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Abstract. Curcumin (diferuloylmethane), an orange‑yellow 
component of turmeric or curry powder, is a polyphenol 
natural product isolated from the rhizome of Curcuma longa. 
For centuries, curcumin has been used in medicinal 
preparations and as a food colorant. In recent years, extensive 
in vitro and in vivo studies have suggested that curcumin 
possesses activity against cancer, viral infection, arthritis, 
amyloid aggregation, oxidation and inflammation. Curcumin 
exerts anticancer effects primarily by activating apoptotic 
pathways in cancer cells and inhibiting pro‑cancer processes, 
including inf lammation, angiogenesis and metastasis. 
Curcumin targets numerous signaling pathways associated 
with cancer therapy, including pathways mediated by p53, Ras, 
phosphatidylinositol‑3‑kinase, protein kinase B, Wnt‑β catenin 
and mammalian target of rapamycin. Clinical studies have 
demonstrated that curcumin alone or combined with other 
drugs exhibits promising anticancer activity in patients with 
breast cancer without adverse effects. In the present review, the 
chemistry and bioavailability of curcumin and its molecular 
targets in breast cancer are discussed. Future research 

directions are discussed to further understand this promising 
natural product.
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1. Introduction

Breast cancer is the most common cancer in women worldwide; it 
accounts for ~25% of all female malignancies and its prevalence 
is higher in developed countries (1). Breast cancer is the second 
leading cause of cancer‑associated mortality among women in 
the world (1,2). Current therapeutic strategies for breast cancer, 
which include surgery, chemotherapy and radiotherapy, may 
lack efficacy due to a high risk of relapse, poor patient response 
and the emergence of drug resistance (3). This supports the 
requirement to understand the genetic and biochemical factors 
underlying the uncontrolled cell proliferation in breast cancer, 
in order to develop novel therapies.

In breast cancer tissues, the overexpression of cyclin‑depen-
dent kinases (CDKs) and underexpression of tumor suppressor 
protein p53 is frequently observed (4). Simultaneously, a number 
of cell cycle regulatory proteins are downregulated, including 
the CDK inhibitors, p21, p27 and p57 (5‑8). Targeting these 
molecules may be effective in breast cancer therapy (5), and 
natural products that target these molecules are particularly 
attractive as they are likely to have high therapeutic potential 
and less likely to induce adverse effects (9,10). Plants are an 
excellent source of bioactive natural compounds  (7,11‑13), 
and polyphenolic compounds from plants frequently exert 
multiple therapeutic effects (14‑16). The polyphenolic phyto-
chemical curcumin [1,7‑bis(4‑hydroxy‑3‑methoxyphenyl)‑1,
6‑heptadiene‑3,5‑dione; Fig. 1], isolated from the powdered 
rhizome of Curcuma longa L. (Zingiberaceae) (17,18), interacts 
with numerous biological targets, including inflammatory 
mediators, growth factors, enzymes, carrier proteins, metal 
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ions, tumor suppressors, transcription factors, oncoproteins and 
cellular nucleic acids (19‑21). Discovered in 1815 by Vogel and 
Pelletier as a yellow pigment (4), curcumin has been consumed 
for >2,000 years in Asian countries, due to its various medicinal 
properties against human diseases, including cancer and 
auto‑immune diseases (10,17,22‑29).

In the present report, the molecular targets of curcumin 
and its potential benefits as a drug for breast cancer therapy 
are critically reviewed.

2. Metabolism

One of the limitations in the use of curcumin as a therapeutic 
agent is its rapid metabolism. Following absorption, the double 
bonds in the heptadienedione chain are reduced, leading to the 
production of a series of active metabolites (30).

Alcohol dehydrogenase reduces curcumin to tetra‑ and 
hexahydrocurcumin in the liver, and an unidentified microsomal 
enzyme leads to the formation of di‑ and octa‑hydrocurcumin (31). 
Hexahydrocurcuminol, hexahydrocurcumin, tetrahydrocur-
cumin, dihydrocurcumin and their glucuronide and sulfate 
conjugates have been detected in hepatocytes (31). Curcumin 
and its reduced metabolites undergo glucuronidation and are 
converted into curcumin glucuronide and curcumin sulfate (32).

3. Bioavailability

Curcumin has very low water solubility and a high oil‑water 
partition coefficient. Its water solubility is low at acidic and 
neutral pH; whereas, curcumin is soluble at an alkaline pH (33). 
However, the compound decomposes rapidly in alkaline media, 
with a half‑life in the range of a few min. Curcumin photode-
grades in organic solvents (33). In total, ~80% of a typical oral 
dose of curcumin passes unaltered through the gastrointestinal 
tract, and the majority of the absorbed compound ends up 
metabolized in the intestinal mucosa and liver (33). These prop-
erties limit the applications of curcumin as a bioactive agent.

To overcome the limitations of poor solubility, researchers 
have examined various strategies. Creating complexes of 
curcumin with cyclodextrins may significantly improve its 
water solubility and its stability under alkaline conditions, 
although such complexation decreases the photostability 
of curcumin (33,34). Stability of curcumin against alkaline 
hydrolysis may additionally be improved by encapsulating it 
in micelles composed of cationic surfactants, including cetyl 
trimethylammonium bromide and dodecyl trimethylammo-
nium bromide (33,34).

Emulsion‑based delivery systems have been demonstrated to 
stabilize active ingredients and increase their bioavailability (35), 
and the same is true for curcumin; conjugating it with 
phosphatidylcholine increases its bioavailability five‑fold. 
Mono‑polyethylene glycolylation of curcumin produces 
pro‑drugs that are stable in buffer at a physiological pH and 
readily release curcumin into human plasma (36).

Curcumin derivatization has additionally led to promising 
drug compounds. Based on structure‑activity studies of 
the tautomeric forms of curcumin, the diketone system was 
modified to generate two curcumin analogs, benzyloxime and 
isoxazole (37). These analogs have demonstrated much greater 
antitumor potency against MCF‑7 breast cancer cells and 

multidrug‑resistant transfected MCF‑7 cells (37). Furthermore, 
these curcumin analogs potently reduce expression of B‑cell 
lymphoma‑extra large (Bcl‑xL), B cell lymphoma 2 (Bcl‑2) 
and cyclooxygenase‑2 in the two cell lines (38).

Curcumin polymers (polycurcumins) have high drug 
loading efficiency and may be used as backbone‑type conju-
gates to stabilize and solubilize curcumin in water  (39). 
Tang et al (39) prepared high‑molecular‑weight curcumin poly-
curcumins through condensation polymerization of curcumin. 
Polyacetal‑based polycurcumin is highly cytotoxic to MCF‑7 
breast cancer cell lines and to SKOV‑3 intraperitoneal xeno-
graft tumors (40,41). This condensation approach protected 
curcumin from hydrolysis at all pH values examined, and from 
ultraviolet degradation. Loading curcumin into mixed poly-
meric micelles improved its oral bioavailability ~55‑fold (42).

4. Molecular targets of curcumin for breast cancer therapy

Curcumin inhibits breast cancer cell proliferation by the 
following mechanisms: i)  Inducing cell cycle arrest and 
p53‑dependent apoptosis; ii) altering expression of signaling 
proteins, including Ras, phosphatidylinositol‑3‑kinase (PI3K), 
protein kinase B (Akt), mammalian target of rapamycin (mTOR) 
and Wnt/β‑catenin; iii) downregulating transcription factors; 
and iv) inhibiting tumor growth and angiogenesis (Fig. 2).

Effects of curcumin on CDK/cyclin complexes. CDKs are 
serine/threonine kinases that control cell cycle progression by 
forming a complex with their respective cyclin partners (43,44). 
Altered expression of CDKs, overexpression of cyclins and 

Figure 2. Molecular targets of curcumin. PI3K, phosphatidylinositol‑3‑kinase; 
NF‑κB, nuclear factor‑κB; mTOR, mammalian target or rapamycin; CDK, 
cyclin‑dependent kinase; uPA, urinary plasminogen activator; MMP, 
matrix metalloproteinase; human epidermal growth factor receptor  2; 
VEGFR, vascular endothelial growth factor receptor; VEGF, vascular 
endothelial growth factor; OPN, osteopontin. Yellow indicates transcription 
factors and signaling molecules; green indicates tumor angiogenesis and 
growth‑associated proteins; blue indicates molecules associated with tumor 
proliferation.

Figure 1. Chemical structure of curcumin.
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loss of expression of CDK inhibitors are frequently observed 
in malignant cells (44). Dysregulated CDK activity provides 
cancer cells with a selective growth advantage. In this way, 
dysregulated overexpression of cyclin D1 triggers progression 
of aggressive breast cancer (45). Previous studies in mammary 
epithelial carcinoma cells suggest that curcumin inhibits 
cell cycle progression by blocking the association of cyclin 
D1 with CDK4, thus reducing cyclin D1 activity (46,47). In 
MCF‑7 breast cancer cells, curcumin reduces cell proliferation 
by arresting cells in G1 phase. The drug achieves this arrest 
by stimulating the proteosomal degradation of cyclin  E 
and upregulating CDK inhibitors, p53, p21 and p27; the 
addition of specific proteosomal inhibitors suppresses these 
effects of curcumin (48). Cyclin E is a nuclear protein that 
serves an important role in G1/S progression by interacting 
with its catalytic partner, CDK2, and by interacting with 
the retinoblastoma (Rb) protein  (49,50). It appears likely 
that the anti‑proliferative effects of curcumin are due to 
proteasome‑mediated downregulation of cyclin E and 
upregulation of CDK inhibitors (51).

The anti‑proliferative effects of curcumin appear to be 
selective to cells overexpressing CDK 2. In mammary carci-
noma cells, curcumin induces p53‑dependent apoptosis and 
causes G2 phase arrest. However, in normal human mammary 
cells, curcumin causes G0 cell cycle arrest by blocking the 
association between CDK 4 and CDK 6, and inhibiting the 
phosphorylation of Rb (52). In this way, curcumin also prevents 
the initiation of p53‑mediated apoptosis, which occurs only in 
cells arrested in G2 phase (52).

Effects of curcumin on the p53 pathway. The p53 protein 
is one of the most important tumor suppressor proteins, 
regulating a wide range of cellular processes, including cell 
proliferation, DNA damage and apoptosis (53). It is encoded 
by the tumor protein p53 gene, which is frequently mutated 
in numerous types of human cancer (53), leading to loss of 
cell proliferative control, DNA check points and DNA repair 
mechanisms. As a result, cancer cells become immortal. 
Restoring the function of p53 is an attractive therapeutic 
strategy in cancer therapy (54).

Curcumin induces apoptosis in breast cancer cells via 
p53‑dependent and ‑independent pathways. For instance, 
curcumin arrests the cell cycle and induces p53‑dependent 
apoptosis in MCF‑7 breast cancer cells  (55). Notably, 
curcumin exerts no anti‑proliferative effects on MDAH041 
cells lacking p53 or on TR9‑7 cells that express p53 at low 
levels; rather, its effects are most notable in p53‑expressing 
TR9‑7 and MCF‑7 cells. Expression of the pro‑apoptotic 
protein apoptosis regulator Bax (Bax) is also higher in 
curcumin‑treated MCF‑7 cells. These results suggest that 
curcumin exerts its anti‑proliferative effects via p53‑dependent 
and p53‑independent pathways (55,56).

Targets of curcumin in Ras signaling. Ras is a small trans-
membrane protein belonging to the large GTPase family of 
enzymes that hydrolyze guanosine triphosphate in order to 
transduce signals inside the cell (57). Mammalian cells have 
three Ras proteins (K‑, H‑ and N‑Ras), each of which serves a 
different function (57). Blocking oncogenic Ras signaling is an 
attractive strategy in cancer therapy.

Curcumin has been extensively studied for its effects on 
oncogenic Ras signaling pathways. In MCF‑10A human breast 
epithelial cells transformed using H‑Ras, curcumin induces 
reactive oxygen species production, which downregulates 
activity of matrix metalloproteinase (MMP)‑2 and Bcl‑2 and 
upregulates the activity of Bax and caspase‑3 (58).

Potentially acting through a similar mechanism, curcumin 
arrests Ras‑transfected HAG‑1 human adenocarcinoma 
cells in G2/M phase by inducing expression of extracellular 
signal‑regulated kinase 1/2 and Bax, and reducing expression 
of Bcl‑xL. These results suggest that curcumin may be a potent 
therapy against Ras‑overexpressing cancer (59). Preclinical 
studies in animals, and ultimately clinical trials, are required 
to clarify the therapeutic effect of curcumin in Ras‑induced 
cancer.

Targets of curcumin in PI3K/Akt/mTOR signaling. PI3Ks 
are a family of lipid kinases that phosphorylate inositol 
phospholipids and generate the secondary messenger phospha-
tidylinositol‑3,4,5‑trisphosphate in the plasma membrane (60). 
PI3K interacts with Akt to trigger the latter's translocation 
inside the cytoplasm. Activated Akt interacts with a number of 
substrates to perform numerous functions in cell survival, cell 
cycle progression and cell growth (60). Constitutive expression 
of PI3K and Akt, in addition to silencing of phosphatase and 
tensin homolog and glycogen synthase kinase 3β (GSK3β), 
are frequently observed in a number of human malignancies. 
Therefore, PI3K/Akt‑mediated signaling is an attractive target 
in cancer chemotherapy (61,62).

Cancer cells survive for a prolonged time by activating 
survival pathways involving PI3K, Akt and mTOR, in addition 
to anti‑apoptotic pathways involving Bcl‑2. Targeting survival 
and apoptosis pathways is likely to be essential for control-
ling highly metastatic breast cancer. Curcumin on its own 
weakly stimulates apoptosis in breast cancer cells; however, 
combining it with the PI3K‑specific inhibitor LY294002 
stimulates apoptosis more strongly (63,64). The authors of 
these previous studies hypothesized that the PI3K obstruc-
tion overcomes the oncogenic expression of Bcl‑2. Further 
studies are required to verify whether curcumin may inhibit 
PI3K/Akt/mTOR signaling in breast cancer cells and identify 
the mechanism(s) involved.

Targets of curcumin in Wnt/β‑catenin signaling. Wnts are 
a family of secreted glycoproteins that regulate multiple 
signaling pathways through β‑catenin‑dependent and 
‑independent mechanisms (65‑67). Wnts serve a crucial role in 
development, survival and metabolism. Inappropriate regula-
tion and hyperactivation of Wnt/β‑catenin signaling have been 
implicated in numerous human malignancies. Overexpression 
of β‑catenin leads to constitutive activation of cell prolifera-
tion (68), and tumor cells downregulate the tumor suppressor 
GSK3β, which limits the activity of β‑catenin by triggering 
its ubiquitin‑mediated proteosomal degradation. Therefore, 
targeting the Wnt/β‑catenin signaling pathway is an attractive 
approach in cancer therapy (69,70).

In MCF‑7 and MDA‑MB‑231 cells, curcumin arrests 
the cell cycle in G2/M cells by modulating Wnt/β‑catenin 
signaling. In these cells, curcumin upregulates GSK3β and 
causes loss of nuclear β‑catenin. Loss of nuclear β‑catenin 
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results in a loss of its downstream target cyclin D1 (71). This 
suggests that, at least in MCF‑7 and MDA‑MB‑231 cells, 
the antitumor effects of curcumin are due to abrogation of 
Wnt/β‑catenin signaling (71).

Targets of curcumin among nuclear factor‑κB (NF‑κB) tran‑
scription factors. NF‑κB is a family of transcription factors that 
are involved in the immune response and inflammation. Gene 
expression profiling studies suggest that the NF‑κB pathway 
is a key regulator in triple‑negative breast cancer (TNBC), 
with activation of NF‑κB signaling strongly implicated in the 
pathogenesis of specific TNBCs (72‑74). Cytoplasmic NF‑κB 
is bound to a group of inhibitory proteins known as inhibi-
tors of NF‑κB (IκB); accumulation of non‑phosphorylated 
IκB prohibits the translocation of NF‑κB from cytoplasm to 
nucleus, resulting in inactivation of NF‑κB and its downstream 
targets (74). NF‑κB promotes the transcription of numerous 
key regulators of cancer invasion and progression, including 
cytokines, chemokines, cell adhesion molecules and inducible 
pro‑inflammatory enzymes (74). In addition, NF‑κB has been 
postulated to be a useful marker of the epithelial‑mesenchymal 
transition (EMT) and invasiveness in breast cancer (19).

A number of previous studies suggest that curcumin 
inhibits NF‑κB expression and therefore additional down-
stream signaling pathways, ultimately leading to the silencing 
of inflammatory cytokines, including chemokine (C‑X‑C 
motif) ligand (CXCL)1 and CXCL2 (19); and to alterations in 
the expression of MMP‑9, urokinase plasminogen activator 
(uPA), uPA receptor, intercellular adhesion molecule 1 and 
chemokine receptor 4 (3,72,75). In this manner, curcumin is 
likely to inhibit the growth and invasion of breast cancer, in 
part, by downregulating NF‑κB signaling pathways.

Curcumin may modulate the expression of NF‑κB target 
genes (76,77), which include Bcl‑2, ornithine decarboxylase 
(ODC) and c‑myc, which are associated with apoptosis or cell 
survival (78). For example, ODC is the rate‑limiting enzyme in 
polyamine biosynthesis and curcumin has been demonstrated 
to suppress ODC activity and inhibit cell proliferation (79). 
Activation of the NF‑κB/Bcl‑2 pathway is associated with 
drug resistance in cancer cells (80).

Accumulating evidence suggests that targeting NF‑κB to 
inhibit cell growth and reverse EMT may be a novel thera-
peutic strategy in breast cancer.

Targets of curcumin in tumor angiogenesis. Angiogenesis is 
the normal physiological mechanism by which novel blood 
vessels are formed from pre‑existing blood vessels. It occurs 
during embryogenesis, menstruation and wound healing (81). 
Angiogenesis in tumors is crucial for cancer progression. Tumor 
cells procure nutrients for their uncontrolled growth through 
tumor angiogenesis  (81). Tumor cells constitutively produce 
pro‑angiogenic factors, including vascular endothelial growth 
factor (VEGF) and basic fibroblast growth factor, which curcumin 
may inhibit in order to modulate tumor angiogenesis (81,82).

Curcumin inhibits angiogenesis and growth of breast cancer 
tumors implanted into nude mice. These effects are associated 
with downregulated expression of a number of VEGF isomers, 
including VEGF‑A, VEGF‑C and VEGF receptor 2, in 
addition to decreased microvessel density (83). These results 
are in agreement with other previous studies demonstrating 

that suppression of VEGF function inhibits breast tumor 
growth  (83,84). In nude mice, which were implanted with 
MDA‑MB‑231 tumors and treated with osteopontin (OPN; 
additionally termed secreted phosphoprotein 1) to stimulate 
angiogenesis, curcumin blocked NF‑κB/cyclic AMP‑dependent 
transcription factor ATF‑4 binding and prevented OPN‑induced 
upregulation of VEGF (85). This suggests that curcumin acts 
as a potent anti‑angiogenic agent in regulating OPN‑induced 
tumor angiogenesis in breast cancer.

5. Potential risks and adverse side effects of curcumin

Curcumin causes blood thinning, which may decrease blood 
flow and increase the risk of ischemic stroke (86). It may also 
inhibit the ability of chemotherapeutics to induce production 
of reactive oxygen species and block the c‑Jun NH2‑terminal 
kinase pathway. In fact, curcumin may exert pro‑oxidant 
effects, similar to numerous other anti‑oxidants (87).

Curcumin significantly inhibits cyclophosphamide‑induced 
regression of human breast cancer xenografts in mice (88,89). 
In cultures of MCF‑7, MDA‑MB‑231 and BT‑474 human breast 
cancer cells, curcumin may inhibit the ability of camptothecin, 
mechlorethamine and doxorubicin to induce apoptosis by 
≤70% (18,90). Curcumin may also serve as an iron chelator 
to inhibit hypoxia inducible factor‑α prolyl hydroxylase 
activity (91). Therefore, further research is urgently required 
to establish whether patients with breast cancer undergoing 
chemotherapy should limit their intake of curcumin.

6. Conclusion

The available evidence suggests that curcumin, a polyphenolic 
compound derived from the dietary spice turmeric, is a 
non‑toxic, highly promising natural anti‑oxidant that exerts 
anticancer effects by targeting multiple molecules and pathways. 
By affecting different targets, curcumin modulates numerous 
cancer hallmarks, including cell proliferation, cancer signaling 
pathways, transcription factors and tumor angiogenesis. 
Curcumin may have applications as a novel drug in the near 
future to control various diseases, particularly breast cancer.

The clinical use of curcumin is limited by its poor 
bioavailability; however, specific novel derivatives have 
been prepared that may improve patient responses. Research 
is in progress on nanotechnology‑based formulations and 
delivery systems to improve curcumin pharmacokinetics. 
Possibilities include encapsulating curcumin into polymeric 
or lipid micelles, or liposomes, and combining or conjugating 
curcumin to ligands or antibodies that may target cancer 
cell receptors or other epitopes. Novel curcumin analogs 
and nanotechnology‑based formulations may overcome the 
limitations of oral administration of curcumin.
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