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Abstract. Ovarian cancer (OC) is associated with a poor 
prognosis due to difficulties in early detection. The aims of 
the present study were to construct a recurrence risk predic-
tion model and to reveal important OC genes or pathways. 
RNA sequencing data was obtained for 307 OC samples, and 
the corresponding clinical data were downloaded from The 
Cancer Genome Atlas database. Additionally, two validation 
datasets, GSE44104 (20 recurrent and 40 non‑recurrent OC 
samples) and GSE49997 (204 OC samples), were obtained 
from the Gene Expression Omnibus database. Differentially 
expressed genes were screened using the differential expres-
sion via distance synthesis algorithm, followed by gene 
ontology enrichment analysis and weighted gene coexpres-
sion network analysis (WGCNA). Furthermore, subnetwork 
analysis was conducted for the protein‑protein interaction 
(PPI) network using the BioNet package. Finally, a random 
forest classifier was constructed based on the subnetwork 
nodes, and its reliability was validated using the GSE44104 
and GSE49997 validation datasets. A total of 44 upregulated 
and 117 downregulated genes were identified in the recurrent 
samples. Enrichment analysis indicated that cytochrome P450 
family 17 subfamily A member 1 (CYP17A1) was associated 
with ‘positive regulation of steroid hormone biosynthetic 
processes’. WGCNA identified turquoise and grey modules 
that were significantly correlated with status and prognosis. 
A significant PPI subnetwork containing 16 nodes was also 
identified, including: Transcription factor GATA‑4; fibroblast 
growth factor 9; aromatase; 3β‑hydroxysteroid dehydroge-
nase/δ5‑4‑isomerase type 2; corticosteroid 11β‑dehydrogenase 

isozyme 1; CYP17A1; pituitary homeobox 2; left‑right determi-
nation factor 1; homeobox protein ARX; estrogen receptor β; 
steroidogenic factor 1; forkhead box protein L2; myocardin; 
steroidogenic acute regulatory protein mitochondrial; 
vesicular inhibitory amino acid transporter; and twist‑related 
protein 1. A random forest classifier was constructed using the 
subnetwork nodes as feature genes, which exhibited a 92% 
true positive rate when classifying recurrent and non‑recurrent 
OC samples. The classifying efficiency of the random forest 
classifier was validated using the two other independent data-
sets. Overall, 44 upregulated and 117 downregulated genes 
associated with OC recurrence were identified. Furthermore, 
the 16 subnetwork node genes that were identified may be 
important molecules in OC recurrence.

Introduction

Ovarian cancer (OC), which frequently occurs in postmeno-
pausal women (1), is a cancer with no apparent symptoms 
until it reaches an advanced stage. The symptoms include 
bloating, abdominal swelling, pelvic pain and loss of appe-
tite (2). The three most common OC subtypes are high‑grade 
serous carcinomas, sex cord stromal tumors and germ cell 
tumors (3), which may metastasize to the peritoneum, liver, 
lungs or lymph nodes (4). OC is difficult to detect and metasta-
sizes early in disease progression; therefore, patients with OC 
frequently have a poor prognosis (5). Globally, OC affects 1.2 
million women and led to 161,100 mortalities in 2015 (6,7). 
Thus, obtaining an improved understanding of OC progres-
sion and recurrence is of great importance for improving its 
prognosis.

Previously, genes affecting OC were identified, including 
p21‑activated kinase 4 (Pak4), cyclin E1 (CCNE1), RNA 
binding motif protein 3 (RBM3), YY1 associated protein 1 
(YAP) and prominin‑1 (CD133). Pak4 overexpression has 
been reported to contribute to OC cell migration, invasion 
and proliferation, thus making it a promising prognostic 
indicator and therapeutic target (8). CCNE1 amplification has 
been demonstrated to markedly reduce disease‑free survival 
and overall survival, thus indicating that CCNE1‑targeted 
treatment may benefit patients with OC who have upregulated 
CCNE1 expression (9,10). In epithelial ovarian cancer, RBM3 
expression has been associated with cisplatin sensitivity and 
correlated with a positive patient prognosis (11). Furthermore, 
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YAP has been associated with cell growth and tumorigenesis, 
and its coexpression with TEA domain transcription factor 
4 serves as a predictor of a poor outcome  (12,13). CD133 
also serves as a predictor of poor OC patient survival, thus 
suggesting that it may serve as a biomarker of cancer stem 
cells during disease (14). However, the further identification of 
prognostic indicators and their potential uses is required.

In recent years, bioinformatics analysis of expression profile 
data has been gradually used to examine the pathogenesis of 
human diseases (15). It is known that the progress of a disease 
is usually mediated by multiple relevant genes and not by a 
single gene (16,17). Therefore, the present study was designed 
to mine subnetwork features and build a model to assess OC 
recurrence risk. In the present study, OC expression profiles 
were downloaded from a public database, and differentially 
expressed genes (DEGs) were analyzed and functionally 
enriched. Following identification of a functional subnetwork, 
a random forest classifier was constructed and validated. It 
was considered that this constructed classifier may provide an 
improved approach for predicting the prognoses of patients 
with OC.

Materials and methods

Data source. RNA sequence data from 307 OC samples 
and their corresponding clinical data (including patient vital 
status and overall survival) were downloaded from The 
Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov) 
database. Based on patient vital status, 180 recurrent samples 
and 72 disease‑free samples were identified. Additionally, the 
GSE44104 dataset [including 20 recurrent and 40 non‑recurrent 
OC samples; platform, (HG‑U133_Plus_2) Affymetrix Human 
Genome U133 Plus 2.0 Array, Affymetrix; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA] and the GSE49997 
dataset (including 204 OC samples; platform, GPL2986 
ABI Human Genome Survey Microarray version 2, Applied 
Biosystems; Thermo Fisher Scientific, Inc.) were obtained 
from the Gene Expression Omnibus (http://www.ncbi.nlm.nih.
gov/geo) database and utilized as validation sets.

Data preprocessing and DEG screening. Using a z‑score algo-
rithm (18), the expression value of each gene was normalized to 
a normal distribution (mean=0; variance=1). The samples were 
subsequently analyzed using the differential expression via 
distance synthesis (DEDS) algorithm, which may be applied to 
obtain differential expression levels via the distance synthesis 
of relevant data (19). This approach was used to screen DEGs 
in the recurrent samples relative to the disease‑free samples.

Functional enrichment analysis. Gene ontology (GO; 
http://www.geneontology.org) analysis may be used to predict 
the potential functions of gene products  (20). Using GO 
Term Finder (http://search.cpan.org/dist/GO‑TermFinder/) 
as previously described (21), upregulated and downregulated 
genes were separately enriched. Functional terms with P<0.05 
and an association with at least three genes were selected as 
significant terms.

Weighted gene coexpression network analysis (WGCNA). 
Genes may jointly influence alterations in functional terms 

through their interactions, with functional consistencies 
between genes also confirmed by significant expression level 
correlations. To systematically analyze how DEGs with similar 
expression profiles co‑affect OC prognosis, WGCNA (22) was 
performed. Based on the obtained weighted gene coexpression 
levels, DEG coexpression was suggested to be significantly 
associated with OC prognosis. To further identify the genes 
that were able to differentiate between patients with OC 
with different prognoses, the verified DEG protein‑protein 
interaction (PPI) pairs were used to construct a PPI network 
using BioNet 1.24.1 package (http://www.bioconductor.
org/packages/release/bioc/html/BioNet.html).

Subnetwork analysis and classifier construction. The BioNet 
package (http://bionet.bioapps.biozentrum.uni-wuerzburg.de) 
provides an extensive framework that enables functional 
subnetworks to be isolated from biological networks. Using the 
BioNet package in R 3.1.0 (23), as previously described (24), 
subnetwork analysis was conducted for the PPI network with 
the P‑value/false discovery rate set to 0.01. With the subnet-
work nodes as feature genes, a random forest classifier (25) 
was constructed. For sample labels (recurrence/no recurrence), 
true and false positive rates were calculated and combined with 
leave‑one‑out cross validation (26). Additionally, a receiver 
operating characteristic (ROC) curve was constructed (27) 
to evaluate the classification efficiency of the random forest 
classifier.

Validation using other independent datasets. To confirm 
that the subnetwork nodes were able to effectively differen-
tiate between patients with OC with different prognoses, the 
classification efficiency of the random forest classifier for the 
validation set (GSE44104) was analyzed and presented using a 
confusion matrix. Additionally, a Kaplan‑Meier (KM) survival 
analysis (28) was performed and combined with the clinical 
information belonging to the TCGA dataset.

Results

DEG screening. Following implementation of the DEDS 
algorithm, a total of 44 upregulated and 117 downregulated 
genes were identified in the recurrent samples relative to the 
non‑recurrent samples, with more downregulated genes identi-
fied compared with upregulated genes. Additionally, a volcano 
plot was constructed to examine DEG expression distributions 
(Fig. 1).

Functional enrichment analysis. Using the GO Term Finder, 
significant GO terms were enriched for the upregulated and 
downregulated genes separately. For the upregulated genes, 
the enriched GO terms were primarily associated with the 
‘regulation of synapse assembly’ (P=1.04x10‑7), ‘regulation 
of synapse organization’ (P=5.26x10‑7), and ‘regulation of 
synapse structure or activity’ (P=5.71x10‑7; Table IA). The 
downregulated genes were associated with ‘single‑multi-
cellular organism process’ (P=4.11x10‑5), ‘multicellular 
organismal process’ (P=5.14x10‑5) and ‘positive regulation of 
steroid hormone biosynthetic process’ (P=3.83x10‑3; Table IB), 
which included cytochrome P450 family 17 subfamily A 
member 1 (CYP17A1).
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WGCNA. WGCNA was performed and turquoise and grey 
modules were identified within the cluster dendrogram 
(Fig. 2). Within the turquoise module, 87 genes were identi-
fied (14 upregulated and 73 downregulated), while in the grey 
module, 74 were identified (30 upregulated and 44 down-
regulated). Correlations between the two modules regarding 
status/prognosis were also analyzed. The results demonstrated 
that the two modules had significant correlations with status 
and prognosis (P<0.05; Fig. 3). Furthermore, sample correla-
tions were further examined via heatmap analysis, and it was 
indicated that the samples in the turquoise module were more 

strongly correlated when compared with those in the grey 
module (Fig. 4).

Subnetwork analysis and classifier construction. Following 
building of the PPI network, subnetwork analysis was performed 
and a significant subnetwork was identified (Fig. 5). The impor-
tance scores for the 16 subnetwork nodes [transcription factor 

Figure 1. Volcano plot illustrating differentially expressed gene expression 
distributions. Upregulated genes are depicted in red and downregulated in 
green.

Figure 4. Heatmap displaying gene correlations for the turquoise and grey 
modules. A deeper color indicates a stronger correlation, while a lighter 
color suggests a weaker correlation. Grey means grey module identified 
in WGCNA; turquoise means turquoise module identified in WGCNA. 
WGCNA, Weighted gene coexpression network analysis.

Figure 3. Module‑trait relationship graph illustrating that turquoise and 
grey modules have significant correlations with status/prognosis. Red color 
indicates a positive correlation, while green means a negative correlation. 
Grey means grey module identified in WGCNA with 30 upregulated and 
44 downregulated; turquoise means turquoise module identified in WGCNA 
with 14 upregulated and 73 downregulated genes.

Figure 2. Weighted gene coexpression network analysis cluster dendrogram. 
Grey means grey module identified in WGCNA with 30 upregulated and 
44 downregulated; turquoise means turquoise module identified in WGCNA 
with 14 upregulated and 73 downregulated genes. WGCNA, Weighted gene 
coexpression network analysis.
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GATA‑4 (GATA4); fibroblast growth factor 9 (FGF9); aromatase 
(CYP19A1); 3β‑hydroxysteroid dehydrogenase/δ5‑4‑isomerase 
type 2 (HSD3B2); corticosteroid 11β‑dehydrogenase isozyme 1 
(HSD11B1); CYP17A1; pituitary homeobox 2 (PITX2); left‑right 
determination factor 1 (LEFTY1); homeobox protein ARX 
(ARX); estrogen receptor β (ESR2); steroidogenic factor 1 
(NR5A1); forkhead box protein L2 (FOXL2); myocardin 
(MYOCD); steroidogenic acute regulatory protein mitochon-
drial (STAR); vesicular inhibitory amino acid transporter 
(SLC32A1); and twist‑related protein 1 (TWIST1)] are listed in 
Table II. There were multiple interactions among these subnet-
work nodes, including HSD3B2‑NR5A1, HSD11B1‑HSD3B2, 
CYP17A1‑GATA4, ARX‑FOXL2, MYOCD‑GATA4, 
STAR‑FGF9 and SLC32A1‑PITX2. The subnetwork nodes 
were taken as feature genes and a random forest classifier was 
constructed. The generated ROC curve demonstrated that the 
true and false positive rates separately were 92 and 23% when 
classifying the recurrent and non‑recurrent OC samples (Fig. 6A).

Validation using other independent datasets. The random 
forest classifier was used to differentiate between samples in 
the GSE44104 validation set, and the prediction accuracies 
for the non‑recurrence and recurrence groups were 87.5 and 
85%, respectively (Fig. 6B). These findings indicated that the 
subnetwork nodes were important in predicting OC prognosis.

Of the 307 OC samples in the TCGA dataset, only 
262  samples remained upon removal of samples without 
follow‑up or survival time information. These 262 samples 

were divided into high‑ and low‑risk groups using the random 
forest classifier, and further examined using KM survival anal-
ysis. The results demonstrated that the low risk group had a 
significantly longer survival time compared with the high‑risk 
group (P=0.0166; Fig. 7A). Subsequently, the samples from the 
second validation set (GSE49997) were divided into high‑ and 
low‑risk groups using the random forest classifier. Following 
analysis using a KM survival curve, a significant difference 
was noted in survival time between the low‑ and high‑risk 
groups (P=0.0165; Fig. 7B). These findings suggested that the 
random forest classifier had portability and repeatability.

Discussion

In the present study, 44 upregulated and 117 downregulated 
genes were identified in the recurrent samples relative to the 
non‑recurrent samples. When performing WGCNA, turquoise 
and grey modules were identified that had significant corre-
lations with status and prognosis. Furthermore, a significant 
subnetwork was identified from the PPI network, with the 
subnetwork nodes (including GATA4, FGF9, CYP19A1, 
HSD3B2, HSD11B1, CYP17A1, PITX2, LEFTY1, ARX, 
ESR2, NR5A1, FOXL2, MYOCD, STAR, SLC32A1 and 
TWIST1) being utilized as feature genes for constructing a 
random forest classifier. Moreover, the classification efficiency 
of the random forest classifier was validated and confirmed.

Table II. Importance scores of the subnetwork nodes.

Node	 Score

ARX	 15.203
CYP17A1	 10.956
CYP19A1	 10.902
ESR2	 10.537
FGF9	 10.148
FOXL2	 9.827
GATA4	 9.786
HSD11B1	 9.223
HSD3B2	 9.196
LEFTY1	 8.259
MYOCD	 7.867
NR5A1	 7.634
SLC32A1	 6.367
STAR	 6.167
PITX2	 5.094
TWIST1	 4.708

GATA4, transcription factor GATA‑4; FGF9, fibroblast growth factor 9; 
CYP19A1, aromatase; HSD3B2, 3β‑hydroxysteroid dehydrogenase/ 
δ5‑4‑isomerase type 2; HSD11B1, corticosteroid 11β‑dehydrogenase 
isozyme 1; CYP17A1, cytochrome P450 family  17 subfamily A 
member 1; PITX2, pituitary homeobox 2; LEFTY1, left‑right deter-
mination factor 1; ARX, homeobox protein ARX; ESR2, estrogen 
receptor  β; NR5A1, steroidogenic factor 1; FOXL2, forkhead box 
protein L2; MYOCD, myocardin; STAR, steroidogenic acute regula-
tory protein mitochondrial; SLC32A1, vesicular inhibitory amino acid 
transporter; TWIST1, twist‑related protein 1.

Figure 5. Significant subnetwork identified within the protein‑protein inter-
action network. Upregulated genes are denoted in red and downregulated 
in green. GATA4, transcription factor GATA‑4; FGF9, fibroblast growth 
factor 9; CYP19A1, aromatase; HSD3B2, 3β‑hydroxysteroid dehydroge-
nase/δ5‑4‑isomerase type 2; HSD11B1, corticosteroid 11β‑dehydrogenase 
isozyme 1; CYP17A1, cytochrome P450 family 17 subfamily A member 1; 
PITX2, pituitary homeobox 2; LEFTY1, left‑right determination factor 1; 
ARX, homeobox protein ARX; ESR2, estrogen receptor β; NR5A1, steroido-
genic factor 1; FOXL2, forkhead box protein L2; MYOCD, myocardin; 
STAR, steroidogenic acute regulatory protein mitochondrial; SLC32A1, 
vesicular inhibitory amino acid transporter; TWIST1, twist‑related protein 1.
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Of the identified nodes, previous studies have reported 
that GATA4 overexpression, in conjunction with human 
epidermal growth factor receptor 2, may predict a shorter 
disease‑free survival time and may be utilized as a prognostic 
marker in patients with ovarian granulosa cell tumor to 
optimize follow‑up management in the early stages (29,30). 
In OC, GATA4 and transcription factor GATA‑6 expression 
is frequently lost, with this feature specifying the histo-
logical subtype prior to tumorigenic transition of the ovarian 
surface epithelium (31). The upregulation of FGF9 has been 
detected in primary ovarian endometrioid adenocarcinomas 
carrying a defective Wnt/β‑catenin pathway and serves an 
important role in promoting the cancer phenotype (32,33). 
The aromatase enzyme encoded by the CYP19A1 gene acts 
in the conversion of androgen to estrogen, with CYP19A1 
variants potentially able to influence OC susceptibility (34). 
Thus, GATA4, FGF9 and CYP19A1 appear to be implicated 
in the mechanisms of OC pathogenesis. Enrichment analysis 
demonstrated that CYP17A1, which is involved in ‘positive 
regulation of steroid hormone biosynthetic processes’, was 

downregulated. A previous study demonstrated that steroid 
hormones serve a role in OC pathogenesis, and their receptors 
influence OC patient survival (35). Therefore, CYP17A1 may 
affect OC patient prognoses through the positive regulation of 
steroid hormones.

The overexpression of PITX2 has been implicated in 
OC progression by facilitating cell growth, migration and 
invasion, and thus may potentially serve as a therapeutic 
target for patients with high‑grade OC (36,37). PITX2 has 
also been demonstrated to promote OC cell proliferation 
through the Wnt pathway, which is closely associated with 
ovarian development and OC (38). In ovarian clear cell carci-
noma, the overexpression of LEFTY, a transforming growth 
factor‑β superfamily member, exhibits an anti‑tumor effect 
by affecting cell proliferation and cellular susceptibility to 
apoptotic signals (39). Estrogen receptor β, which is encoded 
by the ESR2 gene, has been suggested to serve as a critical 
factor during OC carcinogenesis (40). Furthermore, within 
the ESR2 promoter region, the genotypic and allelic frequen-
cies of the single nucleotide polymorphism (SNP) rs3020449 

Figure 7. KM survival analysis. KM survival curves for the (A) Cancer Genome Atlas and (B) GSE49997 datasets. Predicted high risk (cluster 1) groups are 
indicated in red and low risk (cluster 2) groups in black. KM, Kaplan‑Meier.

Figure 6. ROC curve analysis. ROC curves for the (A) Cancer Genome Atlas and (B) GSE44104 datasets. FPR, false positive rate; TPR, true positive rate; AUC, 
area under the curve; ROC, receiver operating characteristic.
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have been demonstrated to exhibit significant differences 
based on OC stage, thus indicating that SNP rs3020449 
may be associated with OC progression (41). These findings 
suggest that PITX2, LEFTY1 and ESR2 may also serve roles 
in OC pathogenesis.

NR5A1 serves an important role in ovarian function and 
development, with an NR5A1 mutation reported to induce 
46 XY disorders of sex development (42). FOXL2 is critical 
for GC (granulosa cell) differentiation during the process of 
folliculogenesis, with its downregulation potentially serving 
as an ovarian granulosa cells tumor prognostic factor (43). 
TWIST1, which may induce epithelial‑mesenchymal transition 
and contribute to tumor metastasis, has been demonstrated to 
be associated with poor survival in patients with cancer (44,45). 
Thus, NR5A1, FOXL2 and TWIST1 may be associated with 
patient survival in OC. Moreover, the multiple interactions 
within the PPI subnetwork (including HSD3B2‑NR5A1, 
HSD11B1‑HSD3B2, CYP17A1‑GATA4, ARX‑FOXL2, 
MYOCD‑GATA4, STAR‑FGF9 and SLC32A1‑PITX2) indi-
cate that HSD3B2, HSD11B1, CYP17A1, ARX, MYOCD, STAR 
and SLC32A1 may also function in OC by interacting with 
other genes.

However, the present study has several limitations to note. 
First, the datasets used in the present study had sample size 
differences, platform differences and data heterogeneities 
that may affect the prediction accuracy of the random forest 
classifier. Second, the smaller patient numbers and analytical 
methods may limit the predictive capability of the present 
model. Finally, only bioinformatics analyses were conducted 
in the present study, and no direct experimental validation was 
performed. Therefore, further analyses are required to validate 
the obtained results.

In conclusion, 44 upregulated and 117 downregulated genes 
associated with OC recurrence were identified. Furthermore, 
the 16 subnetwork node genes that were identified may be 
critical molecules associated with OC recurrence.
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