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Abstract. Crohn's disease (CD) is a type of inflammatory bowel 
disease that cannot be fully cured by medication or surgery. 
In the present study, the aim was to understand the under-
lying mechanisms of CD. Two CD microarray datasets were 
downloaded from The Gene Expression Omnibus database: 
GSE36807 (13 CD and 7 normal samples) and GSE59071 (8 CD 
and 11 normal samples). A series of bioinformatics analyses 
were conducted, including weighted gene co‑expression network 
analysis to identify stable modules, and analysis of differentially 
expressed genes (DEGs) between CD and normal samples. The 
common DEGs in the GSE36807 and GSE59071 datasets were 
screened. Subsequently, overlapping genes in the stable modules 
and the DEGs were selected to construct a protein‑protein 
interaction (PPI) network using Cytoscape software. Enrichment 
analysis of genes in the network was performed to explore their 
biological functions. A total of 10 stable modules and 927 DEGs 
were identified, of which 234 genes were shared in the stable 
modules and the DEGs. After removal of 32 uncharacterized 
genes, 202 genes were selected to build the PPI network. Low 
density lipoprotein receptor (LDLR), toll‑like receptor 2 (TLR2), 
lipoprotein lipase (LPL), forkhead box protein M1 (FOXM1) and 
neuropeptide Y (NPY) were revealed as key nodes with high 
degree. Pathway enrichment analysis demonstrated that LPL 
was enriched in the peroxisome proliferator‑activated receptor 
(PPAR) signaling pathway. In conclusion, LDLR, TLR2, FOXM1 
and NPY, as well as LPL in the PPAR signaling pathway may 
serve critical roles in the pathogenesis of CD.

Introduction

Crohn's disease (CD) is a type of inflammatory bowel disease 
(IBD) that can affect any part of the gastrointestinal tract (1). 
This disease is caused by immune, bacterial and environmental 

factors in individuals with genetic susceptibility (2‑4). Patients 
with CD usually suffer from weight loss, abdominal pain, 
fever and diarrhea (5); other complications associated with CD 
include arthritis, anemia, inflammation of the eye, fatigue and 
skin problems (6). CD is a common disease in the developed 
world, with increasing incidence and prevalence in developing 
countries (7,8). At present, there are no medical treatments or 
operative interventions that can fully cure CD, and in some 
cases surgery may even result in recurrence of the disease (9). 
Therefore, the underlying mechanisms of CD need to be 
explored in order to develop novel treatment strategies.

So far, some progress has been made with understanding 
the pathogenesis of CD. For example, it was demonstrated that 
mutation of the autophagy‑related 16‑like 1 gene is associated 
with CD, and may possibly support the role of autophagy in the 
development and progression of IBD (10). T helper (Th) 17 cells 
are a unique Th cell lineage that serve an important role in 
inflammatory diseases by secreting proinflammatory cytokines, 
including interleukin 17 (IL‑17) and IL‑23, and may mediate the 
Th1/Th17 imbalance seen in CD and ulcerative colitis (11,12). 
A previous study reported that signal transducer and acti-
vator of transcription 3 (STAT3) and Janus kinase 2 (JAK2), 
which are involved in the STAT‑JAK pathway, can increase 
the risk of CD (13). Nucleotide‑binding oligomerization 
domain‑containing 2 (NOD2) is expressed throughout the small 
intestine, with highest expression in the terminal ileum where 
there is an abundance of Paneth cells, and is also closely associ-
ated with pathogenesis of CD (14,15). Despite these profound 
findings, pathogenesis of CD has not been fully elucidated.

Bioinformatics analysis is a useful tool for exploring 
disease pathogenesis and screening novel therapeutic 
targets (16). Kenny et al performed a genome‑wide association 
study in an Ashkenazi Jewish population with CD and revealed 
that 16 replicated and novel loci made up 11.2% of the total 
genetic variations associated with CD risk (17). Fransen et al 
employed expression quantitative trait loci to select single 
nucleotide polymorphisms (SNPs) for follow‑up and identified 
two CD‑associated SNPs in the ubiquitin‑conjugating enzyme 
E2L 3 and B‑cell chronic lymphocytic leukemia/lymphoma 3 
genes (18). These findings provide some information on the 
etiology of CD; however, to the best of our knowledge the 
mechanisms of CD pathogenesis have not yet been investigated 
by comprehensive bioinformatics analysis.

In the present study, comprehensive bioinformatics analysis 
was carried out to understand the pathogenesis of CD and 
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identify novel therapeutic targets. The gene expression profiles 
of patients with CD were downloaded from a public database, 
and subsequently a series of bioinformatics analyses were 
performed, including weighted gene co‑expression network 
analysis (WGCNA), meta‑analysis, protein‑protein interaction 
(PPI) network analysis and enrichment analysis for key genes 
associated with CD. This study contributes towards the further 
understanding of the mechanisms underlying human CD.

Materials and methods

Data source. The key words ‘Crohn's disease’ and 
‘Homo sapiens’ were used to search relevant gene expression 
profile data on the Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/). The inclusion criteria 
were as follows: i) Gene expression profiles; ii) intestinal tissues 
from patients with CD (not cells); iii) availability of both CD 
and normal samples; iv) human samples and v) number of total 
samples ≥18. Based on these criteria, two microarray datasets 
were selected: GSE36807 (Platform GPL570; 13 CD and 
7 normal samples) (19) and GSE59071 (Platform GPL6244; 
8 CD and 11 normal samples) (20).

Data pre‑processing. The raw data (CEL files) were downloaded 
from GEO. Subsequently, the oligo package version 1.41.1 from R 
(http://www.bioconductor.org/packages/release/bioc/html/oligo.
html) (21) was utilized to perform pre‑treatments, including 
conversion of data format, summarization using median‑polish, 
background correction using the MAS method and data 
normalization by quantile method.

WGCNA analysis. WGCNA is a popular systems biology 
tool used to construct gene co‑expression networks, which 
can be used to detect disease‑associated gene clusters and 
identify therapeutic targets (22). GSE36807 and GSE59071 
were used as the training and validation sets, respectively. 
Stable gene modules associated with CD were screened using 
the R WGCNA package version 1.61 (https://cran.r‑project.
org/web/packages/WGCNA/index.html) (22), with the 
following parameters; cutHeight=0.95 and ≥30 genes/module; 
the correlation coefficients (CC) were also calculated.

Meta‑ ana lys is.  Using the  Meta DE.ES funct ion 
in the R MetaDE package (ht tps://cran.r‑project.
org/src/contrib/Archive/MetaDE/) (23), differentially 
expressed genes (DEGs) between CD and normal samples 
that were common to the two datasets were identified. To 
ensure homogeneity of genes, tau2=0, Qpval >0.05 and false 
discovery rate <0.05 were used as the cut‑off criteria.

Construction of the PPI network. Genes in the stable modules 
and DEGs were compared, and overlapping genes were used as 
candidate genes for construction of the PPI network. An inte-
grated PPI network was generated from the candidate genes 
by merging numerous PPI databases, including BioGRID 
version 3.4.153 (http://thebiogrid.org/) (24), Human Protein 
Reference Database release 9 (http://www.hprd.org/) (25) 
and STRING version 10.5 (https://string‑db.org/) (26). The 
PPI network was visualized using the Cytoscape software 
version 3.3.0 (http://www.cytoscape.org/) (27).

Functional and pathway enrichment analyses. The 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) version 6.8 (https://david.ncifcrf.gov/) 
is an easy‑to‑use web tool in which genes are annotated and 
summarized according to shared categorical data (28). Based 
on DAVID analysis, Gene Ontology (GO) (29) functional 
enrichment analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (30) pathway enrichment analysis were 
conducted for the nodes (a node represents a gene) identified 
in the PPI network, with the criterion of P<0.05.

Results

WGCNA analysis. To ensure the GSE36807 and GSE59071 
datasets were comparable, correlation of gene expression and 
connectivity of common genes was analyzed. The results 
revealed that the CC for gene expression and connectivity 
between the two datasets were 0.82 (P<1x10-200; Fig. 1A) and 
0.51 (P<1x10-200; Fig. 1B), respectively. Therefore, it was deduced 
that the GSE36807 and GSE59071 datasets were comparable.

To meet the prerequisite of scale‑free network distribution, 
the value of the adjacency matrix weighting parameter ‘power’ 
was explored. After setting the ranges of parameters for the 
network, the scale‑free topology matrix was calculated. Using 
GSE36807 as the essential data, the scale‑free topology model 
fit was calculated and statistics were selected for graphing 
(Fig. 2A). The greater the value of CC2, the closer the network 
was to scale‑free distribution. Based on this theory, the mean 
connectivity of genes was calculated using power=8 as this was 
the minimum power value to achieve R2=0.9. The results demon-
strated that the mean connectivity was 16, which conforms to 
the node connection properties of a scale‑free network (Fig. 2B).

Using GSE36807 as the training set, disease‑associated 
modules were screened. Variation in gene expression in the 
samples was calculated, and the genes with variation coef-
ficients >0.1 were selected. Subsequently, the community 
dissimilarities among the genes were calculated, and a clus-
tering tree was obtained. A total of 10 modules (D1M1, D1M2, 
D1M3, D1M4, D1M5, D1M6, D1M7, D1M8, D1M9 and D1M10) 

Figure 1. Correlation between (A) gene expression and (B) gene connectivity 
in the GSE36807 and GSE59071 datasets. Cor, correlation.
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were identified using cutHeight=0.95 (Fig. 3A). Similarly, 
module division was performed for GSE59071 (Fig. 3B) and 
the modules in this dataset were used to evaluate the stability 
of those identified in the training set.

The correlation of gene expression was analyzed for 
the same color modules in the two datasets, and the results 
demonstrated that 10 modules were stable (Table I; preservation 
Z‑score >5; P≤0.05). According to the expression similarities 
of the module genes, the correlation of the modules in 
GSE36807 (Fig. 4A) and GSE59071 (Fig. 4B) were analyzed 
(Table I). By combining the correlations among the modules 
with the GO categories for genes in the stable modules 
(Table I), a network for the modules was constructed (Fig. 4C). 
This revealed that genes in three stable modules (M1, M2 
and M8) were significantly associated with cell adhesion and 
genes in two stable modules (M4 and M10) were significantly 
associated with immune response.

Meta‑analysis. After calculation of the parameter values of 
each gene, a total of 927 DEGs were screened according to 

Table I. Correlation of gene expression for the same color modules in GSE36807 and GSE59071.

 Modules Module preservation
--------------------------------------------------- ---------------------------------------------------------------------------
GSE36807 GSE59071 Color Size Correlation P‑value Z‑score Module characterization

D1M1 D2M1 Black 163 0.40 1.2x10‑7 20.34 Cell adhesion
D1M2 D2M2 Blue 431 0.37 2.0x10-15 10.05 Cell adhesion
D1M3 D2M3 Brown 412 0.30 5.1x10-10 15.88 Cell‑cell signaling
D1M4 D2M4 Green 180 0.50 8.9x10-13 16.73 Immune response
D1M5 D2M5 Grey 368 0.35 4.8x10-12 4.12 ‑
D1M6 D2M6 Magenta 38 0.32 5.0x10-2 11.74 Cell cycle
D1M7 D2M7 Pink 123 0.41 2.5x10-6 5.53 Regulation of transcription
D1M8 D2M8 Red 177 0.35 1.8x10-6 21.44 Cell adhesion
D1M9 D2M9 Turquoise 944 0.68 4.2x10‑129 17.93 Ion transport
D1M10 D2M10 Yellow 352 0.42 1.8x10-16 29.51 Immune response

Size is the number of genes in one module. Module characterization is the significant functional term for each module. 5<Z<10 and Z>10 
indicate stable and highly stable, respectively. D1, Dataset1 GSE36807; D2, Dataset2 GSE59071; M, module.

Figure 2. (A) Selection of the weighting parameter ‘power’. The red line indicates when the square of correlation coefficient equals 0.9. (B) Mean connectivity 
of genes according to ‘power’. The red line indicates a mean connectivity of 16 when the ‘power’ is 8.

Figure 3. Module partition trees of (A) GSE36807 and (B) GSE59071; each 
color represents a different module.
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the aforementioned thresholds. The heatmap revealed that 
changes in expression of the DEGs were similar for GSE36807 
and GSE59071 (Fig. 5).

Construction of the PPI network. A total of 234 overlapping 
genes from genes in the stable modules (3,188 genes) and the 
927 DEGs were identified and used as candidate genes (Fig. 6A). 
The number and proportion of these genes in different modules 
are shown in Fig. 6B. A total of 32 uncharacterized genes in 
the grey module were removed from subsequent analyses. PPIs 
were predicted for the remaining 202 genes and a PPI network 
(123 nodes and 270 edges) was constructed (Fig. 7). Notably, 
low density lipoprotein receptor (LDLR; node degree=22), 
toll‑like receptor 2 (TLR2; node degree=19), lipoprotein lipase 
(LPL; node degree=18), forkhead box M1 (FOXM1; node 
degree=17) and neuropeptide Y (NPY; node degree=16) were 
the top five nodes with high degrees in the PPI network.

Functional and pathway enrichment analyses. A total of 
24 GO categories and 12 KEGG pathways were enriched for 
the PPI network nodes. Notably, the network nodes were mainly Figure 5. Clustering heatmap of differentially expressed genes.

Figure 4. Correlation cluster diagrams for the modules of (A) GSE36807 and (B) GSE59071. (C) Module‑module correlation network. Single lines connect 
modules within the same dataset and double lines connect modules across datasets. The thickness of the links indicates the extent of correlation. D1, dataset 1 
GSE36807; D2 dataset 2 GSE59071; M, module.
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implicated in the enzyme‑linked receptor protein signaling 
pathway (GO category; P=0.00185), cell‑cell signaling (GO 
category; P=0.003505), peroxisome proliferator‑activated 
receptor (PPAR) signaling pathway (KEGG pathway; 
P=0.001014) and cytokine‑cytokine receptor interaction 
(KEGG pathway; P=0.004187) (Fig. 8).

Discussion

In the present study, a total of 10 stable CD‑associated modules 
were identified using WGCCA; of which three stable modules 
(M1, M2 and M8) and two stable modules (M4 and M10) 
were significantly associated with cell adhesion and immune 
response, respectively. In addition, 927 overlapping DEGs in 
the GSE36807 and GSE59071 datasets were screened. In the 

PPI network, five important nodes with relatively high node 
degrees were identified as LDLR, TLR2, LPL, FOXM1 and 
NPY.

Previous studies have investigated the relationship between 
inflammatory cytokines and LDLR (31,32), and demonstrated 
that the inflammatory cytokines IL‑1β and tumor necrosis factor 
(TNF)‑α can regulate LDLR expression leading to accumulation 
of high concentrations of low‑density lipoprotein (33). FOXM1 
belongs to the forkhead box (FOX) family of transcription factors, 
and regulates key genes involved in goblet cell metaplasia and 
lung inflammation (34,35). FOXM1 is an important mediator of 
cell proliferation, and its expression is enhanced during gastric 
carcinogenesis induced by Helicobacter pylori infection (36). 
Overexpression of triglyceride‑rich lipoproteins can induce 
lipid accumulation and early inflammatory responses, 

Figure 6. (A) Venn diagram depicting the overlap between the 3,188 genes in the stable modules and the 927 differentially expressed genes. (B) Pie chart of the 
number of genes in different modules. WCGNA, weighted gene co‑expression network analysis.

Figure 7. Protein‑protein interaction network. Upright red and inverted green triangles represent upregulated and downregulated proteins, respectively. The 
color intensity indicates gene expression. The enlarged nodes are the top five nodes with highest degrees. FC, fold change.
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and LPL serves an anti‑inflammatory role by hydrolyzing 
triglyceride‑rich lipoproteins (37). PPARs can regulate lipid 
metabolism‑associated genes and control inflammation, and 
PPARα and -γ activators contribute to macrophage secretion 
of LPL (38,39). At present, there is no direct evidence for the 
involvement of LDLR, FOXM1 and LPL in CD development. 
However, their expression levels may be linked to disease 
progression. A study demonstrated that polymorphisms of 
LIGHT (a TNF superfamily member) are associated with CD, 
and inhibiting LIGHT reduces dyslypidemia in mice lacking 
LDLR (40). This suggests a possible association between 
LDLR and CD. In IBD, the susceptibility genes include FYN 
proto‑oncogene and HCK proto‑oncogene, which are involved 
in the phosphoinositide 3‑kinase signaling network, which 
also contains FOXM1 (41). Since CD is a major subtype of 
IBD, FOXM1 may also be associated with CD. With regards 
to the LPL gene, decreased expression is observed in CD 
adipose‑derived stem cells (ASCs) independent of clinical stage, 
compared with in healthy ASCs, indicating that CD modifies 

the plasticity of mesenteric ASCs (42). In the present study, 
LPL was upregulated in CD PPI network, indicating a potential 
role of LPL in the progression of CD; pathway enrichment 
analysis revealed that LPL was enriched in the PPAR signaling 
pathway. Interestingly, the alterations in LPL expression 
levels of ASC cells and CD tissues revealed different trends, 
suggesting that the creeping fat tissue may be associated with 
the immunomodulatory properties in patients with CD. Overall, 
the results demonstrated that increases in LDLR, FOXM1 and 
LPL may be highly relevant to the development of CD.

TLRs initiate immune responses to microbial infection, 
with TLR2 recognizing bacterial lipoproteins, zymosan, 
peptidoglycan and lipoteichoic acids (43,44). TLR2, TLR4, and 
their transmembrane co‑receptor cluster of differentiation 14, are 
all upregulated in the terminal ileum of patients with IBD, and 
their dysregulation may serve critical roles in the pathogenesis 
of IBD (45). NOD2 mediates the anti‑inflammatory cytokine 
bias induced by TLR2 ligands; therefore, defective NOD2 
function may promote inflammation and increase the disease 

Figure 8. (A) Functional categories and (B) pathways enriched for the protein‑protein interaction network nodes. BP, biological process; CC, cellular component; 
GO, Gene Ontology; MAPK, mitogen‑activated protein kinase; MF, molecular function; PPAR, peroxisome proliferator‑activated receptor.
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risk of CD (46). TLR2 and TLR4 have been reported to be 
overexpressed in the inflamed colonic mucosa of children with 
IBD, indicating that innate immunity is associated with the 
pathogenesis of IBD (47). A previous study discovered that TLR2 
and TLR4 are highly expressed on inflammation‑associated 
intestinal macrophages (IMACs), leading to a higher reactivity 
to lipopolysaccharide and possibly CD (48). In addition, the 
role of Gp96, an endoplasmic reticulum chaperone for multiple 
protein substrates, in CD has been investigated. The results 
demonstrated that the lack of Gp96 in CD IMACs is associated 
with loss of tolerance against the host gut flora, and that the 
Gp96 knockdown cell line has decreased TLR2 and TLR4 
expression (49). Therefore, it may be hypothesized that TLR2 
has an important role in the pathogenesis of CD. Neurogenic 
inflammation is critical for the development of IBD, and NPY 
induces oxidative stress and colitis by regulating the expression 
of neuronal nitric oxide synthase (50). NPY and the NPY 
receptor Y1 (NPY1R) are associated with intestinal inflammation 
and suppression of NPY1R signaling may represent a potential 
therapeutic strategy for colonic inflammation (51,52). NPY 
peptides have been implicated in various gastrointestinal 
disorders, including IBD, malabsorption and short gut; and NPY 
receptor agonists and antagonists can be used for preventing 
diarrhea and intestinal inflammation (53). Gut neurohormones, 
including NPY, can affect inflammation by interacting with 
the immune system, and NPY represents a promising target for 
treating IBD (54). In the present study, NPY was reported as 
an important node with a high degree in the CD PPI network; 
however, the expression levels of NPY were lower in the CD 
samples of patients compared with in the healthy control, which 
is inconsistent to the reports (50,52). Considering the important 
role of NPY in CD and that its expression levels varies from 
that of previous reports, further validation of NPY mRNA and 
protein expression in clinical samples is required.

Nevertheless, there are some limitations to the present 
study. Firstly, the results are solely based on bioinformatics 
analysis and although various important genes for CD etiology 
were identified, experimental validation is required. Secondly, 
only two CD microarray datasets were selected with relatively 
small sample sizes; therefore, this could affect the robust-
ness of the results. Further experiments will be designed and 
conducted to validate these findings in follow‑up studies.

In conclusion, a total of 10 stable modules and 927 DEGs 
associated with CD were identified. Notably, LDLR, TLR2, 
FOXM1, NPY and LPL may be the key genes involved in 
pathogenesis of the disease. LPL may exert its effects through 
the PPAR signaling pathway.
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