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Abstract. Intermittent fasting has been shown to have 
neuroprotective effects against transient focal cerebral 
ischemic insults. However, the effects of intermittent fasting 
on transient global ischemic insult has not been studied 
much yet. The present study examined effects of intermittent 
fasting on endogenous antioxidant enzyme expression 
levels in the hippocampus and investigated whether the 
fasting protects neurons 5  days after 5  min of transient 
global cerebral ischemia. Gerbils were randomly subjected 
to either ad libitum or alternate‑day intermittent fasting 
for two months and assigned to sham surgery or transient 
ischemia. Changes of antioxidant enzymes were examined 
using immunohistochemistry for cytoplasmic superoxide 
dismutase 1 (SOD1), mitochondrial (SOD2), catalase (CAT), 
and glutathione peroxidase (GPX). The effects of intermittent 

fasting on ischemia‑induced antioxidant changes, neuronal 
damage/degeneration and glial activation were examined. The 
weight of fasting gerbils was not different from that of control 
gerbils. In controls, SOD1 and GPX immunoreactivities 
were strong in pyramidal neurons of filed cornu ammonis 1 
(CA1). Transient ischemia in controls significantly decreased 
expressions of SOD1 and GPX in CA1 pyramidal neurons. 
Intermittent fasting resulted in increased expressions of SOD2 
and CAT, not of SOD1 and GPX, in CA1 pyramidal neurons. 
Nevertheless, CA1 pyramidal neurons were not protected 
in gerbils subjected to fasting after transient ischemia, and 
inhibition of glial‑cell activation was not observed in the 
gerbils. In summary, intermittent fasting for two months 
increased SOD2 and CAT immunoreactivities in hippocampal 
CA1 pyramidal neurons. However, fasting did not protect the 
CA1 pyramidal neurons from transient cerebral ischemia. The 
results of the present study indicate that intermittent fasting 
may increase certain antioxidants, but not protect neurons 
from transient global ischemic insult.

Introduction

Pyramidal neurons in the hippocampal cornu ammonis 1 (CA1) 
area are killed four to five days after brief (5 to 10 min) transient 
global cerebral ischemia in gerbils (1). A complex series of 
molecular mechanisms of ischemia‑induced neuronal degen-
eration/death is related to increased glutamate excitotoxicity, 
oxidative stress, and inflammation (2,3). Many researchers 
have been struggling to find relevant molecular targets from 
those mechanisms to protect neurons against ischemic damage 
for developing therapeutics. For example, protective effects 
of antioxidants, superoxide dismutases  (SODs), and their 
mimetics, have been demonstrated (4,5).
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Intermittent fasting (IF) is defined as a severe dietary energy 
restriction during a certain period of normal energy intake (6). 
The duration of IF is variable, and previous studies have typi-
cally used alternate‑day fasting or a daily time‑restricted (4 
to12 h) food‑deprivation regimen in rodents (rats or mice) (7). It 
has been reported that the liver and adipose tissue act as energy 
storage, allowing fasting for various periods in mammals (8). 
Additionally, during fasting, body systems, including the meta-
bolic, endocrine, and nervous systems, adjust to enable a high 
level of physical and mental activities (8).

Beneficial effects of dietary restriction are increased resis-
tance to aging and degenerative diseases, and their associated 
mechanisms have been demonstrated in previous studies. 
IF activates the sirtuin 1 signaling pathway, which plays a 
major role in life span and cellular health, and decreases apop-
totic pathways in the brain of senescence‑accelerated mice p8 
(SAMP8) (9). In addition, IF‑related insulin‑like signaling and 
FoxO transcription factors are known to stimulate antioxidant 
enzymes to help cells resist stress (10).

For the brain, many researchers have studied whether an IF 
regimen provides neuroprotection or not. Zhu et al (11), have 
reporetd that IF protects hippocampal neurons against kainate 
excitotoxicity in a mouse model of Alzheimer's disease (prese-
nilin1 mutant knockin mice) by reducing oxidative stress. In 
ischemia, it has been demonstrated that dietary restriction 
or an IF regimen reduces infarct volume in rodent models of 
cerebral focal cerebral ischemia by inhibiting the accumulation 
of autophagosomes in neurons (12), by suppressing inflamma-
some activity (13), and by increasing a preconditioning stress 
response (14). The above‑mentioned studies attenuate or protect 
ischemic damage in focal cerebral ischemia models; however, 
the possibility that IF protects neurons from transient global 
cerebral ischemia (tGCI) has not been examined. Therefore, 
in this study, we investigated effects of IF on expressions of 
endogenous antioxidant enzymes, and then examined the 
effect of IF on expressions of antioxidant enzymes, neuronal 
damage/degeneration, and reactive glia cells following tGCI in 
gerbils, which are a good animal model of tGCI (15,16).

Materials and methods

Experimental animals. Male gerbils were obtained at 6 months 
of age (B.W., 70±5.2 g) from the Experimental Animal Center, 
Kangwon University, Chuncheon, Gangwon, Republic of 
Korea, and maintained at a constant temperature (23˚C) and 
humidity (50%) with a 12‑h light/dark cycle. The process of 
handling and caring animals conformed to the guidelines 
being in compliance with current international laws and poli-
cies (NIH Guide for the Care and Use of Laboratory Animals, 
The National Academies Press, 8th ed., 2011). The protocol 
of this experiment was approved by the Institutional Animal 
Care and Use Committee (IACUC) at Kangwon National 
University (approval no. KW‑180124‑1).

IF and experimental groups. Animals were fed commercially 
available rodent normal diet or IF (24 h fasting and 24 h feeding) 
was applied for 2 months according to method by published 
methods (9,12,17). During procedures, food intake of IF group 
was controlled daily (10 g per day), and body weight of normal 
diet and IF groups was monitored every week. After 2 months, 

animals with normal diet or IF were randomly assigned to 
following groups: i) Sham groups (n=7), which were allowed free 
access to water and food and received no ischemia; ii) IF and 
sham (IF+Sham) group (n=7), which was subjected to IF and 
received no ischemia; iii) Ischemia groups (n=7), which received 
tGCI without IF and iv) IF+Ischemia groups (n=7), which were 
subjected to IF and received tGCI. To investigate effects of IF 
on neuronal death (loss), antioxidant enzymes, and gliosis, all 
animals were sacrificed at 5 days after ischemia, because death 
(loss) of pyramidal neurons in the gerbil hippocampal CA1 
region occurs 5 days follwong transient cerebral ischemia (1).

Induction of tGCI. As previously described  (18), in brief, 
gerbils in all groups were anesthetized with a mixture of 2.5% 
isoflurane (Baxtor, Deerfield, IL, USA) in 33% oxygen and 67% 
nitrous oxide. The gerbils received a midline incision on the 
ventral surface of the neck, and both common carotid arteries 
were occluded for 5 min using non‑traumatic aneurysm clips. 
We controlled normal body (rectal) temperature (37±0.5˚C) 
using a thermometric blanket throughout the surgery, moni-
toring the temperature with a rectal temperature probe (TR‑100; 
Fine Science Tools, Foster City, Inc., CA, USA).

Preparation of histological sections. For histology, as described 
previously  (18), gerbils were anesthetized with 30  mg/kg 
Zoletil 50 (Virbac, Carros, France) 5 days after tGCI (at this 
point in time, pyramidal neurons are dead after tGCI), and 
perfused transcardially with 0.1 m phosphate buffered saline 
(PBS, pH 7.4) followed by 4% paraformaldehyde in 0.1 m 
phosphate buffer (PB, pH 7.4). The brain tissues containing 
hippocampi were cryoprotected and serially sectioned into 
30‑µm coronal sections in a cryostat (Leica Microsystems 
GmbH, Wetzlar, Germany).

Immunohistochemistry. In brief, according to our published 
method (19), sheep anti‑superoxide dismutase 1 (SOD1) (1:1,000; 
EMD Millipore, Billerica, MA, USA), sheep anti‑mitochondrial 
(SOD2) (1:1,000; EMD Millipore), rabbit anti‑catalase (CAT) 
(1:500; EMD Millipore), mouse anti‑glutathione peroxidase 
(GPX) (1:500; EMD Millipore), mouse anti‑NeuN (a marker 
for neuron) (1:1,000; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA), mouse anti‑GFAP (a marker for astrocyte) (1:800; 
Abcam, Cambridge, MA, USA), and rabbit anti‑Iba1 (a marker 
for microglia) (1:800; Wako Pure Chemical Industries, Ltd., 
Osaka, Japan) were used as primary antibodies. The sections 
were sequentially treated with 0.3% hydrogen peroxide (H2O2) 
in PBS for 30 min and 10% normal goat serum in 0.05 M 
PBS for 30 min. The treated sections were incubated with the 
primary antibodies overnight at 4˚C, thereafter, the reacted 
sections were exposed to biotinylated goat anti‑mouse or goat 
anti‑rabbit IgG (1:200; Vector Laboratories, Inc., Burlingame, 
CA, US) and streptavidin peroxidase complex (1:200; Vector 
Laboratories, Inc.). Finally, the reacted sections were visualized 
by staining with 3, 3'‑diaminobenzidine tetrahydrochloride in 
0.1 M Tris‑HCl buffer (pH 7.2).

Fluoro‑Jade (F‑J) B histofluorescence staining. To investigate 
neuronal death in the hippocampal CA1 at 5 days after tGCI, 
F‑J B (a fluorescent marker for cell degeneration) histofluores-
cence staining was conducted according to method published 
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by Candelario‑Jalil et al (20). In brief, the sections were first 
immersed in a solution containing 1% sodium hydroxide in 80% 
alcohol and followed in 70% alcohol. They were then trans-
ferred to a solution of 0.06% potassium permanganate, and to a 
0.0004% F‑J B (Histochem, Inc., Jefferson, AR, USA) staining 
solution. After washing them, they were placed on a slide warmer 
(approximately 50˚C) to be reacted. The stained sections were 
examined using an epifluorescent microscope (Carl Zeiss AG, 
Oberkochen, Germany) with blue (450‑490 nm) excitation light 
and a barrier filter (Schmued and Hopkins, 2000).

Data analysis. First, we quantitatively analyzed SOD1, SOD2, 
GPX, CAT, GFAP, and Iba‑1 immunoreactivities according to our 
published method (19). In brief, we selected six sections from each 
animal with 120‑µm interval according to AP (Antero‑posterior) 
‑1.4 to ‑2.2 mm of the gerbil brain atlas and took images of them 
from the CA1 through an AxioM1 light microscope (Carl Zeiss 
AG) equipped with a digital camera (Axiocam; Carl Zeiss AG) 
connected to a PC monitor. The image of each immunoreactivity 
was calibrated into an array of 512x512 pixels corresponding to 
a tissue area of 250x250 µm2 (20x primary magnification). Each 
immunoreactivity was measured by a 0‑255 gray scale system 
and evaluated by optical density (OD), which was obtained 
after transformation of the mean gray level using the formula: 
OD=log (255/mean gray level). A ratio of the OD was calibrated 
as % (relative OD, ROD) using Adobe Photoshop version 8.0 
and analyzed using Image J 1.46 software (National Institutes of 
Health, Bethesda, MD, USA). A ratio of the ROD was calibrated 
as %, with the Sham group designated as 100%.

Second, we analyzed numbers of NeuN‑ and F‑J B‑positive 
cells according to our published method (19). In brief, we 
selected six sections like the above‑mentioned method. Images 
of NeuN‑ and F‑J B‑positive cells were captured through an 
AxioM1 light microscope (Carl Zeiss AG) equipped with 
a digital camera (Axiocam; Carl Zeiss AG) connected to 
a PC monitor. CA1 pyramidal neurons were captured in a 
250x250 µm square. Cell counts were obtained by averaging 
the total number of NeuN‑ and F‑J B‑positive cells from each 
animal using an image analyzing system (Optimas v.6.5; 
CyberMetrics, Scottsdale, AZ, USA).

Statistical analysis. The data shown here represent the 
means ± SEM. Differences of the means among the groups 
were statistically analyzed by one‑way analysis of variance 
with Duncan's post hoc test using SPSS v.17.0 software (SPSS, 
Inc., Chicago, IL, USA). P<0.05 was considered to indicate a 
statistically significant difference.

Results

Body weight. Normal diet or IF was treated for 2 months. 
Body weight in the normal diet animals was slowly increased. 
Change in body weight in the IF animals was not significantly 
different from that in the normal diet animals (Fig. 1).

Immunoreactivities of antioxidant enzymes
SOD1 immunoreactivity. When we examined SOD1 immunore-
activity in the Sham group, SOD1 immunoreactivity was mainly 
shown in neurons of the stratum pyramidale in the CA1, which 
are called CA1 pyramidal neurons (Fig. 2A). In the IF+Sham 

group, SOD1 immunoreactivity in CA1 pyramidal neurons was 
not different from that in the Sham group (Fig. 2B).

In the Ischemia group, SOD1 immunoreactivity was hardly 
found in CA1 pyramidal neurons, but increased in many 
non‑pyramidal cells in stratum oriens and radiatum of the CA1, 
and the SOD1 immunoreactivity was increased by about 43% 
compared to the Sham group (Fig. 2C). In the IF+Ischemia 
group, the pattern and immunoreactivity of SOD1 in the CA1 
was similar to that in the Ischemia group (Fig. 2D).

Each immunoreactivity of SOD1 in the CA1 region at 
5  days after tGCI in the Sham, IF+Sham, Ischemia, and 
IF+Ischemia groups was shown in Fig. 2E.

SOD2 immunoreactivity. In the Sham group, very weak SOD2 
immunoreactivity was detected in CA1 pyramidal neurons 
(Fig. 3A). In the IF+Sham group, SOD2 immunoreactivity in 
CA1 pyramidal neurons was significantly increased by about 
40% compared to the Sham group (Fig. 3B).

In the Ischemia group, SOD2 immunoreactivity was rarely 
shown in CA1 pyramidal neurons, instead, SOD2 immuno-
reactivity was increased in non‑pyramidal cells (Fig. 3C). In 
the IF+Ischemia group, the pattern of SOD2 expression in 
the CA1 was not different from the Ischemia group; however, 
SOD2 immunoreactivity in non‑pyramidal cells was increased 
by about 41% compared to the Ischemia group (Fig. 3D).

Each immunoreactivity of SOD2 in the CA1 region at 
5  days after tGCI in the Sham, IF+Sham, Ischemia, and 
IF+Ischemia groups was shown in Fig. 3E.

CAT immunoreactivity. CAT immunoreactivity was observed 
in CA1 pyramidal neurons in the Sham group (Fig. 4A). In 
the IF+Sham group, CAT immunoreactivity in CA1 pyramidal 
neurons was increased by about 102% compared to the Sham 
group (Fig. 4B).

In the Ischemia group, CAT immunoreactivity was hardly 
found in CA1 pyramidal neurons, instead, weak CAT immu-
noreactivity was shown in non‑pyramidal cells (Fig. 4C). In the 
IF+Ischemia group, CAT immunoreactivity was strong in many 
non‑pyramidal cells, and the immunoreactivity was increased 
by about 85% compared to the Ischemia group (Fig. 4D).

Figure 1. Change in body weight in animals with normal diet or IF for two 
months. Weight gain in the animals with normal diet and IF is not signifi-
cantly different between them (n=14 at each point in time). Bars indicate the 
means ± SEM.
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Each immunoreactivity of CAT in the CA1 region at 5 days 
after tGCI in the Sham, IF+Sham, Ischemia, and IF+Ischemia 
groups was shown in Fig. 4E.

GPX immunoreactivity. Strong GPX immunoreactivity was 
found in CA1 pyramidal neurons in the Sham group (Fig. 5A). 
In the IF+Sham group, no significant difference in GPX 
immunoreactivity in CA1 pyramidal neurons was observed 
compared to the Sham group (Fig. 5B).

In the Ischemia group, GPX immunoreactivity in CA1 
pyramidal neurons was hardly identified, instead, strong GPX 
immunoreactivity was observed in many non‑pyramidal cells 
(Fig. 5C). In the IF+Ischemia group, GPX immunoreactivity 
in non‑pyramidal cells was not different from that in the 
Ischemia group (Fig. 5D).

Each immunoreactivity of GPX in the CA1 region at 5 days 
after tGCI in the Sham, IF+Sham, Ischemia, and IF+Ischemia 
groups was shown in Fig. 5E.

Neuroprotection
NeuN‑immunoreactive neurons. In the Sham group, 
NeuN‑immunoreactive neurons, as pyramidal neurons, were 
predominantly distributed in the stratum pyramidale (Fig. 6A). 
In the IF+Sham group, NeuN‑immunoreactive pyramidal 
neurons were not different in their distribution compared with 
the Sham group (Fig. 6B).

In the Ischemia group, numbers of NeuN‑immunoreactive 
neurons was significantly decreased only in the stratum 
pyramidale of the CA1 (Fig. 6C). In the IF+Ischemia group, 
the distribution and numbers of NeuN‑immunoreactive 
neurons were similar to the Ischemia group (Fig. 6D and E).

F‑J B‑positive cells. F‑J B‑positive cells, which are 
dead/degenerated cells, were not detected in the stratum 
pyramidale of the CA1 in the Sham group (Fig. 7A). In the 
IF+Sham group, F‑J B‑positive cells were not shown like the 
Sham group (Fig. 7B).

Figure 2. SOD1 immunohistochemistry. Immunoreactivities of SOD1 in the CA1 of (A) Sham, (B) IF+Sham, (C) Ischemia, and (D) IF+Ischemia groups 5 days 
after tGCI. In the Sham group, SOD1 immunoreactivity is shown in pyramidal neurons (star in A). SOD1 immunoreactivity in the IF+Sham group is similar 
to the Sham group. In the Ischemia group, SOD1 immunoreactivity is found in non‑pyramidal cells. SOD1 immunoreactivity in the IF+Sham group is not 
different from the Sham group. Scale bar=50 µm. (E) SOD1 immunoreactivity as percent values in pyramidal and non‑pyramidal cells (n=7 in each group, 
*P<0.05 vs. Sham group). Bars indicate the means ± SEM. SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum.
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In the Ischemia group, many F‑J B positive cells were 
shown in the stratum pyramidale of the CA1 (Fig. 7C). In 
the IF+Ischemia group, the distribution and numbers of 
F‑J B‑positive cells were similar to the Ischemia group 
(Fig. 7D and E).

Glial activation and Inflammation
GFAP immunoreactivity. In the Sham group, GFAP immuno-
reactive cells, which were astrocytes, had small cytoplasm and 
fine processes, and scattered throughout in all layers (Fig. 8A). 
In the IF+Sham group, the morphology and immunoreactivity 
of GFAP was similar to that in the Sham group (Fig. 8B).

In the Ischemia group, GFAP‑immunoreactive cells 
displayed thick processes, and GFAP immunoreactivity 
was increased by about 279% compared to the Sham group 
(Fig.  8C). In the IF+Ischemia group, the morphology of 
GFAP‑immunoreactive cells and GFAP immunoreactivity 
was similar to those in the Ischemia group (Fig. 8D).

Each immunoreactivity of GFAP in the CA1 region at 
5  days after tGCI in the Sham, IF+Sham, Ischemia, and 
IF+Ischemia groups was shown in Fig. 8E.

Iba‑1 immunoreactivity. In the Sham group, Iba‑1‑ 
immunoreactive cells, which were microglia, had small 
cell body and distributed in all layers (Fig.  9A). In the 
IF+Sham group, the morphology and immunoreactivity of 
Iba‑1‑immunoreactive cells was not different from the Sham 
group (Fig. 9B).

In the Ischemia group, Iba‑1‑immunoreactive cells showed 
activated form with hypertrophied cell bodies and branched 
processes, and many of them were aggregated into and near the 
stratum pyramidale, showing that Iba‑1 immunoreactivity was 
by about 226% compared to the Sham group (Fig. 9C). In the 
IF+Ischemia group, the distribution of Iba‑1‑immunoreactive 
cells and their Iba‑1 immunoreactivity was not different from the 
Ischemia group (Fig. 9D).

Figure 3. SOD2 immunohistochemistry. Immunoreactivities of SOD2 in the CA1 of (A) Sham, (B) IF+Sham, (C) Ischemia, and (D) IF+Ischemia groups 
5 days after tGCI. SOD2 immunoreactivity is significantly increased in pyramidal neurons (star in B) compared to the Sham group. In the Ischemia group, 
SOD2 immunoreactivity is shown in non‑pyramidal cells. SOD2 immunoreactivity in the IF+Ischemia is significantly increased (arrows in D) compared to the 
Ischemia group. Scale bar=50 µm. (E) SOD2 immunoreactivity as percent values in pyramidal and non‑pyramidal cells (n=7 in each group, *P<0.05 vs. Sham 
group, †P<0.05 vs. Ischemia group). Bars indicate the means ± SEM. SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum.
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Each immunoreactivity of Iba‑1 in the CA1 region at 5 days 
after tGCI in the Sham, IF+Sham, Ischemia, and IF+Ischemia 
groups was shown in Fig. 9E.

Discussion

This study was examined effects of IF on endogenous 
antioxidant enzymes, SOD1, SOD2, GPX and CAT, in the 
hippocampal CA1 of the gerbil, and investigated effects 
of IF on tGCI‑induced antioxidant enzymes, neuronal 
damage/degeneration, and reactive glia cells.

We found that weight gain in the IF‑sham group for two 
months was similar to that of the Sham group. In line with our 
results, it was reported that C57BL6 mice lost little or no weight, 
although other mice or rats lost weight after IF (21). These 
results indicate that weight loss after IF is different according 
to kinds or species of experimental animals. We need to study 
exact changes in weight gain or loss induced by IF in various 
kinds of experimental animals and its causes and mechanisms.

It is well known that SODs convert superoxide to hydrogen 
peroxide (H2O2), and that H2O2 is converted to H2O by scav-
enger enzymes, such as CAT and GPX, to detoxify harmful 
radicals and reactive oxidative stress (22). It has been reported 
that SOD2 (mitochondrial enzyme) is a more important 
enzyme, since SOD2 knockout mice die earlier after birth or 
suffer from severe neurodegeneration (23), but SOD1 (cytosolic 
enzyme) knockout mice, which are phenotypically normal with 
only reproductive problems, can survive (24). Furthermore, 
it has been demonstrated that CAT removes peroxides more 
effectively than does GPX in neurons (22,25). In a previous 
study, alternate‑day fasting for four or five months has shown 
increased levels of heme oxygenase (HO)‑1, an antioxidant 
enzyme in the mouse brain (26). Similar to the previous study, 
our current study showed that IF for two months significantly 
increased SOD2 and CAT immunoreactivities, but not SOD1 
and GPX immunoreactivities in CA1 pyramidal neurons. 
These findings indicate that IF could induce increases of 
basal antioxidant expressions, especially SOD2 and CAT, in 

Figure 4. CAT immunohistochemistry. Immunoreactivities of CAT in the CA1 of (A) Sham, (B) IF+Sham, (C) Ischemia, and (D) IF+Ischemia groups 5 days 
after tGCI. In the IF+Sham group, CAT immunoreactivity is significantly increased in pyramidal neurons (star in B) compared to the Sham group. In the 
IF+Ischemia group, CAT immunoreactivity is significantly increased in non‑pyramidal cells (arrow in D) compared to the Ischemia group. Scale bar=50 µm. 
SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum. (E) CAT immunoreactivity as percent values in pyramidal and non‑pyramidal cells (n=7 in 
each group, *P<0.05 vs. Sham group, †P<0.05 vs. Ischemia group). Bars indicate the means ± SEM.
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hippocampal CA1 pyramidal neurons in gerbils, which have 
been used for an animal model of tGCI (15,16).

We have demonstrated that neuronal protection or improve-
ment of neuronal survival (after drug treatment) is closely 
related to maintenance or increase of SOD1, SOD2, CAT, 
and GPX expressions in the gerbil hippocampus after 5 min 
of tGCI (19,27,28). In addition, Walsh et al (2014) extensively 
reviewed previous studies and summarized that IF was effective 
in increasing antioxidant enzymes, in particular, glutathione 
activity  (29). Furthermore, Arumugam et al (2010) showed 
that IF increased the HO‑1 level in vulnerable brain regions, 
and the increased HO‑1 level was correlated with decreasing 
infarct volume and neurological deficit following focal cerebral 
ischemic stroke in mice (26). Recently, Hu et al (2017) reported 
that postoperative IF for a week after chronic cerebral hypoper-
fusion in rats significantly decreased malondialdehyde (MDA) 
activity, maintained glutathione, SOD1, and SOD2 levels in 
the hippocampus, and improved memory deficit induced by 
the hypoperfusion (30). In our present study, we found that 

SOD2 and CAT immunoreactivities were hardly shown in CA 
pyramidal cells in the IF+Ischemia group; instead, the immuno-
reactivities were increased in non‑pyramidal cells, which were 
found to be astrocytes (31,32), compared to the Ischemia group. 
Nevertheless, there was no IF‑mediated neuronal protection in 
the hippocampal CA1 following tGCI. Our present study indi-
cates that IF could increase SOD2 and CAT expressions in CA1 
pyramidal cells in the IF+Sham groups and in non‑pyramidal 
cells in the IF+Ischemia group but does not protect neurons from 
ischemic injury in a gerbil model of tGCI, which is different 
from transient focal cerebral ischemia.

Activations of microglia and astrocytes in the acute phase 
of post‑ischemia are increased in response to ischemia‑induced 
neuronal damage in the gerbil hippocampal CA1  (18,33). 
The activations (gliosis) are one of the main reasons for the 
secondary damage that increases cytokine production during 
neuronal degeneration after ischemia (34,35). Our previous 
studies have shown that the attenuation of glial activation is 
strongly correlated with the protection of hippocampal CA1 

Figure 5. GPX immunohistochemistry. Immunoreactivities of GPX in the CA1 of (A) Sham, (B) IF+Sham, (C) Ischemia, and (D) IF+Ischemia groups 5 days 
after tGCI. GPX immunoreactivity in the IF+Sham group is shown in pyramidal neurons, and the immunoreactivity is not changed compared to the Sham 
group. In the IF+Ischemia, GPX immunoreactivity is shown in non‑pyramidal cells, and the immunoreactivity is not different from the Ischemia group. Scale 
bar=50 µm. SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum. (E) GPX immunoreactivity as percent values in pyramidal and non‑pyramidal 
cells (n=7 in each group, *P<0.05 vs. Sham group). Bars indicate the means ± SEM.
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Figure 7. F‑J B histofluorescence staining. F‑J B positive cells in the CA1 of (A) Sham, (B) IF+Sham, (C) Ischemia, and (D) IF+Ischemia groups 5 days after 
tGCI. In the Ischemia group, many F‑J B‑positive cells (star in C) are detected in the stratum pyramidale (SP). In the IF+Ischemia group, numbers of F‑J 
B‑positive cells (star in D) are similar to the Ischemia group. Scale bar=50 µm. (E) Number of F‑J B positive cells per 250x250 µm2 in the CA1 (n=7 in each 
group, *P<0.05 vs. Sham group). Bars indicate the means ± SEM. SO, stratum oriens; SR, stratum radiatum.

Figure 6. NeuN immunohistochemistry. NeuN immunoreactive neurons in the CA1 of (A) Sham, (B) IF+Sham, (C) Ischemia, and (D) IF+Ischemia groups 
5 days after tGCI. A few NeuN immunoreactive pyramidal neurons are shown in the stratum pyramidale (SP, star in C) in the Ischemia group. In the 
IF+Ischemia group, numbers of NeuN‑immunoreactive pyramidal neurons (star in D) are similar to the Ischemia group. The scale bar represents 400 µm for 
the top row and 50 µm for the bottom row. (E) Number of NeuN‑immunoreactive neurons per 250x250 µm2 in the CA1 (n=7 in each group, *P<0.05 vs. Sham 
group). Bars indicate the means ± SEM. CA, cornu ammonis; DG, dentate gyrus; SO, stratum oriens; SR, stratum radiatum.
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neurons from tGCI (36,37). It was reported that three months of 
IF could decrease seizure‑induced microgliosis in the lesioned 
hippocampus (38). It was reported that postoperative IF for a 
week after chronic cerebral hypoperfusion in rats significantly 
attenuated microglial activation in the hippocampus induced 
by chronic cerebral hypoperfusion  (30). Although postop-
erative IF reduces injury‑induced microglial activation in the 
hippocampus, as shown in our present study, preoperative IF 
prior to tGCI does not inhibit activations of microglia and 
astrocytes in the hippocampus induced by tGCI.

In summary, our results showed that preoperative IF 
increased immunoreactivities of SOD2 and CAT in CA1 
pyramidal cells before tGCI and in non‑pyramidal cells after 
tGCI. However, the IF did not protect death of CA1 pyramidal 
neurons following tGCI in gerbils. In this regard, we need to 

study the causes of the failure in protecting CA1 pyramidal 
neurons after 5 min of tGCI.
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