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Abstract. Long non-coding RNAs (IncRNAs) have been clas-
sically defined as regulatory RNA members >200 nucleotides
in length, without detectable open-reading frames to encode
proteins.PreviousstudieshavedemonstratedthatincRNAsserve
critical roles in multiple cancer types. Colon cancer-associated
transcript 1 (CCAT1), a novel cancer-associated IncRNA, is
significantly overexpressed in a number of malignancies.
Functionally, as an oncogenic IncRNA, CCAT1 is involved
in proliferation, migration, cell cycle progression, apoptosis,
chemoresistance and other biological processes of cancer cells
through complex regulation mechanisms in the cytoplasm
or nucleus. In clinical applications, CCAT1 is additionally
positively associated with histological differentiation, tumour
node metastasis stage, vascular invasion, overall survival and
recurrence-free survival, which demonstrates its important
role as a diagnostic and prognostic marker in cancer. The
present review summarises the current research progress of
the oncogenic potential and clinical uses of CCAT1 in various
human cancer types.
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1. Introduction

The increase of cancer occurrence is a health burden on society
worldwide (1-3). More and better prediction models, including
biomarkers or more complex bioinformatics, are required to
provide early diagnosis and effective therapy for cancer.

Over the past decade, accumulating evidence has identi-
fied that >90% of the human genome is transcribed, whereas,
<2% may be subsequently translated, which indicates that
the majority of the genome generates many thousands of
non-coding RNA (ncRNA) transcriptions (4). Benefiting
from the immense technical advances in high-throughput
sequencing of transcripts (5), numerous functional ncRNAs
have been verified to direct post-transcriptional gene expres-
sion or guide RNA modifications rather than encode proteins
in human cancer (5,6).

Long non-coding RNAs (IncRNAs), ncRNA members,
have been classically characterized as regulatory RNA
molecules >200 nucleotides, without detectable open-reading
frames to encode proteins (7,8). Based on the transcript
length, IncRNAs may be further classified as long-intergenic
non-coding RNA, very long intergenic non-coding RNA,
macroRNA or promoter-associated long RNA (9). Aberrant
expressions of carcinogenic or tumour-suppressive IncRNAs
have been identified in a broad spectrum of cancer types.
Homeobox (HOX) transcript antisense RNA (HOTAIR) (10)
serves as a pro-oncogenic capability marker, whereas, X
inactive specific transcript (11) serves as a tumour suppressor.
In addition, IncRNAs are involved in various biological
processes, including cell proliferation (12), migration (10),
differentiation (13), immune response (14) and apoptosis (15).
Furthermore, as modulators in epigenetic processes, InCRNAs
may adjust gene expression in chromatin modification,
transcription, and post-transcriptional processing (16). In
the nucleus, IncRNAs may serve as an organisational frame-
work involved in interactions between proteins and between
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protein or DNA (10,17), enhancing gene transcription from
the enhancer regions (enhancer RNA) (18) or their neigh-
bouring loci (ncRNA-a) (19). In the cytoplasm, IncRNAs
serve as a sponge to titrate proteins (12,20) or microRNAs
(miRNAs/miRs) (21). These characteristics suggest the impor-
tant roles of IncRNA applications in the diagnostic, prognostic
and therapeutic evaluation of cancer.

The IncRNA termed colon cancer-associated tran-
script-1 (CCAT1), additionally termed LOC100507056 or
cancer-associated region long non-coding RNA-5, has received
increased attention among cancer-associated IncRNAs (22,23).
Since its identification, a number of previous studies demon-
strated that CCAT1 is significantly upregulated in a number
of malignancies and serves a pivotal role in tumourigenesis; it
is thus of great value for diagnostic screening and therapy in
cancer (24-26).

In the present review, the currently available studies of
the clinical importance and functional regulatory mecha-
nisms of IncRNA CCAT1 in various human cancer types are
discussed.

2. Structure characterisation of CCAT1

CCATI1 was originally identified by Nissan et al (22) as a
highly specific biomarker upregulated in colon malignancy.
The CCATI1 gene is mapped to chromosome 8q24.21, which
is described as a ‘hot spot’ containing single-nucleotide
polymorphisms strongly involved in numerous cancer types
(Figs. 1 and 2) (22,27,28). Furthermore, CCAT1 spans a region
of 2,628 base pairs in length and has two isoforms: CCATI1-S
and CCATI1-L. CCATI-L overlaps with CCATI; however,
CCATI-L is exclusively positioned in the nucleus, whereas, the
short isoform-CCAT1-S is cytoplasmic (23,29). Additionally,
downregulated CCATI1-L results in the simultaneous disrup-
tion of CCATI-S, suggesting that CCAT1-S may be developed
from CCATI-L and that there may be a positive association
between them (23).

3. Functions and mechanisms of CCAT1

CCAT1 has been reported to be significantly upregulated in
various cancer tissues, including colorectal cancer (CRC),
lung cancer (LC), gastric cancer (GC) and hepatocellular
carcinoma (HCC), and is closely involved in proliferation,
cell cycle, apoptosis, migration, invasion, chemoresistance
and epithelial-to-mesenchymal transition (EMT) in various
tumour cells (Table I). In addition, CCAT]1 is positively associ-
ated with tumourigenesis, tumour invasion depth, lymph node
metastasis, higher tumour node metastasis (TNM) stage and
poor survival (Table IT). Mechanistically, CCAT1, activated by
c-Myc, may regulate target gene expression by binding protein
to epigenetically modulate the promoter histone methylation
of target gene expression in the nucleus (Fig. 2A and B), or
serving as competing endogenous RNA (ceRNA) to sponge
microRNA (Fig. 2C) and through involvement in the extracel-
lular signal-regulated kinase/mitogen-activated protein kinase
(ERK/MAPK) signaling pathway (Fig. 2D) in the cytoplasm.
Notably c-Myc activates CCAT1, which enhances c-Myc
expression via let-7, indicating there may be a feedback loop
between them (30,31).
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4.IncRNA CCAT1 in human cancer

CRC. CRC, the second-leading cause of mortality in the
United States, is a principal global health issue (1,32). With
the revelation of novel molecular and epigenetic mechanisms,
IncRNAs, including HOX transcript antisense RNA (33), colon
cancer-associated transcript 2 (34), metastasis-associated
lung adenocarcinoma transcript 1 (35), carcinoembryonic
antigen (36) and LINCO00152 (37), have become biological
targets for diagnostic, therapeutic and prognostic applications
in patients with CRC. However, they all have limitations in the
early diagnosis of CRC (38). Therefore, it is vital to identify
novel bio-targets associated with CRC tumourigenesis (39).

Through reverse transcription-quantitative polymerase
chain reaction analysis, Nissan et al (22) first demonstrated
that CCAT1 expression levels in the mucosa of colon adeno-
carcinoma were significantly higher compared with normal
colon tissues. A recent genome-wide association analysis in
CRC demonstrated the same result (40). In addition, in the
later stages of the disease, CCATI is strongly expressed in
early stages of tumourigenesis, including tumour-proximal
colonic epithelium and adenomatous polyps, which was
demonstrated by Alaiyan ef al (41) across the colon adeno-
carcinoma sequence. Elevated CCAT1 expression levels
are positively associated with advanced clinical stages,
lymphatic metastasis, local invasive depth, vascular invasion,
CA19-9, recurrence-free survival (RFS) and overall survival
(0OS) (30,42-44). Furthermore, CCAT1 expression levels are
significantly increased in the peripheral blood of patients
with CRC. In particular, at a mild phase, increased CCAT1
combined with increased plasma HOTAIR was able to more
powerfully diagnose patients with CRC from a group of
healthy controls (22,45). In addition, CCAT1-specific peptide
nucleic acid-based molecular beacons have been identified
as a diagnostic marker to detect CRC in vitro, ex vivo and
in situ (46). However, because of the relatively small number
of specimens in this previous study, extensive and multi-centre
randomized controlled trials are required.

In vitro, CCAT1 is overexpressed in CRC-derived cells
compared with normal colon-derived fibroblasts. Decreased
CCAT]1 was able to repress proliferation, migration, invasion
and EMT, and led to GO/G1 cell-cycle arrest in CRC cell
lines (30,42 .,43).

Previous studies suggested that c-Myc, which is a pivotal
transcriptional regulator significantly amplified in various
types of cancer, may directly combine with E-box elements
in the CCAT1 promoter regions to activate CCAT1 transcrip-
tion (Fig. 2A) (30,42). Additionally, CCAT1 may serve as
an enhancer-templated RNA to predict bromodomain and
extraterminal (BET)-mediated c-Myc regulation, and BET
inhibition JQI sensitivity in CRC, which has been observed in
specific previous studies with certain haematological malig-
nancies (4748).

This data suggests that the oncogene CCAT1 may serve
as a novel biomarker for the early diagnosis and prognosis of
CRC. In particular, it may be ideal for those patients who are
sensitive to BET inhibitor-JQI in the treatment of CRC.

Laryngeal squamous cell carcinoma (LSCC). LSCC is the
second most common head and neck malignancy (resulting in



MOLECULAR MEDICINE REPORTS 19: 771-782, 2019

MFE secondary structure

[

773

Figure 1. Coding potential analyses of CCATI transcripts. The CCAT1 prediction structure, according to MFE and partition function. The colour scale
indicates the confidence of the prediction for each base, with shades of red indicating strong confidence (rna.tbi.univie.ac.at/). CCATI, colon cancer-associated

transcript 1; MFE, minimum free energy.
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Figure 2. Underlying regulatory mechanisms of CCAT1 in human cancer. (A) C-Myc is able to directly bind to E-box element in CCAT1 promoter regions
to activate CCAT!1 transcription. (B) CCAT1, which may be activated by H3K27-acetylation, is able to serve as a scaffold for PRC2 and SUV39H1, and
modulate the histone methylation of promoter of SPRY4, thereby epigenetically silencing tumour suppressor gene SPRY4. (C) CCAT]1 additionally functions
as competing endogenous RNA by sponging microRNA to free its target mRNA for protein production. (D) CCAT1 may activate the ERK/MAPK signalling
pathway. CCATI, colon cancer-associated transcript 1; ERK/MAPK, extracellular signal-regulated kinase/mitogen-activated protein kinase; IncRNA, long
non-coding RNA; PRC2, polycomb repressive complex 2; SPRY4, sprouty RTK signalling antagonist 4; SUV39HI, suppressor of variegation 3-9 homolog 1.

high mortality rates) worldwide (49,50). Despite the progress
achieved in the diagnosis and therapy of LSCC in the past few
decades, the survival rate has not noticeably increased (51).
Therefore, novel molecular targets for LSCC are urgently
required.

CCATI expression was higher in LSCC compared with
matched normal tissues, and it was associated with advanced
clinical stage (31,52). Mechanistically, CCAT1 overexpression

promotes LSCC cell proliferation and invasion by suppressing
let-7 expression and enhancing its target genes Myc and
HMGAZ2, or by enhancing the zinc finger protein, X-linked, by
sponging microRNA-218 (Fig. 3) (31,52).

Esophageal squamous cell carcinoma (ESCC). ESCC is
developing at the fastest rate among all cancer types in
East Asia (53,54). Therefore, a deeper understanding of the
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Table II. Continued.

(Refs.)

Overexpression of IncCCAT1

Tumour type

First author, year

(100)

Modified tumour inflammation and

immunity microenviron

HPV-associated head and neck
squamous cell carcinoma

Ma, 2017

ment, myeloid-derived suppressor

cell recruitment and cancer

development
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AFP, a-fetoprotein; CCAT1, colon cancer-associated transcript 1; FIGO, Fédération Internationale de Gynécologie et d'Obstétrique; HPV, human papilloma virus; OS, overall survival; RFS, recurrence-free

survival; TNM, tumour node metastasis.

molecular basis underlying ESCC is required to improve diag-
nosis and treatment.

CCATl isfrequentlyincreased in ESCC, which partly results
from H3K?27-acetylation activation of promoter (Fig. 2B), and
it is an independent prognostic factor for advanced histological
grade of patients with ESCC (55). Furthermore, proliferation
and migration, in vitro and in vivo, are significantly supressed
following knockdown of CCAT1 (55). Zhang et al (55) iden-
tified that in the nucleus, CCAT]1 has the role of a modular
scaffold for polycomb repressive complex 2 and Suppressor Of
Variegation 3-9 Homolog 1. This combination modulates the
histone methylation of sprouty RTK signalling antagonist 4
(SPRY4) promoter, thereby epigenetically silencing tumour
suppressor genes SPRY4 (Fig. 2B). In the cytoplasm, CCAT1
upregulates HOXB13 as a molecular decoy for miR-7, thereby
facilitating cell viability and migration (Fig. 3).

GC. GC is one of the most lethal malignancies worldwide (1).
The expression of CCATI1 is notably upregulated in GC
compared with normal tissue (56,57). Notably, the CCAT1
expression levels in adjacent normal tissues from GC cases
were higher compared with a negative control group, and
recurrent GC tissues demonstrated the highest expression
levels among these groups (57). Furthermore, CCAT1 overex-
pression is positively associated with metastasis, TNM grade,
OS and RFS in patients with GC (58-60).

In vitro, abnormal CCAT1 expression levels promote GC
cell proliferation, migration and invasion (58,59). Similar to
CRC, c-Myc activates the promoter and increases CCAT1
expression levels by directly binding to E-box elements (58).
Zhang et al (56) demonstrated that CCAT1 was involved in the
ERK/MAPK signalling pathway to promote the growth of GC
(Fig. 2D). Another previous study suggested that CCAT1 may
additionally function as ceRNA by sponging miR-490 and free
miR-490 target heterogeneous nuclear RNP Al (hnRNPAT)
for tumourigenesis in GC (Fig. 3) (59); the relevance has been
verified in breast, colorectal, lung and glioma cancer (61-65).

HCC. HCC is the third leading cause of tumour-induced
mortality worldwide and accounts for a large proportion of
mortalities in China (3,66). Despite recent progress in experi-
mental oncology, patients with HCC continue to have poor
long-term prognosis (67). Therefore, it is crucial to identify
reliable biomarkers of HCC to develop novel clinical strategies
and increase the survival rates of patients with HCC.

CCATI expression levels are higher in HCC compared
with pair-matched healthy hepatic tissues, particularly in
highly metastatic HCC (25,68). Upregulation of CCAT1 has
been identified to be positively associated with tumour size,
liver cirrhosis, tumour number, vascular invasion, microvas-
cular invasion, capsular formation, Edmondson-Steiner grade
and a foetal protein, and it is an independent risk factor for
disease-free survival and OS (25,68-70). Additionally, CCAT1
overexpression significantly accelerates HCC cell prolifera-
tion, migration and invasion, in vitro (25,68,69).

Similar to CRC and LSCC, CCATI1 activated by
c-Myc (70), promotes HCC proliferation and metastasis by
functioning as a let-7 sponge to supress its endogenous targets,
HMGA?2 and c-Myc (25). Furthermore, the CCAT1/miR-200b
and CCATI1/miR-490-3p/cyclin-dependent kinase 1
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Let-7— miR-155 miR-410 miR-7 miR-181
HMGAZ2 Bcl-xl c-Myc ITPKB  HOXB13 CPEB2

miR-130 miR-148 miR-152F MiR-490
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CCATI

P[] ]

miR-33a r miR-218

| |

PIK3IP1 hnRNPA1 CDKA1 Bmi1 ZFX

Figure 3. CCAT]I interacts with various target genes by sponging different miRs. Bcl-x1, B cell lymphoma extra-large; CCAT]1, colon cancer-associated
transcript 1; CDK, cyclin-dependent kinase; CPEB, cytoplasmic polyadenylation element binding protein; HOXB, homeobox protein-B; HMGA, high mobility
group AT-Hook; hnRNPA, heterogeneous nuclear ribonucleoprotein A; ITPKB, inositol-trisphosphate 3-kinase B; miR, microRNA; SOX, (sex-determining

region Y)-box; ZFX, zinc finger protein X-linked.

regulatory pathway may additionally promote HCC progres-
sion (Fig. 3) (71,72). These findings implicate the potential role
of CCAT1 in HCC therapies.

Gallbladder cancer (GBC). Gallbladder cancer (GBC) is the
most common cancer of the biliary tract, and has a particularly
high incidence in Chile, Japan and northern India (73). Despite
the great efforts made to identify novel molecular abnormali-
ties that contribute to GBC, many remain unknown (74).

CCAT]1 is upregulated in GBC and is positively correlated
with tumour status, lymph node invasion and advanced TNM
stage (75). CCAT1 was able to improve the proliferation, migra-
tion and invasion of GBC cells in vitro (75). These effects are
dependent on its competitive binding to miR-218-5p, thereby
regulating Bmil (Fig. 3) (75).

Cholangiocarcinoma (CCA). Without typical symptoms and
sensitive indicators, the diagnosis of the majority of CCA
cases typically occurs at a late stage, with poor prognosis (76).
Therefore, identifying more efficient markers and examining
the molecular mechanism underlying the carcinogenesis and
progression of CCA is urgently required.

It was observed that CCAT1 expression levels are elevated
in CCA compared with the adjacent normal controls, and it is
positively associated with histological differentiation, lymph
node invasion, TNM stage and OS in patients with CCA (77).
A previous mechanistic study identified that CCAT]1 led to
migration, invasion and EMT activation by binding to miR-152
in CCA cells (78).

Pancreatic cancer (PC). PC is a lethal digestive system
malignancy (1) due to the late detection of the disease and the
lack of effective therapies for terminally staged tumours (79);
only 25% of patients with metastatic PC have a five-year
survival rate (80). Therefore, a comprehensive understanding
of the molecular mechanisms underlying PC tumourigenesis is
urgently required to identify novel therapeutic targets.

CCAT]1 expression levels are notably higher in PC speci-
mens and PC cell lines compared with matched noncancerous
controls (81). In addition, the silencing of CCAT1 inhibited
proliferation and migration,extending the cell cycle progression
and decreasing cyclin D1 expression in PC cells (82). In CRC,
GC and HCC, c-Myc was able to activate CCAT1 expression
by targeting its promoter at the E-box, thereby contributing to
tumourigenesis and metastasis in PC, suggesting that CCAT1
may serve as a potential therapeutic target for PC.

LC. LC is one of the frequent causes of cancer mortality
worldwide, resulting in more than one million mortalities
annually (83,84). Despite advancements in clinical and
experimental oncology, effective diagnostic and prognostic
biomarkers and alternative treatment options are still
required due to the late diagnosis and quick onset of chemo-
resistance (85).

Overexpression of CCAT1 is evident in non-small cell lung
cancer (NSCLC) and is associated with reduced OS times,
advanced disease stage and lymph node involvement (86-88).
Knockdown of CCAT1 suppressed the proliferation, migration
and invasion, and reversed the EMT of NSCLC cells (88).
Furthermore, CCAT1 was able to enhance cisplatin resis-
tance of NSCLC cells through the CCAT1/miR-130a-3p/
sex-determining region Y-box (SOX)4 axis (Fig. 3) (89).

As cigarette smoking is a key risk factor for LC,
Lu et al (90) determined that CCAT1 was able to regulate
neoplastic activity by epigenetically silencing miR-218 and
acting through Bmil, thereby promoting cell cycle progression
in the cigarette smoke extract (CSE)-induced carcinogenesis
of human bronchial epithelial (HBE) cells (Fig. 3). In a subse-
quent study, the authors additionally demonstrated that CCAT1
bound let-7c and subsequently upregulated c-Myc, which was
able to promote CSE-transformed HBE cell proliferation and
invasion (Fig. 3) (91).

CCAT1 is upregulated in the docetaxel-resistant lung
adenocarcinoma (LAD) cell line, and suppression of CCAT1
inhibits cell proliferation, enhances apoptosis, decreases
chemoresistance, and reverses the docetaxel-resistant LAD
cells-induced EMT phenotype (92). Furthermore, CCAT1
exerted the oncogenic function in LAD cells, partially by
competitive sponging (let-7c) to prevent the inhibition of B cell
lymphoma-extra-large, thereby resulting in chemoresistance
and EMT in docetaxel-resistant LAD cells (Fig. 3).

These results suggested that CCAT1 is a critical oncogene
associated with the diagnosis and prognosis of various types of
lung cancer, as well as a potential target for strengthening the
response to chemotherapeutic drugs in lung cancer.

Epithelial ovarian cancer (EOC). EOC, characterized
by quick disease progression, is a lethal gynaecological
cancer (66). CCAT1 upregulation in EOC was associated with
the International Federation of Gynaecology and Obstetrics
stage, histological grade, lymph node metastasis and poor
survival (93). In addition, CCAT1 promotes EOC cell migra-
tion, invasion and EMT by sponging miR-152 and miR-130b,
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which may function as a potential molecular target for EOC
(Fig. 3) (93.94).

Breast cancer (BC). BC is a prevalent malignancy among
women, and it affects approximately one million women world-
wide (95). Among patients with BC, high CCAT1 expression
levels are significantly associated with differentiation grade
and TNM stage compared with other clinicopathological
factors (96). Furthermore, reduced CCAT1 may improve breast
cancer radiosensitivity by negatively regulating miR-148b
expression (Fig. 3) (97). These previous studies provide a
crucial basis to identify more effective treatments for breast
cancer.

Other human cancer types. The aberrant upregula-
tion of CCAT1 was detected in human papillomavirus
(HPV)-associated head and neck squamous cell carcinomas
(HNSCC), cervical cancer, endometrial carcinoma, medul-
loblastoma, acute myeloid leukaemia (AML), osteosarcoma,
nasopharyngeal carcinoma (NPC), retinoblastoma (RB), mela-
noma and glioma cancer (26,98-107) (Tables I and II), and it
was associated with clinicopathological features, in addition
to clinical outcomes. Furthermore, CCAT1 may serve as an
intermediate in HPV16 infection and promote myeloid-derived
suppressor cell aggregation in HNSCC (100,108).

Mechanistically, CCAT1 may promote medulloblas-
toma cell proliferation and metastasis through the MAPK
signaling pathway (Fig. 2D), as in GC (101). In addition,
CCAT]1 inhibits monocytic differentiation and promotes AML
cell growth by sequestering tumour suppressive miR-155,
thereby upregulating c-Myc (Fig. 3) (102). Additionally, the
biological function of osteosarcoma cells was regulated by the
CCAT1/miR-148a/phosphatidyl inositol 3-kinase interacting
protein 1 signaling pathway (Fig. 3) (103). Wang et al (104)
observed that upregulated CCATI1 significantly weak-
ened the sensitivity of paclitaxel in NPC cells through the
miR-181a/CPEB?2 axis (Fig. 3).

CCATI1 promotes RB and melanoma tumourigenesis and
metastasis through negative modulation of miR-218-5p and
miR-33a, respectively (Fig. 3) (26,105). Furthermore, CCAT1
was able to promote glioma cell progress by inhibiting
miR-410 and miR-181b, which provides novel insight into the
proliferation of glioma (Fig. 3) (106,107).

5. Future directions

Overexpression of the oncogenic IncRNA CCAT1 occurs in
numerous cancer types, and positively correlates with clinical
progress and cell biological function via complex molecular
mechanisms. Notably, to date, the mechanism of ceRNA has
been investigated in a number of previous studies. Therefore,
further research is required to investigate the downstream
molecular mechanism of CCAT1 dysregulation. Furthermore,
CCATI1 may be activated by c-Myc and H3K27-acetylation
in various tumours, which suggests that the upstream regula-
tory mechanisms underlying CCAT1 deregulation in various
cancer types may be diverse and remain to be elucidated.
Pertinent to clinical practice, to improve the clinical utilisation
of CCAT1 as a biomarker for the diagnosis and treatment of
cancer, larger cohorts of CCAT1 are required in future studies.
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Additionally, identifying sensitive and high-throughput quan-
tification methods to identify CCAT1 as a specific and early
cancer biomarker, providing clinical benefits in future studies,
is required.
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