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Abstract. The aim of the present study was to index natural 
products in order to facilitate the discovery of less expensive 
antibacterial therapeutic drugs. Thus, for modeling purposes, 
the present study utilized a set of 628 antibacterial drugs, 
representing the active domain, and 2,892 natural products, 
representing the inactive domain. In addition, using the iterative 
stochastic elimination algorithm, 36 unique filters were identi-
fied, which were then used to construct a highly discriminative 
and robust model tailored to index natural products for their 
antibacterial bioactivity. The area attained under the curve was 
0.957, indicating a highly discriminative and robust prediction 
model. Utilizing the proposed model to virtually screen a mixed 
set of active and inactive substances enabled the present study 
to capture 72% of the antibacterial drugs in the top 1% of the 
sample, yielding an enrichment factor of 72. In total, 10 natural 
products that scored highly as antibacterial drug candidates 
with the proposed indexing model were reported. PubMed 
searches revealed that 2 molecules out of the 10 (caffeine and 
ricinine) have been tested and identified as showing antibacte-
rial activity. The other 8 phytochemicals await experimental 
evaluation. Due to the efficiency and rapidity of the proposed 
prediction model, it could be applied to the virtual screening of 
large chemical databases to facilitate the drug discovery and 
development processes for antibacterial drug candidates.

Introduction

Today we are witnessing a notable increase of bacterial resis-
tance to a wide range of antibiotics, reported worldwide. This 

has stimulated intensive efforts to search for new antibiotics, 
as well as for valued antibacterial agents, that can be utilized 
to treat infectious diseases (1,2). Severe infections caused by 
bacteria that have become resistant to regularly used antibi-
otics have become a major global healthcare problem in the 
twenty‑first century (3‑5). Antibiotic resistance, connected with 
Iatrogenesis, and an increasing number of hospital‑acquired 
infections, mainly in critically ill and immunosuppressed 
patients, has now become established in the community, 
causing severe infections that are difficult to diagnose and 
treat (6). Bacteria have developed resistance to most classes 
of antibiotics that have been discovered so far (7). Several 
genes, many of which can be transferred between bacteria, 
encode antibiotic resistance. New resistance mechanisms are 
continually being described, and new genes and vectors of 
transmission are identified on a regular basis.

The molecular mechanisms by which bacteria have become 
resistant to antibiotics are varied and complicated (8,9). The most 
common type of bacterial resistance is acquired and transmitted 
via horizontal gene transfer (the antibiotic resistance genes are 
loaded on plasmids, which can act as vectors that transfer these 
genes to other members of a bacterial species or genus) (10). 
New mechanisms of resistance have affected several classes 
of antibiotics, leading to the aberrance of multidrug‑resistant 
bacterial strains, some known as superbugs (7). The overuse 
and/or misuse of antimicrobial agents in patient clinics, in 
hospitalized patients, and in the food industry are the principal 
factors leading to antibiotic resistance (7). In recent years, the 
number of new antibiotics licensed for human use in different 
parts of the world has decreased. This development of drug 
resistance to frequently used antibiotics by human pathogens 
has driven the search for new antimicrobial chemicals, chemo-
therapeutic agents, and agrochemicals that may combine higher 
antimicrobial efficacy with lower toxicity, and minimize a nega-
tive impact on the environment.

For ages, various cultures around the world have used 
medicinal plants to treat or cure all sorts of diseases. The natural 
products (NPs) of plants, mostly responsible for plant pigmenta-
tion and flavor, are produced as secondary metabolites and serve 
as defense mechanisms against bacteria, insects, and herbivores. 
NPs have been adjusted to interact with biological systems via 
a long natural selection process (11,12). Consequently, they 
have long been a basis of therapeutics (13), and most of today's 
marketed drugs are natural‑based products or their deriva-
tives (14). This supports the claim that natural‑based products 
are essentially better accepted by the body than synthetic 
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chemicals and have a better chance to be successful drugs. (15) 
During the 1980s and 1990s, following the introduction of 
combinatorial chemistry and high throughput synthesis, nature 
became a less important source of drug candidates in drug 
discovery projects. However, even though drug research global 
expenditures have more than doubled since 1991, the number of 
new drug entities that are approved annually by the Food and 
Drug Administration in the U.S. (FDA) is dropping off; in 2016 
only 23 therapeutic new chemical entities were approved, the 
fewest in almost last five decades and below statistical expec-
tations. (16) To remedy this situation, the main players in the 
field of drug discovery and development (the pharmaceutical 
industry and academic researchers) have returned to searching 
for new drugs in Nature's pantry (17,18).

Since the discovery and development of a new drug is a 
long and costly process, we use computer methodologies to 
facilitate the identification of new lead compounds and to 
optimize drugs in clinical use (19,20). Structural‑based (21‑23) 
and ligand‑based (19,24‑27) computerized methods are used 
increasingly for the construction of models that can predict 
the bioactivity of molecules and for the in silico screening of 
chemical databases. For modeling process, it is necessary to 
have sets of active and inactive chemicals and an optimiza-
tion technique. We assume that active ligands have common 
features that are not easily detectable if only a small number 
of active ligands are used  (28). For this reason, usage a 
larger number of active and inactive ligands in the modeling 
process ensure that more significant and robust conclusions 
can be obtained regarding the properties of these ligands. 
As well, it is worth noting that including compounds in the 
sample of inactive chemicals that possess properties similar 
to those of the compounds in the screened chemical database 
increases the applicability of the prediction model to virtual 
screening. Since a large number of physicochemical proper-
ties should be considered during the modeling process, we 
need extraordinary optimization techniques that are capable 
of overcoming the limitations of the combinatorial nature of 
the molecular bioactivity‑indexing problem. During the last 
decade, we developed a new optimization algorithm, termed 
iterative  stochastic elimination (ISE), that is able to scan 
multi‑dimensional space and detect the best solutions (the 
global minimum and the best set of local minima) (29‑31). 
We have applied this novel algorithm to several ligand‑based 
problems (28,32). In this research, we used the ISE algorithm 
to build the filters, and the MBI equation to construct the 
model for indexing natural products for their potential anti-
bacterial activity. Analysis of the filters enabled us to map 
physicochemical properties/descriptors that might contribute 
significantly to antibacterial activity.

Materials and methods

We used a set of 628 anti‑bacterial drugs (collected from 
the Comprehensive Medicinal Chemistry Database and 
the literature) to represent the active domain for modeling 
and bioactivity‑indexing purposes. The list of antibacte-
rial drugs (documented in SMILES format and/or by their 
common names) could be supplied upon request from the 
corresponding author. Another set, composed of 2,892 NPs, 
was selected to represent the inactive domain. The database 

of NPs was prepared by collecting phytochemicals isolated 
from more than 800 diverse plants, spread worldwide, that can 
be obtained from AnalytiCon Discovery GmbH (Potsdam, 
Germany; www.ac‑discovery.com). To construct an accurate 
predictive model, it is necessary to use sets of molecules 
that cover the space of the properties of the molecules in the 
screened database. As well, we had to select, as the inactive 
set, molecules with the same ‘property space’ as the screened 
molecules. Fig. 1A and B show the diversity within the anti-
bacterial drugs and the natural products database, respectively.

Categorizing the 628 antibacterial drugs based on their own 
mechanism of action might enable us to construct different 
models, depending on the category of active molecules. However, 
we prefer to use the entire set of the 628 antibacterial drugs as 
active set and not to categorize them based on their mechanism 
of action in order to obtain more robust model (due to utilizing 
big and diverse set of active ligands) and to be more focused 
on the indication (antibacterial) and not on the biological target. 
From our past experience, by using the ISE‑based indexing tech-
nique, we were successful in constructing discriminative filters 
and in proposing highly predictive models when applied for 
general properties such as drug likeness (28), antidiabetic (25), 
anti‑inflammatory (33), anticancer (27).

MOE software, v2009.10 (www.chemcomp.com) was 
used to calculate the physicochemical properties (termed 
descriptors) of all the chemicals in the two databases. The 
calculated descriptors included molecular weight, logP, 
H‑bond donors/acceptors, solubility, total charge and charge 
distribution, the types and number of atoms, and so forth 
(www.chemcomp.com/journal/descr.htm). Both databases of 
active/inactive ligands were divided into two‑thirds for the 
training set and one‑third for the test set. An in‑house random 
picking module performed the split.

The cheminformatics version of the ISE algorithm (28) 
was used to construct models tailored to index phytochemi-
cals for their potential antibacterial activity. Through efficient 
searching of the multivariable space, we constructed a large 
set of filters tailored to distinguish between antibacterial and 
inactive ligands. Each filter is composed of a certain sets of 
descriptors, and each is limited to an assigned range. The 
process of filter selection and construction is highly complex 
and requires the use of a highly efficient optimization algo-
rithm, since the descriptors generally interact with each other, 
and changes in the range of one descriptor can have an effect 
on the best range of another descriptor. In order to arrive at the 
best set of filters, the optimization process ought to consider 
all descriptors in the set simultaneously. Fig. 2 describes the 
main items in the modeling process. For detailed descriptions 
of the ISE optimization technique and its utility in choosing 
sets of descriptors and optimizing their ranges, see our previ-
ously reported research studies (32).

Results and Discussion

Structural similarity analysis was conducted to assure that 
both sets of active/inactive chemicals were not biased and 
displayed adequate diversity. As shown in Fig. 1, both sets 
of chemicals are diverse. The 341 antibacterial drugs and 
1,119 natural products had a diversity of less than 0.5 in 
terms of the structural Tanimoto index. As well, analysis of 
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the physicochemical properties noted that 71.5% of the anti-
bacterial drugs conformed to Lipinski's rule of 5 (ROF), and 
61% conformed to Oprea's rule for lead‑likeness (34) (Fig. 3). 
Fig. 3 displays the distribution plots for the physicochemical 
properties of the antibacterial drugs related to Lipinski's ROF 
and Oprea's rule for lead‑likeness. The median is around 396 
for the molecular weight; 1.2 for logP; 7‑8 and 2‑3 for the 
hydrogen bond acceptors and hydrogen bond donors, respec-
tively (Fig. 4).

The aforementioned filter‑based indexing technique was 
utilized to launch an in silico prediction model capable of 
discovering novel antibacterial drug candidates. It was built 
using a set of 628 antibacterial drugs to represent the active 
domain, and a set of 2,892 natural products to represent the 
inactive domain. It is worth noting that a few chemicals out 
of the 2,892 natural products might have had antibacterial 
activity, but the effect of that on the quality of the predic-
tion model was anticipated to be negligible  (28,32). The 
optimization technique used to construct the filters was the 
ISE algorithm. Thirty‑six unique filters were produced; each 
was composed of either different sets of four descriptors or 
different ranges of the same set of descriptors. The best three 
filters are described in Table I. Their efficiencies in terms 
of MCC are relatively very high. Filter number 1, shown in 
Table I, has a MCC of 0.879, and nearly 94% of the antibacte-
rial drugs (true positives) were successfully identified using 
this four‑descriptor‑based filter, while less than 6% of the 
natural products database was ‘misclassified’ (passed the filter 
as positives, but are yet unproven).

The content of the thirty‑six filters was investigated; 
Table II shows the number of appearances of the most domi-
nant descriptors. The third column shows how many times 
each descriptor actually appeared in the set of best filters, vs. 
random distribution. Fig. 5 was built using WORDLE module; 
it shows the frequency of dominant descriptors in a graphical 
way. The most dominant descriptors can be valued more 
highly than the less dominant descriptors for differentiating 
between antibacterial chemicals and inactive ones.

Fig. 6 describes the antibacterial activity‑indexing model, 
showing changes in percentage of true positives, true nega-
tives and Matthews' correlation coefficient (MCC) connected 
with discriminative efficiencies along with the index values. 
The percentages of true/false positives (left x‑axis) and the 
MCCs (right y‑axis) are plotted against the molecular bioac-
tivity index (MBI threshold, x‑axis). Figs. 7 and 8 show the 

Figure 2. Flowchart for the ligand‑based modeling process. ISE, 
iterative stochastic elimination; DB, databases.

Figure 1. Diversity of the (A) antibacterial set of drugs and the (B) natural products database.
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enrichment plot and the receiver‑operating characteristic 
(ROC) plot of our antibacterial activity‑indexing model. The 
enrichment plot (Fig. 7) shows how many times antibacte-
rial drug candidates can be detected if natural products are 
ranked according to the ISE‑based prediction model rather 
than random selection.

If we pick molecules with an MBI above 10.0, our predictive 
model and the perfect model overlay to large extent. Therefore, 
it seems that the indexing model is highly accurate and bears 
high prioritization power. With the use of this antibacterial 
activity‑indexing model and a mixed set of active and inactive 
chemicals (with a ratio of 1:1,000), 72% of the antibacterial 
drugs were detected in the top 1% of the screened molecules, 

compared to 100% in the perfect model and 1% in the random 
model, yielding an enrichment factor of 72. The ISE‑based 
model and the perfect model overlay to some extent in the range 
of MBI above 7.0. The area under the curve (AUC) attained was 
0.957, which indicates that the model is excellent and highly 
efficient in distinguishing antibacterial drugs from inactive 
natural products. The natural products database, composed 
of 2,892 phytochemicals, was virtually screened using this 
filter‑based activity‑indexing model. The MBI scores, as shown 
in Fig. 6, range from‑3.0 (the lowest score) to 87.0 (the highest 
score). Figs. 9 and 10 disclose 10 natural products that scored 
high as potential antibacterial drug candidates (with MBI scores 
above 10.0). When choosing an MBI threshold score of 10.0, 

Figure 4. Distribution of the physicochemical properties of antibacterial drugs. (A) Molecular weight distribution, (B) logP values, (C) number of H‑bond 
acceptors [lip_acc], (D) number of H‑bond donors [lip_don], (E) number of rigid bonds, (F) number of rotatable bonds and (G) the number of aromatic atoms.

Figure 3. Distribution of the antibacterial drugs indexed by the number of violations of (A) Lipinski's rule of 5 for oral drug‑likeness and (B) Oprea's rule for 
lead‑likeness.
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the ratio of TP: FP is 168:1. A search on PubMed revealed that 
two of the highly indexed phytochemicals (caffeine and rici-
nine) have already been tested experimentally and confirmed 
as antibacterial agents (35). Caffeine has been reported to exert 
physiological effects on various organisms at µM concentra-
tions and to act as an antimicrobial agent (36,37). Ricinine 
had high nematocidal activity (38) and notable activity against 
ants (39). The other eight phytochemicals await evaluation in 
the wet lab to ascertain their potential antibacterial activity. 
It is worth mentioning that one of the volatile isolates from 
Cardaria draba (L.) Desv. that contained glucosinalbin has 
shown a wide range of growth inhibition activity against both 
Gram‑positive and Gram‑negative bacteria (40). It is worth 

testing to establish whether the phytochemical glucosinalbin 
is one of the main contributors to the extract's antibacterial 
activity. The chemical structures of caffeine, ricinine, and 
glucosinalbin are shown in Fig. 9. Fig. 10 displays the chemical 
structures of the other seven phytochemicals that scored high 
as potential antibacterial drug candidates with our model and 
await validation in the wet lab.

The current study provides vital insights into the discrimi-
native properties of antibacterial natural products and this 

Table I. Detailed information regarding the efficiencies and ranges of descriptors for the best 3 filters out of the 36 used to 
construct the antibacterial indexing model.

A, Parameters for filter efficiency

Variable	 Filter 1	 Filter 2	 Filter 3

MCC	 0.879	   0.809	 0.782
TP (%)	 93.79	 81.85	 79.8
TN (%)	 94.09	 98.03	 97.2

B, Descriptors, (range)

1	 BCUT_SMR_3, (0‑3.33)	 PEOE_PC+, (0‑29.795)	 PEOE_PC+, 95 (0‑29.795)
2	 logS, (‑19.42‑2.64)	 a_nN, (2‑ 32)	 PEOE_VSA_NEG, (0‑1,045.34)
3	 a_nN, (1‑32)	 Q_VSA_FNEG, (0‑0.808)	 a_ICM, (1.55‑2.33)
4	 GCUT_PEOE_3, (0‑3.754)	 SMR_SVA0, (0‑658.98)	 PEOE_VSA_FNEG, (0 ‑0.834)

The efficiency of the filters, in terms of their MCCs, may be very close, however, they differ in their true positive and negative percentages. In 
addition, the filters could be composed of different sets and/or ranges of descriptors. The descriptors and their methods of calculation can be 
found at www.chemcomp.com/journal/descr.htm. MCCs, Matthews correlation coefficients; TP, true positive; TN, true negative.

Table II. Number of appearances of the most dominant 
descriptors within the set of 36 filters that were utilized in the 
construction of the antibacterial model.

		  Redundant more
Descriptor name	 Redundancy	 times than random

GCUT_SLOGP_0	 22	 36.7
a_ICM	 11	 18.4
PEOE_VSA+4	 7	 11.7
SMR_VSA1	 7	 11.7
logS	 6	 10.0
Nmol	 6	 10.0
lip_druglike	 5	 8.3
chi1_C	 4	 6.7
GCUT_PEOE_0	 4	 6.7
opr‑leadlike	 4	 6.7
Q_VSA_FPOS	 4	 6.7
SMR_VSA3	 4	 6.7

Figure 5. A schematic drawn using WORDLE module software, which graphi-
cally illustrates the appearance of the descriptors in the 36 filters that were used 
for the construction of the antibacterial model.

Figure 6. Antibacterial indexing model. The percentages of true/false positives 
(left y‑axis) and the MCCs (right y‑axis) plotted against the MBI values (x‑axis). 
MCCs, Matthews correlation coefficients; MBI, molecular bioactivity index.
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information might be supportive to medicinal chemists in their 
search for novel natural antibacterial products. As well, we think 
the one of the aims behind publication of such theoretical work 
is to recruit experimental groups that are not in contact with 
us to test the disclosed molecules/natural products. This paper 
should be cited following their antibacterial activity evaluation.

It is worth to note that application of structural‑based 
approaches in drug discovery fails to deliver better results 
than application of ligand‑based approaches due to low 
efficient scoring functions and high number of false positive. 
The number of false positives is very high, mainly in virtual 
high‑throughput screening, and we are waiting for development 
of novel scoring functions that capable to reduce the number 
of false positives. From previous experience in other projects, 
we have seen that structural‑based approaches, which uses 
docking, could be helpful for re‑ranking highly scored ligands 
that are output from ligand‑based approaches (26). Successful 
story was published last year describing the utility of the ISE 
algorithm and physicochemical properties in discovery of novel 
ligands (19). As well, these days we have submitted a manuscript 

under the title ‘Accelerating Drug Discovery Process by the 
Iterative Stochastic Elimination Algorithm: Discovering Novel 
Selective Agonists of PPAR‑δ’. In this manuscript, we describe 
the discovery of novel molecular hits and leads for PPAR‑δ by 
applying our combinatorial optimizing algorithm, ISE.

Using the ISE algorithm, we identified 36 unique filters 
that enabled us to construct a highly discriminative and 
robust model tailored to index natural products for their 
antibacterial bioactivity. For modeling purposes, we utilized a 
set of 628 antibacterial drugs, representing the active domain, 
and 2,892 natural products, representing the inactive domain. 
The area attained under the curve (AUC) was 0.957, indicating 
a highly discriminative and robust model. In this paper, we 
disclose ten natural products that scored high as antibacterial 
drug candidates with the proposed indexing model. A search 
on PubMed revealed that two phytochemicals (caffeine and 
ricinine) out of the ten highly indexed molecules have already 
been tested experimentally and confirmed as antibacterial 
agents. The other eight phytochemicals await experimental 
evaluation. Due to its high efficiency and rapidity, this model 
might be used to virtually screen large chemical databases 
and to index natural products for potential antibacterial 
bioactivity.

Figure 8. A ROC curve presenting the performance of the antibacterial 
activity‑indexing model. ROC, receiver operating characteristic; TP, true 
positive; FP, false positive.

Figure 7. Enrichment plot of the antibacterial activity‑indexing model. ISE, 
iterative stochastic elimination.

Figure 10. Remaining structures of the 7 natural products that scored 
highly as potential antibacterial drug candidates with the novel, 
iterative stochastic elimination‑based, antibacterial activity‑indexing model. 
These await validation in wet lab experiments.

Figure 9. Chemical structures of caffeine, ricinine, and glucosinalbin.
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