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Abstract. The chemokine receptor CXCR7 is regarded as a 
scavenger receptor for CXCL12, and induces numerous key 
steps in tumor growth and metastasis. However, the exact 
molecular mechanism of CXCR7 regulation in breast tumor 
angiogenesis remains unknown. In the present study, the func-
tion of CXCR7 in breast tumors was investigated in vitro and 
in vivo. The breast cancer MDA‑MB‑231 cell line was used. 
Pharmacological inhibition of CXCR7 by CCX771 reduced 
breast tumor invasion, adhesion and metastasis. Furthermore, 
CXCR7 was essential for the tube formation of HUVECs 
in vitro, and for blood vessel formation in a Matrigel plug assay 
in vivo. In addition, vascular endothelial growth factor expres-
sion was also decreased in CCX771‑treated MDA‑MB‑231 
cells, indicating that CCX771 regulates tumor angiogenesis. 
The present results indicated that CXCR7 regulated breast 
cancer metastasis at multiple stages; additional understanding 
of CXCR7 in tumor environments may develop anti‑metastatic 
therapy.

Introduction

Breast cancer is the most rapidly increasing malignancy in 
females worldwide (1). Due to the rising incidence of breast 
cancer (2), there is a growing concern about the matter among 
the general public. The critical challenge in the treatment of 
patients with breast cancer is tumor recurrence and metastasis 
following surgery. Therefore, early metastatic risk assess-
ment and treatment is necessary for individualized therapy. 
Previous evidence has shown that breast tumors are hetero-
geneous in vitro and in vivo (3‑5). Certain subpopulations 

of breast tumors cells may possess a specific metastatic 
potential, and exploring this function may provide improved 
understanding about breast cancer. Metastasis is a key cause 
for cancer morbidity and mortality (6,7). Metastasis involves 
numerous cell processes, including proliferation, invasion and 
angiogenesis in the tumor microenvironment. However, these 
processes have not yet been fully elucidated.

Chemokines and chemokine receptors perform an 
important role in tumor cell growth, survival, adhesion and 
metastasis. Previously, stromal cell‑derived factor‑1 (CXCL12) 
and its chemokine receptor CXCR7 were reported to regulate 
tumor cell function in numerous cancers, including lung 
and kidney cancer (8‑12). CXCL12 is involved in a number 
of important physiological steps, including vasculogenesis. 
Notably, CXCL12 regulates proliferation, migration and inva-
sion in numerous tumor cells (13‑16). In addition, CXCR7 is 
overexpressed in malignant cells and vascular endothelium. 
CXCR7 critically controls the cardiovascular system develo
pment in animal models. Decreased CXCR7 expression in 
zebrafish embryos inhibits blood vessel formation (17), and 
the knock down of CXCR7 in mice causes early postnatal 
mortality as a result of myocardial degeneration and heart 
vessel damage (18). Evidence from a previous study demon-
strated that CXCR7 induces tumor growth, invasion and 
metastasis (19‑22). Thus, it is necessary to explore the role of 
CXCR7 in breast cancer progress.

It has been shown that CXCR7 promotes tumor growth in 
a mouse model of lung cancer, and that expression of CXCR7 
affects experimental lung metastasis (23). In addition, CXCR7 
enhances the cell adhesion, invasion and blood vessel sprout 
formation in vitro, and promotes tumor growth in vivo (24,25). 
Other studies have revealed that CXCR7 mediated the 
proliferation and migration of tumor cells towards CXCL12 
in vitro  (22,26‑28). All results proposed that CXCR7 may 
perform an important role in breast cancer. Although the 
role of CXCL12 in the tumor is extensively documented and 
CXCR4 activation signals have been reported, the role of 
CXCR7 in regulating breast cancer is not known. Thus, it 
is necessary to investigate the function of CXCR7 in breast 
cancer development.

In the present study, the effects of CXCR7 in breast cancer 
invasion, migration and angiogenesis were investigated.
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Materials and methods

Cell culture. The MDA‑MB‑231 cell line was obtained from 
American Type Culture Collection (Manassas, VA, USA) 
and grown in Dulbecco's modified Eagle's medium (DMEM; 
Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA), supplemented with 10% fetal bovine serum, 5 U/ml of 
penicillin and 5 mg/ml of streptomycin. HUVECs (American 
Type Culture Collection, Manassas, VA, USA) were main-
tained in endothelial cell growth medium (PromoCell GmbH, 
Heidelberg, Germany) containing endothelial cell growth 
supplement, and HUVECs were used at passage 3‑5.

Chemokines and reagents. Recombinant CXCL12/SDF‑1α 
was obtained from R&D Systems, Inc. (cat. no.  350‑NS; 
Minneapolis, MN, USA). The CXCR7 antagonist CCX771 
was obtained from ChemoCentryx, Inc. (Mountain View, CA, 
USA). Calcein‑AM was purchased from Sigma‑Aldrich (cat. 
no. 148504‑34‑1; Merck KGaA, Darmstadt, Germany).

Cell invasion assay. The upper surface of a modified Boyden 
chamber (Corning, Inc., Corning, NY, USA) was pre‑treated 
with Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). 
MDA‑MB‑231 cells were treated with 5  µm CCX771 for 
1 h. A total of 2x104 cells were added to the upper Boyden 
chamber. Serum‑free DMEM media (0.5  ml) containing 
CXCL12 (0‑100 ng/ml) was then added to the lower chamber 
for 24 h. The noninvasive cells were gently removed following 
incubation. The invasive cells at the bottom of the Matrigel 
were stained by Calcein‑AM. The number of invasive cells 
was counted under an inverted fluorescent microscope (IX51; 
Olympus Corporation, Tokyo, Japan) in at least three fields 
(magnification, x10).

Cell migration assays. Cell migration assays were performed 
using a modified Boyden chamber (BD Biosciences). 
MDA‑MB‑231 was pre‑treated with 5 µm CCX771 for 1 h at 
37˚C. A total of 2x103 MDA‑MB‑231 cells per well were added 
to the upper of the Boyden chamber. CXCL12 (100 ng/ml) was 
added to the lower chamber with DMEM media. The Boyden 
chamber was incubated at 37˚C for 5 h. The migrated cells on 
the lower side of the filter were stained by Calcein‑AM and 
the migration of cells was quantified. All experiments were 
repeated three times in three wells.

Cell adhesion assay. A cell adhesion assay was performed 
using the CytoSelect™ extracellular matrix cell adhesion 
assay kit (Cell BioLabs, Inc., San Diego, CA, USA), according 
to the manufacturer's protocol. The 48‑well plates were 
pre‑coated with laminin (LN) or fibronectin (FN) for 1 h at 
37˚C. MDA‑MB‑231was pre‑treated with 5 µm CCX771 and/or 
CXCL12 (100 ng/ml) for 24 h at 37˚C. A total of 2x104 cells/well 
were added to the plate for 1 h at 37˚C. Non‑adhesive cells 
were then removed using PBS. The adhesive cells were then 
measured by absorbance at 560 nm with a microplate reader. 
All the experiments were repeated three times in three wells.

Tube formation assay. MDA‑MB‑231 cells were treated with 
5 µm CCX771 and/or 100 ng/ml CXCL12, and the media were 
collected 24 h following treatment. The wells of 96‑well plates 

were pre‑coated with Matrigel for 1 h at 37˚C. A total of 2x104 

HUVECs were seeded onto wells with the aforementioned 
media for 24 h. Images were captured with a Leica Microsystems 
microscope (10X objective; Leica Microsystems, Inc., Buffalo 
Grove, IL, USA). Only perfectly continuous tubes between 
two branching points were considered as a tube formation. 
At least 4 fields were tested per well and experiments were 
repeated three times.

ELISA. The human VEGF Quantikine ELISA kit (R&D 
Systems, Inc.) was used for ELISA. The MDA‑MB‑231 cells 
were cultured for 24 h and the supernatant was collected by 
centrifugation at 1,000 x g for 10 min at room temperature. 
VEGF secretion was measured using ELISA. In brief, 50 µl of 
sample or standard was added to the microplate wells at room 
temperature for 2 h, and 100 µl of VEGF conjugate was added 
at room temperature for 1 h. Microplates were washed with PBS 
and 200 µl of substrate solution was added. The optical density 
(OD) was then read at 450 nm using an ELISA plate reader.

Cell proliferation assay. Cell proliferation was measured 
by MTT assay (Promega Corporation, Madison, WI, USA). 
MDA‑MB‑231 was pre‑treated with 5  µm CCX771, and 
5x104 cells/well were seeded onto 96‑well dishes in DMEM 
containing CXCL12 (100  ng/ml) for 72  h. The OD was 
measured with a microplate reader at 570 nm.

Matrigel plug assay in vivo. Aliquots of 0.5 ml of Matrigel 
(containing 5 µm CCX771 and/or 100 ng/ml CXCL12) were 
injected subcutaneously into the sides of BALB/c mice (all 
male, aged 8‑12 weeks). All animal experiments were approved 
by the Committee on Animal Welfare of the Tongji University 
(Shanghai, China). The animals were housed at 24˚C with a 
12 h light/dark cycle and were checked daily for mortality. 
Animals were euthanized by CO2 and the Matrigel plugs were 
excised after 10 days. Matrigel plugs from the control and drug 
treated groups were stained with hematoxylin and eosin.

Statistical analysis. Data are expressed as the mean ± standard 
deviation. Statistically significance of differences between 
untreated control and drug‑treated cells was evaluated using 
Student's one‑tailed t‑test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

CXCR7 regulates CXCL12‑induced enhancement on breast 
carcinoma cell invasion in vitro. CXCR7 has an important 
role in the invasion of several tumors. It is therefore of interest 
to explore whether CXCR7 affects breast cancer cell invasion 
by reducing CXCR7 expression using the CXCR7 antagonist 
CCX771. Cell invasion experiments used a Matrigel invasion 
chamber, which is considered an in vitro model for metastasis 
research. As shown in Fig. 1A, CXCL12 induced significant and 
dose‑dependent MDA‑MB‑231 cell invasion through Matrigel. 
In addition, the inhibition of CXCR7 on MDA‑MB‑231 cells 
reduced invasive ability compared with CXCL12 treated cells 
(Fig. 1B). These data indicated that CXCL12 induces invasive 
behavior of MDA‑MB‑231 cells, and that inhibition of CXCR7 
reduces the invasive ability of cells.
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Figure 1. CXCR7 regulates CXCL12‑induced MDA‑MB‑231 cell invasion in vitro. (A) MDA‑MB‑231 cells were tested for invasive ability following stimula-
tion with CXCL12 (0‑100 ng/ml). Representative images are shown. CXCL12 induced a significant and dose‑dependent effect on MDA‑MB‑231 cell invasion 
through Matrigel. (B) CCX771‑treated cells, CXCL12‑treated cells, CCX771 + CXCL12‑treated cells and control cells. The invasive ability of CCX771‑treated 
cells appeared significantly reduced. The mean number of invasive cells from three independent fields/well is indicated. Data are expressed as the mean ± stan-
dard deviation from three independent experiments. *P<0.05 and **P<0.01 vs. control cells. CXCR7, CXC receptor 7; CXCLl2, CXC motif chemokine 12.

Figure 2. CXCR7 regulates CXCL12‑induced MDA‑MB‑231 cell migration in vitro. Representative images of migrated cells in control untreated, CCX771‑treated, 
CXCL12‑treated and CCX771 + CXCL12‑treated MDA‑MB‑231 cells (magnification, x10). The migration ability of CCX771‑treated cells appeared significantly 
reduced. The mean number of migrated cells per group from three independent fields/well is indicated. Data are expressed as the mean ± standard deviation from 
three independent experiments. *P<0.05 and **P<0.01 vs. control cells. CXCR7, CXC receptor 7; CXCLl2, CXC motif chemokine 12.
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CXCR7 regulates CXCL12‑induced enhancement on breast 
carcinoma cell migration in vitro. The enhanced migration 
behavior of tumor cells decided their metastatic phenotype. 
To determine whether CXCR7 affects breast cancer cells 
migration, a Transwell migration assay was performed. 
CXCL12 significantly increased MDA‑MB‑231 cell migration 
capability, and the migration cells were markedly reduced in 
the presence of CCX771 (Fig. 2). The present results indicated 
that CXCL12 induces MDA‑MB‑231 cell migration behavior 
and that inhibition of CXCR7 reduces the cell migration 
ability.

CXCR7 regulates CXCL12‑induced enhancement on breast 
carcinoma cell adhesion in vitro. Tumor cell adhesion is a 
key process in tumor invasion. To examine the mechanism by 
which CXCR7 affects MDA‑MB‑231 cell adhesion to LN or 
FN, a cell adhesion assay was performed. As shown in Fig. 3, 
CXCL12‑treated MDA‑MB‑231 cells demonstrated increased 
cell adhesion to LN or FN. However, CXCR7 inhibition using 
CCX771 in MDA‑MB‑231 cells showed significantly reduced 
ability of adhesion to LN or FN. These results indicated that 
CXCL12 increases adhesive ability of MDA‑MB‑231 cells and 
that inhibiting of CXCR7 decreased adhesive ability.

CXCR7 regulates CXCL12‑induced enhancement of breast 
carcinoma cell angiogenic processes in  vitro. To explore 
whether CXCR7 mediates tube formation in vitro, the Matrigel 
tube formation assay was used. The amount of tube forma-
tion was quantified. As shown in Fig. 4, the CXCL12‑treated 
MDA‑MB‑231 cells induced HUVECs form capillary‑like 
structures within 24 h. By contrast, MDA‑MB‑231 cells treated 
with CCX771 markedly inhibited tube formation. Therefore, 
CXCL12 increased angiogenic processes of MDA‑MB‑231 
cells, whereas inhibition of CXCR7 decreased angiogenic 
processes.

CXCR7 regulates the secretion of VEGF. To explore the 
possible effects of CXCR7 on the regulation of proangiogenic 
factor secretion, ELISA was performed. The supernatant from 
MDA‑MB‑231 cells treated with CCX771 and/or CXCL12 
were tested. The results demonstrated that CXCL12 increased 
VEGF level and blocking of CXCR7 significantly decreased 
the VEGF level in MDA‑MB‑231 cells (Fig. 5).

CXCR7 regulates CXCL12‑induced enhancement of breast 
carcinoma cell proliferation in vitro. To explore the possible 
effects of CXCR7 on breast cancer cell proliferation, 
MDA‑MB‑231 cells were treated with CCX771 and/or 
CXCL12, and proliferation rates were determined. The results 
demonstrated that CXCL12 increased MDA‑MB‑231 cell 
proliferation, and blocking of CXCR7 significantly decreased 
MDA‑MB‑231 cell proliferation (Fig. 6).

CXCR7 regulates angiogenic activity in vivo. The new vessel 
formation was analyzed by Matrigel plug assays in C57BL/6 
mice. Matrigel plugs containing CXCL12 were filled with an 
abundance of cellular infiltration, demonstrating that vascular 
elements were formed in the Matrigel. By contrast, the vessel 
formation was significantly reduced by CCX771 treatment, 
demonstrating the anti‑angiogenic activity in vivo (Fig. 7).

Discussion

Increasing evidence has demonstrated that CXCL12 and 
its receptors are involved in cancer cellular proliferation, 
invasion, metastasis and angiogenesis (29,30). CXCR7 over-
expression has been identified in numerous human cancers, 
including breast carcinoma cells (31,32). However, the role 
of CXCR7 in regulating breast carcinoma cells is unclear. 
To evaluate the role of CXCR7 in breast carcinoma cells, the 
MDA‑MB‑231 cell line was selected as an in vitro model. 
In the present study, CXCL12 enhanced MDA‑MB‑231 cell 
invasion, migration, adhesion and angiogenesis. The present 
study also indicated that CXCR7 regulated breast carcinoma 
cell invasion, migration adhesion and angiogenesis. In the 
present study, the molecular mechanisms and signaling path-
ways in breast carcinoma cells were not demonstrated. Thus, 
additional studies exploring CXCR7‑activated pathways are 
required.

In the present study, CXCL12 was revealed to promote 
MDA‑MB‑231cell invasion and migration. It was also 
examined whether CXCR7 could affect MDA‑MB‑231cell 
invasion and migration ability by invasion assay and Transwell 
assays. The present results revealed that CCX771 decreased 
cell migration and invasion. Tumor cell contact with basement 
membranes is an essential step for invasion. The previous 
study demonstrated that tumor cells adhere to endothelial 
cells through regulation of CXCR7  (33,34). The present 
data demonstrated that CXCL12 induces MDA‑MB‑231 
cell adhesion to FN and LN. Increased cell‑matrix adhesion 
may induce tumor cell metastasis. In addition, CCX771 was 
revealed to inhibit adhesion of MDA‑MB‑231 cells to LN or 
FN. Therefore, the present findings indicated that CXCR7 
is involved in CXCL12‑induced cell‑matrix adhesion of 
MDA‑MB‑231 cells.

Angiogenesis is a complex process, involving cell migra-
tion, proliferation and tube formation. Tumor cell survival 
and proliferation relies on angiogenesis  (30). CXCR7 was 
identified to be involved in tube formation in vitro, which may 
induce tumor growth  (35). Although CXCL12‑stimulated 
VEGF expression has been reported in various cells, to the 

Figure 3. CXCR7 regulates MDA‑MB‑231 cell adhesion in vitro. MDA‑MB‑231 
cells exhibited enhanced cell adhesion to LN or FN in the presence of CXCL12. 
CCX771 + CXCL12‑treated cells showed significantly reduced ability of adhe-
sion to LN or FN. Each bar represents the mean ± standard deviation from three 
independent experiments. *P<0.05 and **P<0.01 vs. control cells. LN, laminin; 
FN, fibronectin; BSA, bovine serum albumin; OD, absorbance; CXCR7, CXC 
receptor 7; CXCLl2, CXC motif chemokine 12.
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Figure 5. CXCR7 induces VEGF secretion in MDA‑MB‑231 cells. 
MDA‑MB‑231 cells were plated on 96‑well plates. MDA‑MB‑231 cells were 
serum‑starved for 24 h, and the cells were treated with CXCL12 (100 ng/ml). 
The cultured supernatants were harvested for 24 h following treatment, and 
VEGF was measured by ELISA assay. Each bar represents the mean ± stan-
dard deviation from three independent experiments. *P<0.05 and *P<0.01 
vs. control cells. VEGF, vascular endothelial growth factor. CXCR7, CXC 
receptor 7; CXCLl2, CXC motif chemokine 12.

Figure 6. CXCR7 regulates CXCL12‑induced MDA‑MB‑231 cell prolife
ration in vitro. Quantification of relative proliferation in control untreated, 
CCX771‑treated, CXCL12‑treated and CCX771 + CXCL12‑treated cells. 
The proliferation ability of CCX771‑treated cells appeared significantly 
reduced. Data are expressed as the mean ± standard deviation from three 
independent experiments. *P<0.05 and **P<0.01 as compared with control 
cells. CXCR7, CXC receptor 7; CXCLl2, CXC motif chemokine 12.

Figure 4. CXCR7 regulates CXCL12‑induced human umbilical vein endothelial cell tube formation in vitro. Representative images of control untreated, 
CCX771‑treated, CXCL12‑treated and CCX771 + CXCL12‑treated cells (magnification, x10). The tube formation ability of CCX771‑treated cells was signifi-
cantly reduced. The mean number of tube formations from three independent fields/well is indicated. Data are expressed as the mean ± standard deviation from 
three independent experiments. *P<0.05 and **P<0.01 vs. control cells. CXCR7, CXC receptor 7; CXCLl2, CXC motif chemokine 12.

Figure 7. CXCR7 regulates CXCL12‑induced angiogenesis in vivo. (A) Representative histology analysis images from the Matrigel plug assay (magnification, 
x10). (B) Quantification of the number of blood vessels counted per field of view per group. *P<0.05 and **P<0.01 vs. control cells. CXCL12, CXC motif 
chemokine 12; CXCR7, CXC receptor 7.
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best of our knowledge, CXCL12‑regulated VEGF secretion in 
breast carcinoma cells has not been studied yet. In the present 
study, CXCL12 was found to increase VEGF secretion. 
Furthermore, the present data also demonstrated that inhibi-
tion of CXCR7 decreased VEGF level and tube formation, 
indicating that CXCR7 may be involved in angiogenesis in 
breast carcinoma.

The present findings indicated that CXCR7 regulates 
multiple processes in breast carcinoma. CXCL12 regulated 
breast carcinoma invasion, adhesion, migration, angiogenesis 
and VEGF secretion. Therefore, the effects of CXCR7 on cell 
invasion, adhesion, migration, tube formation in vitro and 
Matrigel plug assay in vivo were examined. The present study 
provided mechanistic evidence that CXCR7 may affect breast 
carcinoma progression by numerous mechanisms, including 
adhesion, invasion and angiogenesis. The present data demon-
strated that CCX771 significantly inhibited invasion, adhesion, 
migration and angiogenesis in vitro and in vivo. Although the 
present study demonstrated the importance of CXCR7 in 
breast carcinoma, the signaling pathway of CXCR7 in tumor 
progression was not fully established. Greater attention to the 
function of CXCR7 in cancer is expected in the future. Thus, 
our studies elucidating the CXCR7 may be a novel target for 
tumor therapy.
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