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Abstract. Long non-coding RNAs (lncRNAs) have been clas-
sically defined as regulatory RNA members >200 nucleotides 
in length, without detectable open‑reading frames to encode 
proteins. Previous studies have demonstrated that lncRNAs serve 
critical roles in multiple cancer types. Colon cancer‑associated 
transcript 1 (CCAT1), a novel cancer‑associated lncRNA, is 
significantly overexpressed in a number of malignancies. 
Functionally, as an oncogenic lncRNA, CCAT1 is involved 
in proliferation, migration, cell cycle progression, apoptosis, 
chemoresistance and other biological processes of cancer cells 
through complex regulation mechanisms in the cytoplasm 
or nucleus. In clinical applications, CCAT1 is additionally 
positively associated with histological differentiation, tumour 
node metastasis stage, vascular invasion, overall survival and 
recurrence‑free survival, which demonstrates its important 
role as a diagnostic and prognostic marker in cancer. The 
present review summarises the current research progress of 
the oncogenic potential and clinical uses of CCAT1 in various 
human cancer types.
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1. Introduction

The increase of cancer occurrence is a health burden on society 
worldwide (1‑3). More and better prediction models, including 
biomarkers or more complex bioinformatics, are required to 
provide early diagnosis and effective therapy for cancer.

Over the past decade, accumulating evidence has identi-
fied that >90% of the human genome is transcribed, whereas, 
<2% may be subsequently translated, which indicates that 
the majority of the genome generates many thousands of 
non‑coding RNA (ncRNA) transcriptions (4). Benefiting 
from the immense technical advances in high‑throughput 
sequencing of transcripts (5), numerous functional ncRNAs 
have been verified to direct post‑transcriptional gene expres-
sion or guide RNA modifications rather than encode proteins 
in human cancer (5,6).

Long non‑coding RNAs (lncRNAs), ncRNA members, 
have been classically characterized as regulatory RNA 
molecules >200 nucleotides, without detectable open‑reading 
frames to encode proteins (7,8). Based on the transcript 
length, lncRNAs may be further classified as long‑intergenic 
non‑coding RNA, very long intergenic non‑coding RNA, 
macroRNA or promoter‑associated long RNA (9). Aberrant 
expressions of carcinogenic or tumour‑suppressive lncRNAs 
have been identified in a broad spectrum of cancer types. 
Homeobox (HOX) transcript antisense RNA (HOTAIR) (10) 
serves as a pro‑oncogenic capability marker, whereas, X 
inactive specific transcript (11) serves as a tumour suppressor. 
In addition, lncRNAs are involved in various biological 
processes, including cell proliferation (12), migration (10), 
differentiation (13), immune response (14) and apoptosis (15). 
Furthermore, as modulators in epigenetic processes, lncRNAs 
may adjust gene expression in chromatin modification, 
transcription, and post‑transcriptional processing (16). In 
the nucleus, lncRNAs may serve as an organisational frame-
work involved in interactions between proteins and between 
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protein or DNA (10,17), enhancing gene transcription from 
the enhancer regions (enhancer RNA) (18) or their neigh-
bouring loci (ncRNA‑a) (19). In the cytoplasm, lncRNAs 
serve as a sponge to titrate proteins (12,20) or microRNAs 
(miRNAs/miRs) (21). These characteristics suggest the impor-
tant roles of lncRNA applications in the diagnostic, prognostic 
and therapeutic evaluation of cancer.

The lncRNA termed colon cancer‑associated tran-
script‑1 (CCAT1), additionally termed LOC100507056 or 
cancer‑associated region long non‑coding RNA‑5, has received 
increased attention among cancer‑associated lncRNAs (22,23). 
Since its identification, a number of previous studies demon-
strated that CCAT1 is significantly upregulated in a number 
of malignancies and serves a pivotal role in tumourigenesis; it 
is thus of great value for diagnostic screening and therapy in 
cancer (24‑26).

In the present review, the currently available studies of 
the clinical importance and functional regulatory mecha-
nisms of lncRNA CCAT1 in various human cancer types are 
discussed.

2. Structure characterisation of CCAT1

CCAT1 was originally identified by Nissan et al (22) as a 
highly specific biomarker upregulated in colon malignancy. 
The CCAT1 gene is mapped to chromosome 8q24.21, which 
is described as a ‘hot spot’ containing single‑nucleotide 
polymorphisms strongly involved in numerous cancer types 
(Figs. 1 and 2) (22,27,28). Furthermore, CCAT1 spans a region 
of 2,628 base pairs in length and has two isoforms: CCAT1‑S 
and CCAT1‑L. CCAT1‑L overlaps with CCAT1; however, 
CCAT1‑L is exclusively positioned in the nucleus, whereas, the 
short isoform‑CCAT1‑S is cytoplasmic (23,29). Additionally, 
downregulated CCAT1‑L results in the simultaneous disrup-
tion of CCAT1‑S, suggesting that CCAT1‑S may be developed 
from CCAT1‑L and that there may be a positive association 
between them (23).

3. Functions and mechanisms of CCAT1

CCAT1 has been reported to be significantly upregulated in 
various cancer tissues, including colorectal cancer (CRC), 
lung cancer (LC), gastric cancer (GC) and hepatocellular 
carcinoma (HCC), and is closely involved in proliferation, 
cell cycle, apoptosis, migration, invasion, chemoresistance 
and epithelial‑to‑mesenchymal transition (EMT) in various 
tumour cells (Table I). In addition, CCAT1 is positively associ-
ated with tumourigenesis, tumour invasion depth, lymph node 
metastasis, higher tumour node metastasis (TNM) stage and 
poor survival (Table II). Mechanistically, CCAT1, activated by 
c‑Myc, may regulate target gene expression by binding protein 
to epigenetically modulate the promoter histone methylation 
of target gene expression in the nucleus (Fig. 2A and B), or 
serving as competing endogenous RNA (ceRNA) to sponge 
microRNA (Fig. 2C) and through involvement in the extracel-
lular signal‑regulated kinase/mitogen‑activated protein kinase 
(ERK/MAPK) signaling pathway (Fig. 2D) in the cytoplasm. 
Notably c‑Myc activates CCAT1, which enhances c‑Myc 
expression via let‑7, indicating there may be a feedback loop 
between them (30,31).

4. lncRNA CCAT1 in human cancer

CRC. CRC, the second‑leading cause of mortality in the 
United States, is a principal global health issue (1,32). With 
the revelation of novel molecular and epigenetic mechanisms, 
lncRNAs, including HOX transcript antisense RNA (33), colon 
cancer‑associated transcript 2 (34), metastasis‑associated 
lung adenocarcinoma transcript 1 (35), carcinoembryonic 
antigen (36) and LINC00152 (37), have become biological 
targets for diagnostic, therapeutic and prognostic applications 
in patients with CRC. However, they all have limitations in the 
early diagnosis of CRC (38). Therefore, it is vital to identify 
novel bio‑targets associated with CRC tumourigenesis (39).

Through reverse transcription‑quantitative polymerase 
chain reaction analysis, Nissan et al (22) first demonstrated 
that CCAT1 expression levels in the mucosa of colon adeno-
carcinoma were significantly higher compared with normal 
colon tissues. A recent genome‑wide association analysis in 
CRC demonstrated the same result (40). In addition, in the 
later stages of the disease, CCAT1 is strongly expressed in 
early stages of tumourigenesis, including tumour‑proximal 
colonic epithelium and adenomatous polyps, which was 
demonstrated by Alaiyan et al (41) across the colon adeno-
carcinoma sequence. Elevated CCAT1 expression levels 
are positively associated with advanced clinical stages, 
lymphatic metastasis, local invasive depth, vascular invasion, 
CA19‑9, recurrence‑free survival (RFS) and overall survival 
(OS) (30,42‑44). Furthermore, CCAT1 expression levels are 
significantly increased in the peripheral blood of patients 
with CRC. In particular, at a mild phase, increased CCAT1 
combined with increased plasma HOTAIR was able to more 
powerfully diagnose patients with CRC from a group of 
healthy controls (22,45). In addition, CCAT1‑specific peptide 
nucleic acid‑based molecular beacons have been identified 
as a diagnostic marker to detect CRC in vitro, ex vivo and 
in situ (46). However, because of the relatively small number 
of specimens in this previous study, extensive and multi‑centre 
randomized controlled trials are required.

In vitro, CCAT1 is overexpressed in CRC‑derived cells 
compared with normal colon‑derived fibroblasts. Decreased 
CCAT1 was able to repress proliferation, migration, invasion 
and EMT, and led to G0/G1 cell‑cycle arrest in CRC cell 
lines (30,42,43).

Previous studies suggested that c‑Myc, which is a pivotal 
transcriptional regulator significantly amplified in various 
types of cancer, may directly combine with E‑box elements 
in the CCAT1 promoter regions to activate CCAT1 transcrip-
tion (Fig. 2A) (30,42). Additionally, CCAT1 may serve as 
an enhancer‑templated RNA to predict bromodomain and 
extraterminal (BET)‑mediated c‑Myc regulation, and BET 
inhibition JQ1 sensitivity in CRC, which has been observed in 
specific previous studies with certain haematological malig-
nancies (47,48).

This data suggests that the oncogene CCAT1 may serve 
as a novel biomarker for the early diagnosis and prognosis of 
CRC. In particular, it may be ideal for those patients who are 
sensitive to BET inhibitor‑JQ1 in the treatment of CRC.

Laryngeal squamous cell carcinoma (LSCC). LSCC is the 
second most common head and neck malignancy (resulting in 
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high mortality rates) worldwide (49,50). Despite the progress 
achieved in the diagnosis and therapy of LSCC in the past few 
decades, the survival rate has not noticeably increased (51). 
Therefore, novel molecular targets for LSCC are urgently 
required.

CCAT1 expression was higher in LSCC compared with 
matched normal tissues, and it was associated with advanced 
clinical stage (31,52). Mechanistically, CCAT1 overexpression 

promotes LSCC cell proliferation and invasion by suppressing 
let‑7 expression and enhancing its target genes Myc and 
HMGA2, or by enhancing the zinc finger protein, X‑linked, by 
sponging microRNA‑218 (Fig. 3) (31,52).

Esophageal squamous cell carcinoma (ESCC). ESCC is 
developing at the fastest rate among all cancer types in 
East Asia (53,54). Therefore, a deeper understanding of the 

Figure 2. Underlying regulatory mechanisms of CCAT1 in human cancer. (A) C‑Myc is able to directly bind to E‑box element in CCAT1 promoter regions 
to activate CCAT1 transcription. (B) CCAT1, which may be activated by H3K27‑acetylation, is able to serve as a scaffold for PRC2 and SUV39H1, and 
modulate the histone methylation of promoter of SPRY4, thereby epigenetically silencing tumour suppressor gene SPRY4. (C) CCAT1 additionally functions 
as competing endogenous RNA by sponging microRNA to free its target mRNA for protein production. (D) CCAT1 may activate the ERK/MAPK signalling 
pathway. CCAT1, colon cancer‑associated transcript 1; ERK/MAPK, extracellular signal‑regulated kinase/mitogen‑activated protein kinase; lncRNA, long 
non‑coding RNA; PRC2, polycomb repressive complex 2; SPRY4, sprouty RTK signalling antagonist 4; SUV39H1, suppressor of variegation 3‑9 homolog 1.

Figure 1. Coding potential analyses of CCAT1 transcripts. The CCAT1 prediction structure, according to MFE and partition function. The colour scale 
indicates the confidence of the prediction for each base, with shades of red indicating strong confidence (rna.tbi.univie.ac.at/). CCAT1, colon cancer‑associated 
transcript 1; MFE, minimum free energy.
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molecular basis underlying ESCC is required to improve diag-
nosis and treatment.

CCAT1 is frequently increased in ESCC, which partly results 
from H3K27‑acetylation activation of promoter (Fig. 2B), and 
it is an independent prognostic factor for advanced histological 
grade of patients with ESCC (55). Furthermore, proliferation 
and migration, in vitro and in vivo, are significantly supressed 
following knockdown of CCAT1 (55). Zhang et al (55) iden-
tified that in the nucleus, CCAT1 has the role of a modular 
scaffold for polycomb repressive complex 2 and Suppressor Of 
Variegation 3‑9 Homolog 1. This combination modulates the 
histone methylation of sprouty RTK signalling antagonist 4 
(SPRY4) promoter, thereby epigenetically silencing tumour 
suppressor genes SPRY4 (Fig. 2B). In the cytoplasm, CCAT1 
upregulates HOXB13 as a molecular decoy for miR‑7, thereby 
facilitating cell viability and migration (Fig. 3).

GC. GC is one of the most lethal malignancies worldwide (1). 
The expression of CCAT1 is notably upregulated in GC 
compared with normal tissue (56,57). Notably, the CCAT1 
expression levels in adjacent normal tissues from GC cases 
were higher compared with a negative control group, and 
recurrent GC tissues demonstrated the highest expression 
levels among these groups (57). Furthermore, CCAT1 overex-
pression is positively associated with metastasis, TNM grade, 
OS and RFS in patients with GC (58‑60).

In vitro, abnormal CCAT1 expression levels promote GC 
cell proliferation, migration and invasion (58,59). Similar to 
CRC, c‑Myc activates the promoter and increases CCAT1 
expression levels by directly binding to E‑box elements (58). 
Zhang et al (56) demonstrated that CCAT1 was involved in the 
ERK/MAPK signalling pathway to promote the growth of GC 
(Fig. 2D). Another previous study suggested that CCAT1 may 
additionally function as ceRNA by sponging miR‑490 and free 
miR‑490 target heterogeneous nuclear RNP A1 (hnRNPA1) 
for tumourigenesis in GC (Fig. 3) (59); the relevance has been 
verified in breast, colorectal, lung and glioma cancer (61‑65).

HCC. HCC is the third leading cause of tumour‑induced 
mortality worldwide and accounts for a large proportion of 
mortalities in China (3,66). Despite recent progress in experi-
mental oncology, patients with HCC continue to have poor 
long‑term prognosis (67). Therefore, it is crucial to identify 
reliable biomarkers of HCC to develop novel clinical strategies 
and increase the survival rates of patients with HCC.

CCAT1 expression levels are higher in HCC compared 
with pair‑matched healthy hepatic tissues, particularly in 
highly metastatic HCC (25,68). Upregulation of CCAT1 has 
been identified to be positively associated with tumour size, 
liver cirrhosis, tumour number, vascular invasion, microvas-
cular invasion, capsular formation, Edmondson‑Steiner grade 
and α foetal protein, and it is an independent risk factor for 
disease‑free survival and OS (25,68‑70). Additionally, CCAT1 
overexpression significantly accelerates HCC cell prolifera-
tion, migration and invasion, in vitro (25,68,69).

Similar to CRC and LSCC, CCAT1 activated by 
c‑Myc (70), promotes HCC proliferation and metastasis by 
functioning as a let‑7 sponge to supress its endogenous targets, 
HMGA2 and c‑Myc (25). Furthermore, the CCAT1/miR‑200b 
and CCAT1/miR‑490‑3p/cyclin‑dependent kinase 1 
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regulatory pathway may additionally promote HCC progres-
sion (Fig. 3) (71,72). These findings implicate the potential role 
of CCAT1 in HCC therapies.

Gallbladder cancer (GBC). Gallbladder cancer (GBC) is the 
most common cancer of the biliary tract, and has a particularly 
high incidence in Chile, Japan and northern India (73). Despite 
the great efforts made to identify novel molecular abnormali-
ties that contribute to GBC, many remain unknown (74).

CCAT1 is upregulated in GBC and is positively correlated 
with tumour status, lymph node invasion and advanced TNM 
stage (75). CCAT1 was able to improve the proliferation, migra-
tion and invasion of GBC cells in vitro (75). These effects are 
dependent on its competitive binding to miR‑218‑5p, thereby 
regulating Bmi1 (Fig. 3) (75).

Cholangiocarcinoma (CCA). Without typical symptoms and 
sensitive indicators, the diagnosis of the majority of CCA 
cases typically occurs at a late stage, with poor prognosis (76). 
Therefore, identifying more efficient markers and examining 
the molecular mechanism underlying the carcinogenesis and 
progression of CCA is urgently required.

It was observed that CCAT1 expression levels are elevated 
in CCA compared with the adjacent normal controls, and it is 
positively associated with histological differentiation, lymph 
node invasion, TNM stage and OS in patients with CCA (77). 
A previous mechanistic study identified that CCAT1 led to 
migration, invasion and EMT activation by binding to miR‑152 
in CCA cells (78).

Pancreatic cancer (PC). PC is a lethal digestive system 
malignancy (1) due to the late detection of the disease and the 
lack of effective therapies for terminally staged tumours (79); 
only 25% of patients with metastatic PC have a five‑year 
survival rate (80). Therefore, a comprehensive understanding 
of the molecular mechanisms underlying PC tumourigenesis is 
urgently required to identify novel therapeutic targets.

CCAT1 expression levels are notably higher in PC speci-
mens and PC cell lines compared with matched noncancerous 
controls (81). In addition, the silencing of CCAT1 inhibited 
proliferation and migration, extending the cell cycle progression 
and decreasing cyclin D1 expression in PC cells (82). In CRC, 
GC and HCC, c‑Myc was able to activate CCAT1 expression 
by targeting its promoter at the E‑box, thereby contributing to 
tumourigenesis and metastasis in PC, suggesting that CCAT1 
may serve as a potential therapeutic target for PC.

LC. LC is one of the frequent causes of cancer mortality 
worldwide, resulting in more than one million mortalities 
annually (83,84). Despite advancements in clinical and 
experimental oncology, effective diagnostic and prognostic 
biomarkers and alternative treatment options are still 
required due to the late diagnosis and quick onset of chemo-
resistance (85).

Overexpression of CCAT1 is evident in non‑small cell lung 
cancer (NSCLC) and is associated with reduced OS times, 
advanced disease stage and lymph node involvement (86‑88). 
Knockdown of CCAT1 suppressed the proliferation, migration 
and invasion, and reversed the EMT of NSCLC cells (88). 
Furthermore, CCAT1 was able to enhance cisplatin resis-
tance of NSCLC cells through the CCAT1/miR‑130a‑3p/ 
sex‑determining region Y‑box (SOX)4 axis (Fig. 3) (89).

As cigarette smoking is a key risk factor for LC, 
Lu et al (90) determined that CCAT1 was able to regulate 
neoplastic activity by epigenetically silencing miR‑218 and 
acting through Bmi1, thereby promoting cell cycle progression 
in the cigarette smoke extract (CSE)‑induced carcinogenesis 
of human bronchial epithelial (HBE) cells (Fig. 3). In a subse-
quent study, the authors additionally demonstrated that CCAT1 
bound let‑7c and subsequently upregulated c‑Myc, which was 
able to promote CSE‑transformed HBE cell proliferation and 
invasion (Fig. 3) (91).

CCAT1 is upregulated in the docetaxel‑resistant lung 
adenocarcinoma (LAD) cell line, and suppression of CCAT1 
inhibits cell proliferation, enhances apoptosis, decreases 
chemoresistance, and reverses the docetaxel‑resistant LAD 
cells‑induced EMT phenotype (92). Furthermore, CCAT1 
exerted the oncogenic function in LAD cells, partially by 
competitive sponging (let‑7c) to prevent the inhibition of B cell 
lymphoma‑extra‑large, thereby resulting in chemoresistance 
and EMT in docetaxel‑resistant LAD cells (Fig. 3).

These results suggested that CCAT1 is a critical oncogene 
associated with the diagnosis and prognosis of various types of 
lung cancer, as well as a potential target for strengthening the 
response to chemotherapeutic drugs in lung cancer.

Epithelial ovarian cancer (EOC). EOC, characterized 
by quick disease progression, is a lethal gynaecological 
cancer (66). CCAT1 upregulation in EOC was associated with 
the International Federation of Gynaecology and Obstetrics 
stage, histological grade, lymph node metastasis and poor 
survival (93). In addition, CCAT1 promotes EOC cell migra-
tion, invasion and EMT by sponging miR‑152 and miR‑130b, 

Figure 3. CCAT1 interacts with various target genes by sponging different miRs. Bcl‑xl, B cell lymphoma extra‑large; CCAT1, colon cancer‑associated 
transcript 1; CDK, cyclin‑dependent kinase; CPEB, cytoplasmic polyadenylation element binding protein; HOXB, homeobox protein‑B; HMGA, high mobility 
group AT‑Hook; hnRNPA, heterogeneous nuclear ribonucleoprotein A; ITPKB, inositol‑trisphosphate 3‑kinase B; miR, microRNA; SOX, (sex‑determining 
region Y)‑box; ZFX, zinc finger protein X‑linked.
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which may function as a potential molecular target for EOC 
(Fig. 3) (93,94).

Breast cancer (BC). BC is a prevalent malignancy among 
women, and it affects approximately one million women world-
wide (95). Among patients with BC, high CCAT1 expression 
levels are significantly associated with differentiation grade 
and TNM stage compared with other clinicopathological 
factors (96). Furthermore, reduced CCAT1 may improve breast 
cancer radiosensitivity by negatively regulating miR‑148b 
expression (Fig. 3) (97). These previous studies provide a 
crucial basis to identify more effective treatments for breast 
cancer.

Other human cancer types. The aberrant upregula-
tion of CCAT1 was detected in human papillomavirus 
(HPV)‑associated head and neck squamous cell carcinomas 
(HNSCC), cervical cancer, endometrial carcinoma, medul-
loblastoma, acute myeloid leukaemia (AML), osteosarcoma, 
nasopharyngeal carcinoma (NPC), retinoblastoma (RB), mela-
noma and glioma cancer (26,98‑107) (Tables I and II), and it 
was associated with clinicopathological features, in addition 
to clinical outcomes. Furthermore, CCAT1 may serve as an 
intermediate in HPV16 infection and promote myeloid‑derived 
suppressor cell aggregation in HNSCC (100,108).

Mechanistically, CCAT1 may promote medulloblas-
toma cell proliferation and metastasis through the MAPK 
signaling pathway (Fig. 2D), as in GC (101). In addition, 
CCAT1 inhibits monocytic differentiation and promotes AML 
cell growth by sequestering tumour suppressive miR‑155, 
thereby upregulating c‑Myc (Fig. 3) (102). Additionally, the 
biological function of osteosarcoma cells was regulated by the 
CCAT1/miR‑148a/phosphatidyl inositol 3‑kinase interacting 
protein 1 signaling pathway (Fig. 3) (103). Wang et al (104) 
observed that upregulated CCAT1 significantly weak-
ened the sensitivity of paclitaxel in NPC cells through the 
miR‑181a/CPEB2 axis (Fig. 3).

CCAT1 promotes RB and melanoma tumourigenesis and 
metastasis through negative modulation of miR‑218‑5p and 
miR‑33a, respectively (Fig. 3) (26,105). Furthermore, CCAT1 
was able to promote glioma cell progress by inhibiting 
miR‑410 and miR‑181b, which provides novel insight into the 
proliferation of glioma (Fig. 3) (106,107).

5. Future directions

Overexpression of the oncogenic lncRNA CCAT1 occurs in 
numerous cancer types, and positively correlates with clinical 
progress and cell biological function via complex molecular 
mechanisms. Notably, to date, the mechanism of ceRNA has 
been investigated in a number of previous studies. Therefore, 
further research is required to investigate the downstream 
molecular mechanism of CCAT1 dysregulation. Furthermore, 
CCAT1 may be activated by c‑Myc and H3K27‑acetylation 
in various tumours, which suggests that the upstream regula-
tory mechanisms underlying CCAT1 deregulation in various 
cancer types may be diverse and remain to be elucidated. 
Pertinent to clinical practice, to improve the clinical utilisation 
of CCAT1 as a biomarker for the diagnosis and treatment of 
cancer, larger cohorts of CCAT1 are required in future studies. 

Additionally, identifying sensitive and high‑throughput quan-
tification methods to identify CCAT1 as a specific and early 
cancer biomarker, providing clinical benefits in future studies, 
is required.
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