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Abstract. Multiple sclerosis (MS) is a chronic inflamma-
tory disease of the central nervous system of autoimmune 
etiopathogenesis, and is characterized by various neurological 
symptoms. Glatiramer acetate and interferon‑β are adminis-
tered as first‑line treatments for this disease. In non‑responsive 
patients, several second‑line therapies are available, including 
natalizumab; however, a percentage of MS patients does not 
respond, or respond partially. Therefore, it is of the utmost 
importance to develop a diagnostic test for the prediction of 
drug response in patients suffering from complex diseases, 
such as MS, where several therapeutic options are already 
available. By a machine learning approach, the UnCorrelated 
Shrunken Centroid algorithm was applied to identify a subset 
of genes of CD4+ T cells that may predict the pharmacological 
response of relapsing‑remitting MS patients to natalizumab, 
before the initiation of therapy. The results from the present 
study may provide a basis for the design of personalized 
therapeutic strategies for patients with MS.

Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease 
of the central nervous system of autoimmune etiopathogen-
esis, and is characterized by neurological symptoms  (1). 
A total of ~90% of patients with MS are diagnosed with 
relapsing‑remitting disease, that involve acute periods 
of neurological dysfunctions followed by a period of 

recovery (2). Glatiramer acetate and interferon‑β (IFN‑β) are 
administered as first‑line therapies. In patients non‑respon-
sive to treatment, several second‑line therapies are available, 
including natalizumab and fingolimod (3). Natalizumab is 
a monoclonal antibody against the α4 subunit (CD49d) of 
α4 integrins [α4β1 (VLA‑4) and α4β7), that prevents the 
transmigration of leukocytes across the blood‑brain barrier 
by inhibiting interactions between α4β1 integrin/vascular 
cell adhesion molecule‑1 and mucosal vascular addressin 
cell adhesion molecule‑1 (4). In 2012, a longitudinal study 
assessing the effects of natalizumab on 333 patients with 
MS revealed that 69‑88% of patients exhibited a posi-
tive outcome in all Patient‑Reported Outcomes measures 
assessed  (5). In the Natalizumab Safety and Efficacy 
in Relapsing Remitting Multiple Sclerosis (AFFIRM) 
trial (ClinicalTrials.gov Identifier: NCT00027300), of 
942  patients, 627 were randomly selected for treatment 
with natalizumab and 315 were administered a placebo. 
The results revealed that natalizumab reduced the risk 
of sustained disability progression by 42% in a 2‑year 
time‑frame and decreased the rate of clinical relapse in 
1 year by 68%, leading to an 83% reduction in the accu-
mulation of new or enlarging T‑2 hyperintense lesions (6). 
Additionally, the results of a SENTINEL trial indicated 
that 67% of patients receiving natalizumab plus IFN‑β‑1a 
remained free of new or enlarging T2‑lesions compared 
with 30% of patients receiving IFN‑β‑1a alone (7). These 
findings indicate that despite the high efficacy, a percentage 
of patients with MS do not respond, or respond partially to 
natalizumab. Therefore, it is of the utmost importance to 
develop a diagnostic test to predict drug response in patients 
suffering from complex diseases, such as MS, in which 
several therapeutic options are readily available. This could 
lead to a double‑fold advantage: Patients would benefit by 
avoiding ineffective therapies and healthcare costs would be 
notably reduced. In the present study, a machine learning 
approach was utilized to identify a subset of genes that may 
predict the response of patients with MS to natalizumab 
prior to the initiation of therapy.
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Materials and methods

Molecular patterns of pharmacological resistance to 
natalizumab. For the identification of the molecular patterns 
underlying the pharmacological resistance to natalizumab in 
MS, we selected the GSE44964 microarray dataset, available 
from the Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/). The dataset comprised whole‑genome expres-
sion data from CD4+ T cells isolated from patients with MS 
and stimulated in  vitro with precoated anti‑CD3/‑CD28 
monoclonal antibodies for 48 h. The Agilent Sureprint G3 
Human Gene Expression 8x60k platform was used to generate 
the dataset (Agilent Technologies, Inc., Santa Clara, CA, 
USA). The raw data were quantile normalized and batch 
effect‑corrected using ComBat v2 (8). The patients were of 
Swedish origin and had relapsing‑remitting disease. The 
GSE44964 dataset comprises data generated from two 
different microarray platforms. To avoid obtaining biased 
results, the data of two platforms were not combined; thus, 
analysis was conducted using the largest set of samples only. 
Patients were diagnosed with MS according to the McDonald 
criteria  (9) and prospectively classified as low responders 
(LRs, n=6), if at least one period of relapse occurred during the 
follow‑up period (3 years) and as high responders (HRs, n=6), 
providing no relapse was observed. Other parameters, such as 
magnetic resonance imaging could be used for the classifica-
tion of LRs and HRs; however, the relapse rate is considered 
as a primary endpoint of several phase 2/3 clinical trials (6), 
and classifying patients as responsive and non‑responsive on 
the basis of whether relapse had occurred or not is appropriate 
for a preliminary transcriptomic analysis. All samples were 
collected for gene expression analysis prior to the initiation 
of natalizumab treatment. The LR and HR groups were 
matched for sex, age, Expanded Disability Status Scale 
score (10) and disease duration (11). A total of 5/6 patients in 
the groups were males; the age of patients was 36±6.3 and 
33.7±7.1 years old for LRs and HRs, respectively. Statistical 
differences between HR and LR patients were assessed using 
LIMMA version 3.26.8 (Linear models for microarray data) 
in R version 3.2.3 (12). P<0.01 was considered to indicate a 
statistically significant difference. Statistical analysis and 
principal component analysis (PCA) were performed using 
MultiExperiment Viewer software (http://mev.tm4.org/). Gene 
Ontology (GO) analysis was performed using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
v6.8 web‑based tool (13,14). Functional annotation provided by 
DAVID comprises >40 annotation categories, including GO 
terms, protein‑protein interactions, protein domains, disease 
associations, pathways, homology, gene function, gene tissue 
expression and literature. Network analysis was performed 
using the GeneMania utility (15).

Identif ication of biomarkers for natalizumab respon-
siveness. In order to identify a specific gene expression 
signature for predicting patient responsiveness to 
natalizumab treatment, the UnCorrelated Shrunken Centroid 
(UCSC; http://home.cc.umanitoba.ca/~psgendb/birchho-
medir/BIRCHDEV/doc/MeV/manual/usc.html) algorithm was 
used. UCSC analysis was performed with the probes that were 
determined to be significantly modulated in HRs compared 

with the LR group. Cross‑validation was conducted using the 
following parameters: 5‑fold and 10‑fold cross‑validation; 
each cross‑validation run was divided five‑fold and therefore, 
a total 10 cross‑validation runs were performed. Δ‑(shrinkage 
threshold) and ρ‑(correlation threshold) values were empiri-
cally selected so that the smallest number of classification 
errors were obtained using the fewest genes. Subsequently, 
PCA and Hierarchical Clustering (HCL) was performed using 
only the set of the identified predictors. For HCL, Euclidean 
distance and average linkage degree were used.

Results

HR and LR patients have different transcriptomic patterns. 
Statistical analysis of the transcriptomic differences between 
CD4+ T cells from patients of the HR and LR groups revealed 
45 significant probes (Table I). PCA (Fig. 1A) produced two 
main clusters that contained HRs and LRs, respectively. The 
results indicated that the mRNA expression levels of several 
genes notably differed between natalizumab‑responsive and 
non‑responsive patients, and that a distinct pattern of gene 
expression could be associated with natalizumab resistance. 
Functional annotation revealed that the most enriched 
categories and their associated genes were: ‘Lipid‑binding’ 
[oxysterol binding protein like 6 (OSBPL6), fatty acid 
binding protein 3 (FABP3), estrogen receptor 1 (ESR1) and 
sorting nexin 10 (SNX10)], ‘estrogen‑responsive protein Efp 
controls cell cycle and breast tumors growth’ [ESR1 and 
stratifin (SFN)], ‘cytoplasm’ [OSBPL6, ESR1, SFN, amyloid β 
precursor‑like protein 1 (APLP1), inorganic pyrophosphatase 
PPA1), tropomyosin 3 (TPM3), 20S proteasome subunit β‑2 
(PSMB7), RAB28, member RAS oncogene family (RAB28), 
regulator of G‑protein signaling 5, FABP3, TBC1 domain 
family member  32 (TBC1D32), SNX10 and coiled‑coil 
domain‑containing protein 8] and ‘protein localization to 
cilium’ (SNX10 and TBC1D32) (Fig.  1B). A regulatory 
network comprising the significant genes and the top 20 
related genes, was presented as Fig. 1C. The computational 
gene network prediction tool GeneMania identified the DNA 
topoisomerase II α gene to interact with PPA1, TNFAIP3 
interacting protein 3, PSMB3, RAB28, APLP1, ESR1 and ring 
finger protein 113A. Other nodes were represented by PSMB7, 
alanyl‑tRNA synthetase, APLP1 and ESR1 (Fig. 1C).

Machine learning‑identified genes for predicting natalizumab 
responsiveness. To identify a specific gene signature for natali-
zumab responsiveness, the UCSC algorithm was applied to the 
significant probes identified. The following parameters were 
selected: Δ=1 and ρ=1 for UCSC analysis. A total of 17 predic-
tors of the 45 probes (Fig. 2A) were identified from UCSC 
analysis that were able to classify HR and LR samples with 
89.2% agreement with the clinical data (Fig. 2B). Consistent 
with these findings, HCL and PCA based on the 17 markers were 
able to accurately separate HR and LR patients (Fig. 2C and D). 
The 17 identified predictors were presented in Table II.

Discussion

Several studies have investigated expression array pheno-
typing as a means for predicting drug response and clinical 
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Table I. List of genes significantly modulated between LRs and HRs CD4+ T cells.

	 Gene	 Gene			L   og fold
Probe	 accession no.	 symbol	 Gene name	 P‑value	 change

A_19_P00317412		  XLOC_000787		  0.0048	 ‑0.4088
A_19_P00317731		  XLOC_002473		  0.0078	 0.6845
A_19_P00319311				    0.0046	 0.6016
A_19_P00321466				    0.0079	 0.5516
A_19_P00805263		  XLOC_001851		  0.0088	 0.3698
A_19_P00807336				    0.0030	 ‑0.5004
A_23_P108823	 NM_032523	 OSBPL6	 Oxysterol binding protein‑like 6	 0.0054	 ‑0.3303
A_23_P112187	 NM_032843	 FIBCD1	 Fibrinogen C domain containing 1	 0.0059	 ‑1.1805
A_23_P164958	 NM_032040	 CCDC8	 Coiled‑coil domain containing 8	 0.0044	 0.6849
A_23_P27983	 NM_005166	 APLP1	 Amyloid β (A4) precursor‑like protein 1	 0.0077	‑ 0.7417
A_23_P381017	 NM_152559	 WBSCR27	 Williams Beuren syndrome chromosome	 0.0051	 0.8273
			   region 27
A_23_P386478	 NM_024873	 TNIP3	 TNFAIP3 interacting protein 3	 0.0065	 ‑0.9948
A_23_P398172	 NM_020819	 FAM135A	 Family with sequence similarity 135, member A	 0.0099	 0.7579
A_23_P401547	 NM_015480	 PVRL3	 Poliovirus receptor‑related 3	 0.0076	 0.4645
A_23_P54205	 NM_017926	 C14orf118	 Chromosome 14 open reading frame 118	 0.0067	 0.6402
A_23_P77135	 NM_080650	 ATPBD4	 ATP binding domain 4	 0.0084	 1.0763
A_23_P90523	 NM_024578	 OCEL1	 Occludin/ELL domain containing 1	 0.0025	 ‑0.3799
A_24_P62783	 NM_004102	 FABP3	 Fatty acid binding protein 3, muscle and heart	 0.0016	 ‑0.6532
			   (mammary‑derived growth inhibitor)
A_24_P920048	 AK092807	 LOC100127972	 Uncharacterized LOC100127972	 0.0043	 0.9088
A_32_P204376	 NM_001012421	 ANKRD20A2	 Ankyrin repeat domain 20 family, member A2	 0.0084	 0.3258
A_32_P7204	 NM_004249	 RAB28	 RAB28, member RAS oncogene family	 0.0057	 0.8683
A_32_P797019	 XM_003403482	 NPEPL1	 Aminopeptidase‑like 1	 0.0060	 0.6953
A_32_P80245	 NM_001109809	 ZFP57	 Zinc finger protein 57 homolog (mouse)	 0.0042	 1.0614
A_33_P3221925	 NM_152730	 C6orf170	 Chromosome 6 open reading frame 170	 0.0018	 0.6414
A_33_P3227269	 NR_024256	 FLJ45983	 Uncharacterized LOC399717	 0.0047	 0.9719
A_33_P3231297	 NM_003851	 CREG1	 Cellular repressor of E1A‑stimulated genes 1	 0.0073	 ‑0.3014
A_33_P3233273	 NM_001142928	 LRRC61	 Leucine rich repeat containing 61	 0.0067	 0.4877
A_33_P3243093	 NM_003617	 RGS5	 Regulator of G‑protein signaling 5	 0.0042	 ‑0.7003
A_33_P3271241	 NM_021129	 PPA1	 Pyrophosphatase (inorganic) 1	 0.0079	 ‑0.3602
A_33_P3273552	 NM_002282	 KRT83	 Keratin 83	 0.0004	 ‑0.9603
A_33_P3289536	 NM_001199835	 SNX10	 Sorting nexin 10	 0.0082	 0.9177
A_33_P3292724	 BC017576			   0.0042	 0.6890
A_33_P3333600		  LOC400950	 Uncharacterized LOC400950	 0.0078	 ‑0.6855
A_33_P3338674	 NR_033298	 CCDC163P	 Coiled‑coil domain containing 163, pseudogene	 0.0006	 ‑1.1794
A_33_P3341474	 NM_001080412	 ZBTB38	 Zinc finger and BTB domain containing 38	 0.0067	 0.7430
A_33_P3346193	 NM_001043351	 TPM3	 Tropomyosin 3	 0.0022	 0.8160
A_33_P3354514	 BC047507	 SLC2A13	 Solute carrier family 2 (facilitated glucose	 0.0004	 0.4126
			   transporter), member 13
A_33_P3379356	 NM_001122742	 ESR1	 Estrogen receptor 1	 0.0062	 0.5516
A_33_P3382489				    0.0056	 0.6209
A_33_P3387110	 NR_015419	 LOC145783	 Uncharacterized LOC145783	 0.0081	 ‑0.5672
A_33_P3389286	 NM_006142	 SFN	 Stratifin	 0.0059	 0.7813
A_33_P3400292				    0.0094	 ‑0.5263
A_33_P3407429		  PSMB7	 Proteasome (prosome, macropain) subunit, 	 0.0052	 ‑0.4364
			   β type, 7
A_33_P3541279	 AF116649			   0.0021	 0.8729
A_33_P3876414	 AJ272176	 C17orf6	 Chromosome 17 open reading frame 6	 0.0090	 0.5759
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prognosis (16‑18), and for the classification of diseases (18‑25)
the most common lymphoid malignancy in adults, is curable 
in less than 50% of patients. Prognostic models based on 
pre‑treatment characteristics, such as the International 
Prognostic Index (IPI. Predicting diagnostic classes based on 
a sample using its expression profile is known as supervised 
learning or classification. The use of microarray data, although 

practical, poses the problem of predicting diagnostic classes 
using a number of genes that is notably higher than the number 
of sample types available. Therefore, it is necessary to select 
subsets of genes that are relevant for the characterization of the 
different diagnostic classes. In addition, the identification of 
specific subsets of genes may improve the classification accu-
racy, allow the development of cost‑effective diagnostic tests 

Figure 1. Molecular patterns of pharmacological resistance to natalizumab. For the identification of the molecular patterns underlying the pharmacological 
resistance to natalizumab in MS, we selected the GSE44964 microarray dataset that included expression data from CD4+ T cells isolated from patients with 
MS, which were stimulated in vitro with anti‑CD3/‑CD28 monoclonal antibodies for 48 h. Statistical differences between HR (n=6) and LR (n=6) patients 
were assessed using LIMMA. (A) Principal component analysis was performed using MultiExperiment Viewer software and the genes significantly modulated 
between HR and LR patients. The distribution of the samples of the first two components was presented. (B) Gene Ontology analysis for the genes significantly 
modulated between HR and LR patients was performed using the Database for Annotation, Visualization and Integrated Discovery v6.8 web‑based tool. 
(C) Network analysis for genes significantly modulated between HR and LR patients was performed using the GeneMania. HR, high responder; LR, low 
responder; NF‑κB, nuclear factor‑κB.
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Figure 2. Prediction of pharmacological response to natalizumab. In order to determine a specific gene expression signature for predicting responsiveness to 
natalizumab treatment, the UCSC algorithm was applied to the genes significantly modulated between HR and LR patients. (A) The experimental procedure. 
(B) The number of classification errors obtained from UCSC analysis using different Δ‑values (C) Hierarchical clustering of the 17 predictor genes obtained 
via UCSC analysis. (D) Principal component analysis using the 17 predictor genes obtained via UCSC analysis. The distribution of the samples on the first 
three components. HR, high responder; LR, low responder; UCSC, UnCorrelated Shrunken Centroid.

Table II. Predictors of natalizumab responsiveness.

Probe	 Gene accession no.	 Gene symbol	D escription

A_33_P3273552	 NM_002282	 KRT83	 Keratin 83
A_33_P3338674	 NR_033298	 CCDC163P	 Coiled‑coil domain containing 163, pseudogene
A_24_P62783	 NM_004102	 FABP3	 Fatty acid binding protein 3, muscle and heart
			   (mammary‑derived growth inhibitor)
A_33_P3221925	 NM_152730	 C6orf170	 Chromosome 6 open reading frame 170
A_33_P3541279	 AF116649		
A_33_P3346193	 NM_001043351	 TPM3	 Tropomyosin 3
A_33_P3243093	 NM_003617	 RGS5	 Regulator of G‑protein signaling 5
A_32_P80245	 NM_001109809	 ZFP57	 Zinc finger protein 57 homolog (mouse)
A_24_P920048	A K092807	LOC 100127972	U ncharacterized LOC100127972
A_33_P3227269	 NR_024256	 FLJ45983	 Uncharacterized LOC399717
A_23_P381017	 NM_152559	 WBSCR27	 Williams Beuren syndrome chromosome region 27
A_32_P7204	 NM_004249	 RAB28	 RAB28, member RAS oncogene family
A_23_P112187	 NM_032843	 FIBCD1	 Fibrinogen C domain containing 1
A_33_P3389286	 NM_006142	 SFN	 Stratifin
A_23_P386478	 NM_024873	 TNIP3	 TNFAIP3 interacting protein 3
A_33_P3289536	 NM_001199835	 SNX10	 Sorting nexin 10
A_23_P77135	 NM_080650	 ATPBD4	 ATP binding domain 4
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and may provide novel biological insight into certain diseases. 
Classification can be defined as a supervised learning approach, 
in which the classes of a series of samples are inputted to an 
algorithm. This is distinct from unsupervised clustering, in 
which no prior knowledge of the samples is available. The aim 
of classification is to identify the smallest possible subgroup 
of genes highly associated with the known sample classes. 
The UCSC algorithm is based on the ‘Shrunken Centroid’ 
algorithm reported by Tibshirani et al (25). Briefly, genes are 
considered one at a time and the difference between the class 
centroid (the mean expression in a class) of a gene and the 
overall centroid (the mean expression level across all classes) 
of a gene is compared with the within‑class standard devia-
tion plus a Δ‑value, which is determined by cross‑validation, 
in order to minimize classification errors. In the present 
study, the UCSC algorithm was applied for the identification 
of a subset of genes that could predict the pharmacological 
response to natalizumab treatment among patients with 
relapsing‑remitting MS. Natalizumab is a disease‑modifying 
drug that can effectively reduce the frequency of relapse and 
short‑term disability progression in relapsing‑remitting MS, 
and it is often used as second‑line treatment in patients exhib-
iting active disease, despite treatment with glatiramer acetate 
or IFN‑β (26).

To the best of our knowledge, the present study is the 
first to identify, at the whole‑genome level, the genes that 
were significantly modulated in HR patients compared with 
the LR group. Our findings suggest that a specific gene 
expression profile of CD4+ T cells may characterize the 
pharmacological responsiveness to natalizumab in patients 
with MS. Interestingly, no significant differences in the 
transcription levels of CD49d and CD29, which encode the 
target of natalizumab comprising the α4 and β1 subunits 
of VLA‑4, were observed between the HR and LR groups 
of patients (data not shown). Additionally, we applied 
machine learning to select the minimum number of genes 
able to predict the response to natalizumab. The results 
indicate the genes that may be relevant for P4 medicine, 
which constitutes predictive, preventative, personalized and 
participatory medicine  (27). At present, the mechanisms 
of resistance to natalizumab remains largely unknown. 
Recently, Cavaliere et al (28) applied molecular dynamics 
simulation to determine whether a polymorphism could 
induce conformational changes in VLA‑4, affecting the 
binding affinity with natalizumab; expression profiling of 
circulating blood cells should be conducted for the identifica-
tion of biomarkers of natalizumab resistance. The role of the 
genes identified in our study requires further investigation; 
however, certain genes may be involved in immunity and 
the pathology of MS. In particular, the Ras‑related protein, 
Rab‑28, has been detected in the serum of Alzheimer's 
disease and MS patients (29). TPM3 was determined to be 
phosphorylated following T cell costimulation, resulting in 
downregulated interleukin‑2‑stimulated T cells  (30). The 
locus 3 kb upstream of the zinc finger 57, that encodes a 
protein likely to act as a transcriptional repressor, has been 
reported to be hypomethylated in CD4+ T cells from patients 
with MS compared with healthy controls (31). Increasing 
efforts are required to validate our findings determine of the 
role of the genes involved.

The use of biomarkers to predict natalizumab resistance in 
MS would lead to notable therapeutic and economic benefits; 
however, our study has several limitations. The number 
of patients is limited and no external validation could be 
performed. In addition, it has not been disclosed by the original 
authors of the microarray datasets whether natalizumab treat-
ment was administered as first‑line therapy or after failure 
with other medications, such as glatiramer acetate or IFN‑β. 
Furthermore, a comparison with other second‑line drugs, such 
as fingolimod, should be conducted. Finally, the expression 
profiles of unsorted and unstimulated circulating cell popula-
tions, such as whole blood cells or peripheral blood mononuclear 
cells should be determined for the development of simple and 
economically viable diagnostic tests. Despite these limita-
tions of the present study, findings may serve as a basis for the 
design of personalized therapeutic options for patients with MS.
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