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Abstract. Gene expression data using retrieved ovarian cancer 
(OC) samples were used to identify genes of interest and a 
support vector machine (SVM) classifier was subsequently 
established to predict the recurrence of OC. Three datasets 
(GSE17260, GSE44104 and GSE51088) investigating OC 
gene expression were downloaded from the Gene Expression 
Omnibus. Differentially expressed genes (DEGs) in samples 
from patients with non‑recurrent and recurrent OC were 
revealed via a homogeneity test and quality control analysis. 
A protein‑protein interaction (PPI) network was subsequently 
established for the DEGs using data from Biological General 
Repository for Interaction Datasets, Human Protein Reference 
Database and Database of Interacting Proteins. Degrees of 
interaction and betweenness centrality (BC) scores were 
calculated for each node in the PPI network. The top 100 genes 
ranked by BC scores were selected to identify feature genes 
via recursive feature elimination using the GSE17260 dataset. 
Following this, a SVM classifier was constructed and further 
validated using the GSE44104 and GSE51088 datasets and 
independent gene expression data obtained from the Cancer 
Genome Atlas (TCGA). A total of 639 DEGs were identified 
from the three gene expression datasets, and a PPI network 
including 249 nodes and 354 edges was constructed. A SVM 
classifier consisting of 39 feature genes (including cullin 3, 
mouse double minute 2 homolog, aurora kinase  A, WW 
domain containing oxidoreducatase, large tumor suppressor 
kinase 2, sirtuin 6, staphylococcal nuclease and tudor domain 
containing 1, leucine rich repeats and immunoglobulin like 

domains 1 and aurora kinase 1 interacting protein 1) was 
subsequently constructed. The prediction accuracies of the 
SVM classifier for GSE17260, GSE44104 and GSE51088 data-
sets as well as data downloaded from TCGA were revealed to 
be 92.7, 93.3, 96.6 and 90.4%, respectively. Furthermore, the 
results of the present study revealed that patients with predicted 
non‑recurrent OC survived significantly longer compared with 
the patients with predicted recurrent OC (P=6.598x10‑6). A 
SVM classifier consisting of 39 feature genes was established 
for predicting the recurrence and prognosis of OC. Therefore, 
the results of the present study suggested that the 39 feature 
genes may serve important roles in the development of OC and 
may represent therapeutic biomarkers of OC.

Introduction

Ovarian cancer (OC) is the seventh most commonly diagnosed 
cancer in women in the USA and the average five‑year survival 
rate of patients with OC in the USA is 45% (1). OC frequently 
recurs following treatment (2). Furthermore, 20% of patients 
with stage I and II cancer experience recurrence within a 
5 year period in the USA (1). Recurrence is closely associated 
with the prognosis of OC (1), and, therefore, there is a require-
ment for novel biomarkers to predict recurrence of OC in order 
to improve the outcome of patients with OC.

Previous studies have identified numerous relevant prog-
nostic biomarkers (3‑5). Elevated levels of serum interleukin 
(IL)‑37 are predictive of poor prognosis in patients with epithe-
lial OC (6). Sprouty 2 is an independent prognostic biomarker 
for the survival and recurrence of human epithelial OC (7). 
IL‑8 has been revealed to represent a biomarker for prog-
nostic prediction in patients with recurrent platinum‑sensitive 
OC (8). In addition, upregulation of Golgi phosphoprotein 3 
is associated with poor prognosis in patients with epithelial 
OC (9). Class III β‑tubulin overexpression within the tumor 
microenvironment has been demonstrated to represent a 
prognostic biomarker for poor overall survival in patients 
with OC (10). Mitogen‑activated protein kinase/extracellular 
signal‑regulated kinase 1 has been reported to represent a 
promising candidate prognostic biomarker and to be corre-
lated with response rates to platinum based chemotherapy in 
OC (11). Flap structure‑specific endonuclease 1 overexpression 
has been revealed to be associated with the poor survival of 
patients exhibiting high grade and advanced stage OC (12). In 
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addition, overexpression of fibroblast growth factor 18 (FGF18) 
is an independent predictive marker for poor clinical outcome 
in patients with OC, and FGF18 has been demonstrated to regu-
late OC cell migration, invasion and tumorigenicity via nuclear 
factor‑κB activation (13). Tumor necrosis factor α‑induced 
protein 8 overexpression is associated with epithelial OC 
metastasis and poor survival, and, therefore, can function as 
a prognostic and therapeutic biomarker for epithelial OC (14). 
However, biomarkers with a greater accuracy are required to 
predict recurrence and prognosis of OC.

In the present study, data of samples from patients with 
recurrent and non‑recurrent OC in three gene expression data-
sets were analyzed to identify differentially expressed genes 
(DEGs). Following this, relevant feature genes were identified 
and subsequently used to establish a support vector machine 
(SVM) classifier, the results of which were further verified 
using independent data. The results of the present study 
suggested that the SVM classifier may facilitate the prediction 
of OC recurrence and prognosis.

Materials and methods

Gene expression data. Gene expression data were retrieved 
from the Gene Expression Omnibus (www.ncbi.nlm.nih.
gov/geo) by searching for the following key words: ‘Ovarian 
cancer,’ ‘recurrence,’ ‘homo sapiens’ and ‘recurrence.’ 
Datasets were selected for further analysis if they fulfilled 
the following criteria: i) Included gene expression profiles of 
patients with OC; and ii) included gene expression profiles of 
patients with recurrent and non‑recurrent OC. Following this, 
three gene expression datasets [GSE17260 (15), GSE44104 (16) 
and GSE51088 (17)] were downloaded for subsequent analysis 
(Table I).

Background correction and normalization were performed 
using gene expression dataset GSE44104 with package affy 
1.42.3 (18) of R 3.1.0 (19). Missing values were filled using the 
median value (20). Microarray Suite (21) was used to perform 
background correction. The quantile method was used for 
standardization.

Screening of DEGs. Prior to meta‑analysis, the characteristics 
of the three gene expression datasets were investigated by 
principal component analysis (PCA) and standardized mean 
rank using the MetaQC package (22). The homogeneity test 
of gene expression profiles among datasets (internal quality 
control), homogeneity test of gene expression profiles with 
pathway database (external quality control), accuracy quality 
control, accuracy of feature genes and pathways, consistency 
quality control and consistency in the ranking of feature genes 
and pathways were investigated for quality control purposes 
using the MetaQC package.

DEGs were screened for using MetaDE.ES from the 
MetaDE package (23). Firstly, tests for heterogeneity of gene 
expression value in numerous platforms were performed using 
three statistical parameters: Tau2, Q value and Cochran's Q 
value. Values of tau2=0 and Cochran's Q value >0.05 served 
as the criteria for the identification of homogenous genes. 
Following this, the false discovery rate (<0.05) of DEGs 
between non‑recurrent samples and recurrent samples within 
each dataset was investigated. Two‑way clustering analysis of 

sample data from patients with recurrent and non‑recurrent 
OC in each dataset was performed using selected DEGs and 
then visualized by a heatmap using R 3.1.0 (19).

Construction of a protein‑protein interaction (PPI) network. 
PPI information was downloaded from Biological General 
Repository for Interaction Datasets (BioGRID; thebiogrid.
org), Human Protein Reference Database (HPRD; www.hprd.
org) and Database of Interacting Proteins (DIP; dip.doe‑mbi.
ucla.edu). Using Cytoscape version 3.5.1 (http://www.cyto-
scape.org/) (24), DEGs were mapped into the downloaded 
PPIs to construct the PPI network. Gene Ontology (GO; 
www.geneontology.org) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis (www.kegg.jp) were performed for the 
genes in the PPI network using Fisher's exact test using 
Cytoscape version 3.5.1.

Construction of the SVM classifier. To determine which genes 
in the PPI network could be classified as hub genes, the degree 
of nodes and betweenness centrality (BC) scores were deter-
mined (25). The BC score was calculated as follows using the 
igraph package version 1.2.1 in R 3.1.0 (https://cran.r‑project.
org/web/packages/igraph/index.html).

Here, σst is the number of shortest paths from s to t; σst (ν) 
is the number of shortest paths from s to t that pass node v; BC 
score is between 0 and 1, and greater BC score indicates higher 
degree of hubness in the network.

The top 100 DEGs, as determined by BC scores, were 
selected as candidate feature genes. The dataset GSE17260 was 
selected as the training set because the sample is larger than 
the other datasets, and the difference between the number of 
non‑recurrent samples and recurrent samples is relatively small. 
An optimum combination of feature genes was determined by 
performing recursive feature elimination using R caret_6.0‑79 
(https://cran.r‑project.org/web/packages/caret/)  (26). The 
SVM classifier was subsequently established to predict OC 
recurrence based on the expression levels of the screened 
feature genes.

The other two datasets (GSE44104 and GSE51088) 
were used to further verify the results of the SVM classi-
fier. Sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV) and area under the receiver 
operating characteristic curve (AUROC) values were deter-
mined to evaluate the performance of the established SVM 
classifier.

Verification of results generated by the SVM classifier using 
independent data. A further set of microarray data from 
samples of patients with OC was downloaded from the Cancer 
Genome Atlas (TCGA; https://cancergenome.nih.gov/) (27) 
and used to further verify the results of the SVM classifier. 
This dataset contained 222 recurrent and 173 non‑recurrent 
OC samples. The OC samples were classified into two groups: 
Predicted recurrent OC samples and predicted non‑recurrent 
OC samples. Kaplan‑Meier (KM) survival curves were then 
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plotted for the two groups to determine the reliability of the 
SVM classifier regarding patient prognosis.

Results

DEGs. Quality control analysis using data from the three gene 
expression datasets (GSE17260, GSE44104 and GSE51088) 
revealed that there was no significant bias among these data-
sets according to the SMR values (Table II) (22). In addition, 
PCA analysis revealed that all three datasets are distributed on 
the same side of the arrow, which suggest good comparability. 
(Fig. 1). For this reason, all three datasets were retained for 
subsequent analysis in the present study.

Based on the aforementioned criteria, a total of 639 
DEGs were identified from the GSE17260, GSE44104 and 
GSE51088 datasets, including 279 upregulated DEGs and 360 
downregulated DEGs. The heatmap of two‑way clustering 
revealed marked differences in gene expression between the 
patient samples with recurrent and non‑recurrent OC in each 
dataset (Fig. 2).

PPI network. A total of 321 and 296 PPIs for selected 
DEGs were identified in HPRD and BioGRID, respec-
tively. Overlapping PPIs were selected and visualized using 
Cytoscape (Fig. 3). The constructed PPI network contained 
249 nodes (115 downregulated genes and 134 upregulated 
genes) and 354 edges. Functional enrichment analysis revealed 
the genes in the PPI network were significantly associated with 
14 GO terms, including ‘cell cycle phase’, ‘M phase’, ‘mitotic 
cell cycle’ and ‘cell cycle process’ (Table III). Furthermore, 
five KEGG pathways, including ‘cell cycle’, ‘homologous 
recombination’, ‘purine metabolism’, ‘pathways in cancer’ and 
‘DNA replication’ were revealed to be significantly enriched 
for the genes in the PPI network (Table IV).

The distribution of calculated degree demonstrated that 
165 genes exhibited a small degree score [Log (degree) <1]; 

whereas 3 genes exhibited a large degree score (Log>4; 
Fig.  4A). This revealed that this PPI network exhibited 
scale‑free property similar to the majority of biological 
networks (25). Genes exhibiting high degrees were considered 
to represent hub genes and may serve important roles in the 
development of ovarian cancer.

SVM classifier. Following the calculation of BC scores for 
each node and the subsequent ranking of the top 100 nodes, 
39 feature genes [including cullin 3 (CUL3), mouse double 
minute 2 homolog (MDM2), aurora kinase A (AURKA), 

Table I. Summary of gene expression datasets used in the present study.

Accession number	 Platform	 Recurrence samples	 Non‑recurrence samples	 Total number of samples

GSE17260	 GPL6480 	 76	   34	 110
GSE44104	 GPL570	 20	   40	   60
GSE51088	 GPL7264	 17	 130	 147

Table II. Results of quality control measures and standardized mean rank test from data included in GSE17260, GSE44104 and 
GSE51088 datasets.

Accession number	 IQC	 EQC	 CQCg	 CQCp	 AQCg	 AQCp	 SMR

GSE17260	 5.48	 3.36	 110.95	 165.26	 34.03	 94.54	 1.69
GSE44104	 4.55	 3.29	   66.72	 152.42	 27.52	 100.64	 2.51
GSE51088	 6.33	 1.14	 105.17	 118.9	 20.32	 30.64	 4.08

IQC, internal quality control; EQC, external quality control; AQCg, accuracy quality control of genes; AQCp, accuracy quality control of 
pathways; CQCg, consistency quality control of genes; CQCp, consistency quality control of pathways; SMR, standard mean rank.

Figure 1. Principal component analysis of the GSE17260, GSE44104 and 
GSE51088 datasets. X‑axis represents the first principal component and the 
Y‑axis represents the second principal component. IQC, internal quality 
control; EQC, external quality control; AQCg, accuracy quality control of 
genes; AQCp, accuracy quality control of pathways; CQCg, consistency 
quality control of genes; CQCp, consistency quality control of pathways.
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WW domain containing oxidoreducatase (WWOX), large 
tumor suppressor kinase (LATS)2, sirtuin 6 (SIRT6), 
staphylococcal nuclease and tudor domain containing  1 
(SND1), leucine rich repeats and immunoglobulin like 
domains 1 (LRIG1) and aurora kinase 1 interacting protein 1 
(AURKAIP1)] were determined by the recursive feature 

elimination (Table  V). The highest prediction accuracy 
determined from analysis of training dataset GSE17260 was 
92.7% [102 out of 110 samples (27 samples from patients with 
non‑recurrent OC and 75 samples from patients with recur-
rent OC)] when 39 feature genes were used (Fig. 4B). The 
samples from patients with non‑recurrent OC and recurrent 

Figure 2. Hierarchical clustering heatmap of samples from patients with OC in GSE17260, GSE44104 and GSE51088 datasets using the expression levels of 
639 differentially expressed genes. Red panels represent high expression; green panels represent low expression. Bars represent samples from patients with 
non‑recurrent and recurrent OC in each dataset. OC, ovarian cancer.

Figure 3. Protein‑protein interaction network of DEGs. Red nodes indicate upregulated DEGs and green nodes indicate downregulated DEGs. DEGs, differ-
entially expressed genes.
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OC from training dataset GSE17260 were also presented 
in a scatter plot, which clearly distinguished the recurrence 
samples from non‑recurrence samples (Fig. 5). This result 
illustrated the effectiveness of the SVM classifier.

The SVM classifier was fur ther validated using 
GSE44104 and GSE51088 datasets. The prediction accu-
racy for dataset GSE44104 was revealed to be 93.3% [56 out 
of 60 samples (40 samples from patients with non‑recurrent 
OC and 16 samples from patients with recurrent OC)]. The 
accuracy for dataset GSE51088 was revealed to be 96.6% 
[142 out of 147 samples (126 non‑recurrent OC samples 
and 16  recurrent OC samples)]. The correct rate, sensi-
tivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV) and area under receiver operating 
characteristic curve (AUROC) values were presented in 
Table VI. It can be observed that the SVM classifier had a 
good classification effect in all 3 data sets. Furthermore, the 
AUROC values of GSE17260, GSE44104 and GSE51088 
datasets were 0.988, 0.970, and 0.967, respectively 
(Table VI). All values are close to 1, which means close to 
the perfect prediction effect.

Results of validation. Prediction accuracy of independent gene 
expression data downloaded from TCGA was revealed to be 
90.4% [357 out of 395 samples (138 samples from patients with 
non‑recurrent OC and 219 samples from patients with recur-
rent OC)], with an AUROC value of 0.981 (Table VI, Fig. 6A). 
In addition, survival ratios were determined for the 394 
patients with OC (172 patients with non‑recurrent OC and 222 
patients with recurrent OC). The KM survival curve revealed 
that survival times of patients with predicted non‑recurrent 
OC were significantly increased compared with patients 
with predicted recurrent OC (P=6.598x10‑6; Fig. 6B), which 
suggested that the classifier may accurately predict the prog-
nosis of patients with OC.

Discussion

In the present study, a SVM classifier consisting of specific 
genes was revealed to predict the rates of non‑recurrent and 
recurrent OC. Gene expression profiles of patients with recur-
rent OC were compared with patients with non‑recurrent OC 
to identify DEGs. Homogeneity and quality control analyses 

Table III. Gene Ontology biological process terms significantly associated with the genes included in the protein‑protein interac-
tion network.

Term	 Count	 P‑value	 FDR

GO:0022403, cell cycle phase	 33	 8.56x10‑15	 1.40x10‑11

GO:0000279, M phase	 29	 4.41x10‑14	 7.23x10‑11

GO:0000278, mitotic cell cycle	 30	 1.24x10‑13	 2.04x10‑10

GO:0022402, cell cycle process	 36	 3.14x10‑13	 5.15x10‑10

GO:0007067, mitosis	 23	 1.12x10‑12	 1.83x10‑9

GO:0000280, nuclear division	 23	 1.12x10‑12	 1.83x10‑9

GO:0000087, M phase of mitotic cell cycle	 23	 1.61x10‑12	 2.64x10‑9

GO:0007049, cell cycle	 41	 1.90x10‑12	 3.12x10‑9

GO:0048285, organelle fission	 23	 2.52x10‑12	 4.13x10‑9

GO:0051301, cell division	 24	 5.77x10‑11	 9.47x10‑8

GO:0000226, microtubule cytoskeleton organization	 13	 1.65x10‑6	 2.71x10‑3

GO:0007051, spindle organization	   8	 3.67x10‑6	 6.02x10‑3

GO:0007017, microtubule‑based process	 16	 4.71x10‑6	 7.72x10‑3

GO:0007010, cytoskeleton organization	 21	 6.25x10‑6	 1.03x10‑2

FDR, false discovery rate.

Table IV. Significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways for genes in the protein‑protein interac-
tion network.

Term	 Count	 P‑value	 Genes

hsa04110:Cell cycle	 7	 6.62x10‑3	 RAD21, BUB1B, MDM2, TTK, CDC20, PTTG1, MCM5
hsa03440:Homologous recombination	 3	 5.47x10‑3	 POLD1, BRCA2, RAD51
hsa00230:Purine metabolism	 6	 3.57x10‑2	 POLR2G, GDA, POLD1, AK2, AMPD3, GMPS
hsa05200:Pathways in cancer	 9	 4.44x10‑2	� CTBP2, RALBP1, PIK3CD, TFG, MDM2, BRCA2, 

BIRC5, CDH1, RAD51
hsa03030:DNA replication	 3	 4.51x10‑2	 POLD1, RNASEH2A, MCM5
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using three gene expression datasets were performed to 
improve the prediction accuracy of the classifier. A PPI network 
was then constructed using identified DEGs, which included 
249 nodes and 354 edges. Functional and pathway enrichment 
analysis demonstrated that genes in the PPI network were 
significantly associated with 14 GO terms, including ‘cell 
cycle,’ ‘homologous recombination’, ‘purine metabolism’ and 
‘pathways in cancer and DNA replication’. A total of 39 genes 
were selected by recursive feature elimination, including 
CUL3, MDM2, AURKA, WWOX, LATS2, SIRT6, SND1, 
LRIG1 and AURKAIP1.

Constitutive activation of nuclear factor erythroid 2 like 2 
(NRF2) is associated with acquisition of malignant features 
in OC (28,29). Markedly increased frequencies of DNA and 

mRNA alterations compared with healthy controls affect 
components of the kelch like ECH associated protein  1 
(KEAP1)/CUL3/ring‑box  1 (RBX1) E3‑ubiquitin ligase 
complex, which regulates NRF2 expression, have been revealed 
via sequencing of KEAP1, CUL3 and RBX1 in a cohort of 
568 samples obtained from patients with OC detailed in 
TCGA (30). MDM2 is a nuclear‑localized E3 ubiquitin ligase 
that promotes tumor formation by targeting tumor suppressor 
proteins, including p53, and has an important role in the 
development of OC (31). It has been previously demonstrated 
that overexpression of MDM2 can increase cisplatin 
cytotoxicity in human ovarian cell lines (32). Furthermore, it 
has been demonstrated that antagonists of MDM2 can induce 
apoptosis in human ovarian cancer cells and synergize with 
cisplatin to attenuate the chemoresistance of patients exhibiting 
wild‑type tumor protein p53 (33). AURKA expression has 
been revealed to be closely correlated with prognosis of 
endometrioid OC in a study including 51 tumor samples (34), 
which may result from its role in the regulation of OC cell 
migration and adhesion  (35). The predominant full‑length 
transcript (variant 1) of WWOX functions as a suppressor of 
ovarian tumorigenesis (36) by inducing apoptosis in detached 
cells, and regulating the interaction between tumor cells and 
the extracellular matrix (37). WWOX can regulate the cell 
cycle and apoptosis of OC stem cells (38), which suggests that 
WWOX may represent an important molecular target for the 
treatment of OC. Numerous studies have reported that miR‑25 
and miR‑181b can promote OC by targeting LATS2, which 
is a serine/threonine protein kinase belonging to the LATS 
tumor suppressor family and is involved in the proliferation, 
migration and invasion of OC cells (39,40). SIRT6, a member 
of NAD+ dependent class III deacetylase sirtuin family, has 
been revealed to inhibit the proliferation of OC cells by 
downregulating Notch 3 expression (41). Decreased expression 
of SIRT6 has been revealed to promote tumor cell growth 
and is closely correlated with poor prognosis of OC (42). 
Therefore, SIRT6 may represent a therapeutic target for the 
prevention and treatment of OC. LRIG1 is a tumor suppressor 

Figure 4. Distribution of the node degree of interaction and the screening of feature genes following recursive feature elimination. (A) 165 genes exhibited a 
small degree score. The X‑axis represents the value of Log (degree of interaction) and the Y‑axis represents the number of nodes in the protein‑protein interac-
tion network. (B) The accuracy is highest when the number of feature genes is 39. The X‑axis indicates number of feature genes and the Y‑axis represents 
prediction accuracy.

Figure 5. Scatter plots detailing the prediction results of GSE17260 datasets 
using the support vector machine classifier. Blue dots represent samples 
from patients with non‑recurrent OC and pink dots represent samples from 
patients with recurrent OC. OC, ovarian cancer.
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used in clinical practice (43). Decreased LRIG1 expression 
has been demonstrated to propagate chemoresistance in 
etoposide‑resistant human OC cells by downregulating 
multidrug resistance‑associated protein 1 and apoptosis (44). 
In addition, AURKAIP1 promotes the degradation of the 
Aurora A oncogene via an alternative ubiquitin‑independent 
pathway (45). Therefore, AURKAIP1 may be involved in the 
development and recurrence of OC. SND1, a transcriptional 

co‑activator, has been demonstrated to promote breast cancer 
metastasis via the tumor growth factor β1/mad (smad) mothers 
against dpp pathway (46), which has been previously used for 
the prediction of colon cancer prognosis (47), and to promote 
prostate cancer via interaction with KH domain‑containing 
RNA‑binding signal transduction‑associated protein 1 (48). 
However, the role of SND1 in OC remains unclear. Studies on 
the aforementioned feature genes may help to determine the 

Table V. Screened feature genes used for construction of support vector machine classifier as determined by recursive feature 
elimination.

Gene	 BC	 Degree	 P‑value	 FDR	 Q value	 Cochran's Q value	 tau2	 Log fold change

CUL3	 0.759895	 41	 0.009775	 0.02304	 0.198586	 0.905478	 0	 ‑3.08977
MDM2	 0.694803	 25	 0.014685	 0.034611	 0.513419	 0.773593	 0	 ‑1.09727
AURKA	 0.558121	 19	 0.001087	 0.002561	 1.286947	 0.525464	 0	 1.42154
HNRNPK	 0.50414	 13	 0.011236	 0.026482	 1.021909	 0.599923	 0	 ‑0.96217
RAD21	 0.490358	 12	 0.014482	 0.034133	 0.386617	 0.824228	 0	 2.596818
WWOX	 0.458579	 10	 0.013516	 0.031857	 0.857721	 0.651251	 0	 ‑3.74564
IGBP1	 0.449997	 7	 0.011454	 0.026997	 0.47506	 0.788573	 0	 0.321061
IPO7	 0.442128	 5	 0.002717	 0.006405	 1.598947	 0.449566	 0	 ‑1.03747
RAD23A	 0.441265	 8	 0.012419	 0.02927	 0.900161	 0.637577	 0	 1.194153
TSTA3	 0.436658	 5	 0.010425	 0.02457	 0.358922	 0.835721	 0	 2.936405
BRCA2	 0.435695	 5	 0.003583	 0.008444	 0.100529	 0.950978	 0	 1.948855
FHL3	 0.433658	 6	 0.001257	 0.002963	 0.279246	 0.869686	 0	 0.987126
LATS2	 0.430752	 4	 0.011053	 0.026051	 0.09771	 0.952319	 0	 0.4797
NOC2L	 0.430291	 4	 0.013451	 0.031703	 0.014566	 0.992743	 0	 1.077813
CD2AP	 0.42926	 4	 0.018901	 0.044548	 0.026358	 0.986908	 0	 ‑1.79036
TPM4	 0.428095	 7	 0.013303	 0.031355	 1.621492	 0.444526	 0	 2.932572
MCM5	 0.427881	 7	 0.006661	 0.0157	 0.397359	 0.819813	 0	 0.44911
CTBP2	 0.427047	 5	 0.013728	 0.032356	 1.715255	 0.424167	 0	 0.877948
SIRT6	 0.426042	 6	 0.009524	 0.022448	 0.145688	 0.929746	 0	 ‑0.81214
RALBP1	 0.42506	 3	 0.008046	 0.018964	 1.608012	 0.447533	 0	 1.788163
DBN1	 0.422172	 9	 0.001295	 0.003052	 1.479727	 0.477179	 0	 1.499493
FAF1	 0.420131	 4	 0.014442	 0.034039	 1.184726	 0.553019	 0	 1.782133
SMC4	 0.416491	 5	 0.005295	 0.01248	 0.238612	 0.887536	 0	 1.769396
SND1	 0.41646	 3	 0.003913	 0.009222	 0.920509	 0.631123	 0	 1.238259
TEAD4	 0.414377	 2	 0.008077	 0.019037	 1.729928	 0.421067	 0	 0.992568
BANP	 0.411436	 3	 0.004271	 0.010067	 0.305887	 0.858178	 0	 0.759078
SART1	 0.409053	 3	 0.01088	 0.025643	 0.068045	 0.96655	 0	 1.254434
INPPL1	 0.408929	 2	 9.41E‑05	 0.000222	 1.3698	 0.504141	 0	 2.084808
LRIG1	 0.408929	 2	 0.018088	 0.042633	 1.901966	 0.386361	 0	 ‑1.42735
LRRC49	 0.408929	 2	 0.011943	 0.028148	 0.263645	 0.876497	 0	 ‑1.66365
PCSK9	 0.408929	 2	 0.000332	 0.000782	 0.045994	 0.977266	 0	 ‑5.13551
PHPT1	 0.408929	 2	 0.009973	 0.023507	 0.52427	 0.769407	 0	 ‑1.60935
POLR2G	 0.408929	 2	 0.010377	 0.024458	 0.509447	 0.775131	 0	 1.450648
PPA2	 0.408929	 2	 0.002415	 0.005691	 0.983689	 0.611498	 0	 ‑0.77017
USP47	 0.408929	 2	 0.016431	 0.038727	 1.485343	 0.475841	 0	 ‑2.70658
TTK	 0.408856	 3	 0.019272	 0.045422	 0.154504	 0.925656	 0	 ‑0.23932
ARFIP1	 0.408051	 3	 5.30E‑06	 1.25E‑05	 1.795171	 0.407552	 0	 ‑2.91913
FTL	 0.407729	 2	 0.00145	 0.003417	 1.83461	 0.399595	 0	 2.012816
AURKAIP1	 0.407431	 2	 0.006809	 0.016048	 0.532797	 0.766134	 0	 0.828771

BC, betweenness centrality score; FDR, false discovery rate.
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complex molecular mechanisms underlying the recurrence of 
OC.

In the present study, a SVM classifier consisting of 
39 specific genes was constructed and verified for the predic-
tion of the recurrence of OC. The prediction accuracy of the 
SVM classifier for GSE17260, GSE44104 and GSE51088 
datasets was 92.7, 93.3 and 96.6%, respectively. The predic-
tion accuracy of the SVM classifier using independent gene 
expression data downloaded from TCGA demonstrated an 
accuracy of 90.4%. Furthermore, the patients with predicted 
non‑recurrent OC exhibited a significantly longer survival 
time compared with patients with predicted recurrent OC 
(P=6.598x10‑6); therefore suggesting that the SVM classi-
fier has the potential for use in the prognostic prediction of 
patients with OC. Unlike sequencing technology, the SVM 
classifier only requires the expression levels of 39 genes 
for prognostic prediction. Therefore, application of the 
established SVM classifier is more economical and efficient 
compared with sequencing for the prognostic prediction of 
patients with OC.

In conclusion, a SVM classifier consisting of 39 genes was 
established in the present study for the accurate prediction of 
the recurrence of OC. The 39 included genes serve roles in 
the development of OC and may represent novel therapeutic 
targets for the treatment of OC. Furthermore, the established 
SVM classifier may be used for prognostic prediction in 
patients with OC. However, further studies investigating an 
independent cohort of patients with non‑recurrent and recur-
rent OC are required to further validate the results of the 
present study.
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