithm, the changing 
degrees of the nodes under disease will be inferred, along 
with their influence on the connecting genes. If the score is 
>0, the node and its connected nodes are all highly expressed, 
and if the score is <0, the expression of the nodes are low. 
The nodes (DEGs) in the PPI network with the top 100 |score| 
values were considered to be the feature genes in myocardial 
infarction.

Tomography cluster analysis. Tomography cluster analysis was 
conducted to determine whether the feature genes were differ-
entially expressed between patient and control samples using 
Pearson's correlation coefficient (22) and average linkage (23). 
The clustering results were visualized using heatmaps in R 
version 3.2.1 (24).

Risk gene identification. To further identify the most signifi-
cant feature genes that distinguish patients with myocardial 

Figure 1. Distributions of node degrees in the protein‑protein interaction 
network. The x‑axis represents the log (degree) value; the y‑axis indicates the 
number of responding nodes in each of the log (degree) ranges.

Table I. Feature genes with top 10 neighbor scores.

Node	 NS_score	 Log (fold change)	 P‑value

EHBP1	 0.96	 1.0153	 0.0004
EXOC6B	 0.96	 0.9025	 0.0016
GRB10	 0.92	 0.9488	 0.0009
AKAP12	 0.91	 0.9764	 0.0007
SOX4	 0.91	 0.8647	 0.0026
GLRA3	 0.91	‑ 0.8335	 0.0036
GLRA2	 0.91	‑ 0.9855	 0.0006
PPP1R3A	 0.90	‑ 1.0402	 0.0003
FABP4	 0.90	 1.0953	 0.0001
MED13L	 0.90	 0.7106	 0.0132

NS, neighbor score; EHBP1, EH domain‑binding protein 1; 
EXOC6B, exocyst complex component 6B; GRB10, growth factor 
receptor‑bound protein 10; AKAP12, A‑kinase‑anchoring protein 12; 
SOX4, SRY‑box 4; GLRA, glycine receptor α; PPP1R3A, protein 
phosphatase 1 regulatory subunit 3A; FABP4, fatty acid‑binding 
protein 4; MED13L, mediator complex subunit 13‑like.
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infarction from controls, the recursive feature elimination 
(RFE) algorithm was utilized  (25). In this algorithm, the 
optional feature gene combinations were selected as the risk 
genes in myocardial infarction.

SVM classifier construction. SVM is a supervised classifi-
cation algorithm that estimates the attribution of a class by 
distinguishing and predicting the samples by the eigenvalues 
of the features in each sample (26). A SVM classifier was 
performed using the selected risk genes by using 4 samples as 
the training dataset and 1 sample as the testing dataset. The 
receiver operating characteristic (ROC) curve was drawn to 
evaluate the precision and robustness of the SVM classifier. 
A confusion matrix in R version 3.2.1 (https://cran.r‑project.
org/web/packages/ROCR/index.html) was also employed to 
visualize the classification results of the classifier.

Verification of the SVM classifier. An additional dataset, 
GSE61144 (27), was downloaded from the GEO database, 

which is based on the GPL6106Sentrix Human‑6 v2 Expression 
BeadChip platform. This dataset consists of 7 samples from 
patients prior to percutaneous coronary intervention (PCI), 
7 from patients following PCI and 10 normal controls. These 
24 samples were used to verify the classification effect of the 
SVM classifier on myocardial infarction patient samples by 
R version 3.2.1 e1071 1.6‑8 package (https://cran.r‑project.
org/web/packages/e1071/index.html).

Results

Identification of DEGs. A total of 1,207 DEGs were screened 
from myocardial samples compared with normal controls, 
including 724 downregulated ones and 483 upregulated ones.

PPI network in myocardial infarction samples. The PPI 
network was comprised of 1,083 nodes (genes) and 46,363 
lines (connections). The degrees of the nodes in the network 
were calculated, and their distributions are presented in 
Fig. 1. The degrees are referring indexes of the interaction of 
genes in influencing the development and process of myocar-
dial infarction. A‑kinase‑anchoring protein (AKAP)12 and 
glycine receptor α (GLRA)2 were two DEGs with a degree 
of 1, which means the number of interaction genes is 1 in the 
PPI network.

Feature genes and clustering analysis. The neighborhood 
scoring method was employed for the selection of the top 100 
feature genes in myocardial infarction samples. The feature 
genes with a high neighbor score exhibited high expression 
in the patient samples. The top 10 feature genes are listed 
in  Table  I, and included EH domain‑binding protein 1, 
exocyst complex component 6B, growth factor receptor‑bound 
protein 10, AKAP12, SRY‑box 4, GLRA3, GLRA2, protein 
phosphatase 1 regulatory subunit 3A, fatty acid‑binding protein 
(FABP)4 and mediator complex subunit 13‑like. Clustering 
analysis was performed on the top 100 feature genes (Fig. 2), 
which may allow the classification of myocardial infarction 
samples to distinguish them from the control samples.

Figure 3. Feature elimination of the top 100 feature genes. The x‑axis is the 
feature gene number and the y‑axis indicates the corresponding prediction 
precision. The gene combination with the highest precision is marked in red, 
which was a 15‑gene combination.

Figure 2. Clustering analysis results for the top 100 feature genes. The x‑axis represents the samples, with control samples marked in green and patient samples 
marked in red.
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Risk genes and SVM classifier. Using the RFE algorithm, a 
15‑gene combination with a precision of 85% was obtained 
(Fig. 3) and these genes were recognized as risk genes in 
myocardial infarction. The expression significance of these risk 
genes is presented in in Table II, and these risk genes included 

hes family bHLH transcription factor 5, zinc‑finger protein 417, 
GLRA2, olfactory receptor (OR) family 8 subfamily D member 2 
(gene/pseudogene), homeobox A7, FABP6, muscle‑associated 
receptor tyrosine kinase, 5‑hydroxytryptamine receptor 6, 
glutamate receptor‑interacting protein 2, OR family 51 
subfamily M member 1, OR family 1 subfamily C member 1, 
killer cell lectin‑like receptor K1, vascular endothelial growth 
factor A, AKAP12 and Ras homolog mTORC1‑binding.

The average precision of the SVM classifier was 86%, as 
indicated in the ROC curve (Fig. 4), which was 88% to the 
patient samples following visualization by a confusion matrix 
(Fig. 5). The classification effect was also verified using the 
independent microarray data GSE61144, and the ROC curve 
is presented in Fig. 6. The predictive precision was 0.92, the 
average true positive rate was 0.9278 and the average false 
positive rate was 0.2361.

Figure 5. Confusion matrix of the support vector machine classifier.

Figure 6. ROC curve of the support vector machine classifier verified by the 
GSE61144 dataset. The x‑axis represents the false positive rate and the y‑axis 
indicates the true positive rate. ROC, receiver operating characteristic; FPR, 
false positive rate; TPR, true positive rate; AUC, area under the curve.

Figure 4. ROC curve of the support vector machine classifier. The x‑axis 
represents the false positive rate and the y‑axis indicates the true positive 
rate. The simulation results (mean ROC) is marked by the dotted line. ROC, 
receiver operating characteristic.

Table II. Risk genes in myocardial infarction samples.

Gene	 Log (fold change)	 P‑value

HES5	‑ 0.8925	 0.0018
ZNF417	‑ 0.8260	 0.0040
GLRA2	‑ 0.9855	 0.0006
OR8D2	‑ 0.8135	 0.0045
HOXA7	 0.7150	 0.0126
FABP6	 0.9234	 0.0013
MUSK	‑ 0.7975	 0.0054
HTR6	‑ 0.7651	 0.0076
GRIP2	‑ 0.9973	 0.0005
OR51M1	‑ 0.8125	 0.0046
OR1C1	‑ 0.7755	 0.0068
KLRK1	‑ 0.9248	 0.0013
VEGFA	 0.8442	 0.0032
AKAP12	 0.9764	 0.0007
RHEB	 0.9288	 0.0012

HES5, hes family bHLH transcription factor 5; ZNF417, zinc‑finger 
protein 417; GLRA2, glycine receptor α2; OR, olfactory receptor; 
OR8D2, OR family 8 subfamily D member 2 (gene/pseudogene); 
HOXA7, homeobox A7; FABP6, fatty acid‑binding protein 6; 
MUSK, muscle‑associated receptor tyrosine kinase; HTR6, 
5‑hydroxytryptamine receptor 6, GRIP2, glutamate receptor‑inter-
acting protein 2, OR51M1, OR family 51 subfamily M member 1; 
OR1C1, OR family 1 subfamily C member 1; KLRK1, killer cell 
lectin‑like receptor K1; VEGFA, vascular endothelial growth 
factor A; AKAP12, A‑kinase‑anchoring protein 12; RHEB, Ras 
homolog mTORC1‑binding.
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Discussion

To identify the risk genes in myocardial infarction, the 
GSE34198 microarray dataset was downloaded from the 
GEO database, and 724 downregulated and 483 upregulated 
DEGs were screened in patient samples compared with control 
samples. The PPI network of myocardial infarction was 
comprised of 1,083 nodes (genes) and 46,363 lines (connec-
tions). Using the neighborhood scoring method, the top 100 
feature genes in myocardial infarction samples were identified 
as the disease feature genes, which allow myocardial infarc-
tion samples to be distinguished from the control samples. The 
RFE algorithm screened 15 risk genes, which were utilized to 
construct a SVM classifier with an average precision of 88% 
to the patient samples following visualization by a confusion 
matrix. The predictive precision of the classifier on another 
microarray dataset, GSE61144, was 0.92, with average true 
positive rate of 0.9278 and an average false positive rate of 
0.2361. AKAP12 and GLRA2 were two of the risk genes 
identified.

AKAPs are scaffolding proteins that regulate the cellular 
cyclic AMP response. Several AKAPs are reported to be 
expressed in the heart, including AKAP18, AKAP79, AKAP6 
and AKAP220 (28,29). AKAPs participate in cardiovascular 
functions by various mechanisms. For example, AKAPs were 
reported to anchor protein kinase A (PKA) in the sarcomere 
for the phosphorylation of myofibril proteins in contractile 
responses (30). In addition, AKAPs docked APK in proximity 
of sarcomeric substrates to enhance cardiac contractility (31). 
AKAPs mediate certain phosphorylation events in the heart, 
and AKAP6 complex disruption resulted in aberrant Ca2+ 
cycling, which was associated with arrhythmia  (32). Loss 
of AKAP150 promoted pathological remodeling and heart 
failure propensity by disrupting Ca2+ cycling and contractile 
reserve (33). Furthermore, when voltage‑gated K+ currents 
were reduced in ventricular myocytes following myocardial 
infarction, AKAP150 was reported to be involved in the acti-
vation of calcineurin/nuclear factor of activated T‑cells (34). 
PKA is involved in the progression of heart failure  (35), 
therefore, AKAPs, which regulate the activity of PKA, are 
also risk factors in heart failure. AKAP12 has been associated 
with various cellular functions, including cytoskeletal archi-
tecture and cell cycle regulation (36,37). Activated AKAP12 
has been observed in the plasma membrane, cell periphery 
and perinuclear regions in the cytoplasm (38). Although no 
associations between AKAP12 and heart disease have been 
previously reported, its potential role can be inferred based on 
the functions of other AKAPs.

Glycine is a simple physiological compound whose func-
tion in cardiovascular disease is receiving increased attention 
is research. Glycine was reported to protect against isch-
emia‑reperfusion injury in cells and isolated perfused organs 
by inhibiting neuronal apoptosis in mice (39,40). Glycine recep-
tors have been identified in the myocardial cell membrane, 
which aid the cytoprotective effects of glycine in myocardial 
cells (41). Furthermore, it was reported that the cytoprotec-
tive effect of glycine against ATP depletion‑induced injury 
may be mediated by the glycine receptor in renal cells (42). 
GLRA2 is one type of glycine receptor, and, currently, no 
direct evidence has revealed its role in cardiovascular disease. 

However, the present study performed bioinformatics analysis 
to demonstrated that GLRA2 was a risk gene in myocardial 
infarction. Although the above result based on bioinformatics 
analysis is important, confirmation of the above‑mentioned 
results is required by performing functional studies, and the 
role of AKAP12 and GLRA2 genes in myocardial infarction 
requires further investigation.

In conclusion, the results of the present study indicate that 
AKAP12 and GLRA2 exert potential roles in the development 
of myocardial infarction, potentially by influencing cardiac 
contractility and protecting against ischemia‑reperfusion injury.
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