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Abstract. Geniposide, as a type of iridoid glycoside, has 
antioxidative capacity. However, the mechanism underlying 
the effect of geniposide in cadmium (cd)-induced osteoblast 
injury remains only partly elucidated. in the present study, cell 
counting Kit-8 (ccK-8) was used to determine Mc-3T3-e1 
cell viability. Flow cytometry was used to determine the rate of 
apoptosis and levels of reactive oxygen species (roS). oxidative 
stress-related factors were assessed using enzyme-linked 
immunosorbent method (eliSa). Quantitative real-time poly-
merase chain reaction (qPcr) and western blotting were used 
to evaluate apoptosis- and bone formation-related genes and 
nuclear factor erythroid 2-related factor (nrf2) signaling. it 
was demonstrated that geniposide increased the viability of the 
cd-treated Mc-3T3-e1 cells. Geniposide decreased apoptosis 
and roS accumulation compared to these parameters in the cd 
group. Geniposide attenuated oxidative stress-related factors, 
malondialdehyde and lactate dehydrogenase and increased 
antioxidant key enzyme superoxidase dismutase (Sod). The 
expression levels of Bax, Bcl-2 and survivin were modulated 
by geniposide. additionally, the mrna and protein expres-
sion of the receptor activator of nF-κB ligand (ranKl) and 
osterix were significantly increased, while osteoprotegerin 
was decreased by geniposide treatment compared to the cd 
groups. Geniposide also enhanced nrf2, heme oxygenase-1 
(Ho-1) and nad(P)H quinone dehydrogenase 1 (nQo1) 
expression. The present study identified a potential agent for 
the treatment of cd-induced osteoblast injury. 

Introduction

cadmium, an environmental pollutant, seriously affects public 
health worldwide. a large number of studies have shown that 

cadmium exerts multi-organ and multi-system toxicity, and that 
it is able to produce carcinogenic, orthodontic and mutagenic 
effects, for example, muscle wastage, hemolysis, immunosup-
pression, and a decrease in fertility (1-4). ‘itai-itai’ disease 
was first known to the world after mining‑related cadmium 
poisoning in Japan in 1955 (5,6). Bone is a main target organ 
for cadmium toxicity. Previous studies have indicated that 
cadmium may damage osteoblasts in culture by decreasing 
bone calcium and prostaglandin 2 (PGe2) levels (7-9). it has 
also been confirmed that cadmium affects bone metabolism 
both directly and indirectly (10). researchers also demon-
strated that the osteotoxicity of cadmium may be caused by 
alterations to vitamin d metabolism and disruption of the 
balance of calcium absorption and excretion (11,12). Moreover, 
cadmium damage directly increases the risk of bone fracture 
and osteoporosis, and cadmium can affect the activation of 
osteoclasts and osteoblasts, leading to imbalance between 
bone resorption and formation (13-18).

under normal circumstances, the body or cells constantly 
produce free radicals, while the antioxidant system scavenges 
these free radicals. Such a dynamic balance maintains a stable 
metabolism in contrast to the condition in which an imbalance 
would cause free radical accumulation and lipid peroxida-
tion (19). cadmium not only induces the initiation of oxidative 
damage, produces lipid peroxide, destroys the intracellular 
state of redox equilibrium, but also interferes with the func-
tion of the antioxidant system. cadmium mainly mediates 
oxidative stress through an indirect reaction pathway, largely 
by reducing the level of antioxidants in cells and mediating 
mitochondrial functional damage, increasing the production 
of reactive oxygen species (roS) (20-23). Therefore, the toxic 
effects of cadmium on osteoblasts may be the result of oxida-
tive stress and roS levels.

Geniposide, a type of iridoid glycoside, is the main active 
component of Gardenia jasminoides (rubiaceae). Geniposide 
is considered to have anti‑inflammatory, antioxidant activity as 
well as antitumor properties (24-28). researchers have reported 
that geniposide also exhibits effects on brain by reducing 
inflammatory response of microglial cells and protecting the 
neural tissue from cerebral ischemia (29,30); and on digestive 
system diseases, namely by suppressing helicobacter pylori 
infections (31). Geniposide activates osteoblasts to facilitate 
osteogenesis, and suppresses osteoclast activity and inhibits 
bone resorption (32). in addition, geniposide may promote 
the growth of osteoblast Mc3T3-e1 cells, and suppress 
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H2o2-induced apoptosis (33). To the best of our knowledge, 
current investigations have focused heavily on the antioxidative 
capacity of geniposide. recent studies have shown that genipo-
side protected Pc12 cells from oxidative damage through its 
radical scavenging activity (34,35). Geniposide was also found 
to protect against oxygen and glucose deprivation-induced 
neuronal cell death in rat hippocampal slice cultures (36). 
Thus, it was speculated that geniposide may protect osteoblasts 
from oxidative stress induced by cadmium.

The present study aimed to determine the protective 
effects of geniposide against cadmium-induced osteoblast 
(Mc-3T3-e1) injury, and to investigate its underlying protec-
tive mechanisms with a focus on oxidative stress.

Materials and methods

Reagents. Geniposide (purity >98%) was purchased from 
Pure-one Bio Technology, co., ltd (Shanghai, china). 
Geniposide was dissolved in water, pH 7.4. cadmium chloride 
(cdcl2) was purchased from Sigma-aldrich; Merck KGaa 
(darmstadt, Germany).

Cell culture and morphological observation. rat Mc-3T3-e1 
cells (riken cell Bank, Tsukuba, ibaraki, Japan) were cultured 
in dulbecco's modified eagle's medium (dMeM; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) with 10% (v/v) 
fetal bovine serum (Gibco; Thermo Fisher Scientific, Inc.) and 
100 u/ml penicillin (or 100 µg/ml streptomycin) in a 37˚C incu-
bator with 5% co2 humidified atmosphere. The morphology 
of primary cultured Mc-3T3-e1 cells was observed using an 
inverted microscope (x40).

Cell Counting Kit‑8 (CCK‑8) assay. The ccK-8 assay kit 
(Beyotime institute of Biotechnology, Haimen, china) was used 
to measure cell viability. Mc-3T3-e1 cells (5x103 cells/well) 
were cultured in 96-well plates and were treated with cdcl2 

(0-20 µM). Geniposide (100, 200 and 400 µg/ml) was used as 
previously described (37) to treat the cells in order to detect its 
effect on cdcl2-induced injury.

For the cell viability assay, 10 µl ccK-8 solution was 
added into each well, and the cells were incubated for another 
3 h at 37˚C. Cell viability was determined using a microplate 
reader as previously described (38) by reading the optical 
density at a wavelength of 450 nm, and at a reference wave-
length of 630 nm.

Flow cytometry. cell apoptosis was detected in Mc-3T3-e1 
cell cultures using a flow cytometer. The cells were harvested 
and re-suspended in annexin binding buffer at 1x105 cells/ml. 
Then, the suspension was incubated with annexin V-FiTc and 
propidium iodide (Pi) [cat. no. 70-aP101-60; MultiSciences 
(lianke) Biotech co., ltd., Hangzhou, china] in the dark for 
15 min at 4˚C. The apoptosis of the cell samples was analyzed 
by flow cytometry with BD CellQuest Pro Software version 1.2 
(Bd Biosciences, San Jose, ca, uSa).

The roS levels were measured using 2',7'-dichloro-
dihydrofluorescein diacetate (dcFH-da) as previously 
described (39). dcFH-da (Sigma-aldrich; Merck KGaa), 
without fluorescence, can enter the cell membrane and form 
DCFH in the cell. DCFH is then oxidized to form a fluorescent 

substance dcF in the presence of roS. Mc-3T3-e1 cells were 
stained with dcFda and held for 30 min at room tempera-
ture. Finally, DCF fluorescence levels were measured by flow 
cytometry and the data were analyzed using Summit Software 
(version 4.3; dako; agilent Technologies, inc., Santa clara, 
ca, uSa).

Enzyme‑linked immunosorbent assay (ELISA). oxidative 
stress-related factors malondialdehyde (Mda; cat. 
no. ml077384; enzyme-linked Biotechnology co., ltd., 
Shanghai, china), lactate dehydrogenase (ldH; cat. 
no. ml076593; enzyme-linked Biotechnology co., ltd.) 
and superoxidase dismutase (Sod; cat. no. ml077379; 
enzyme-linked Biotechnology co., ltd.) were measured 
using eliSa. Mc-3T3-e1 cells were seeded on a 24-well 
plate, and cell-free supernatants were harvested after 3 h. The 
concentrations of Mda, ldH and Sod in the supernatants of 
Mc-3T3-e1 cells were determined using eliSa kits following 
the manufacturer's instructions.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). rT-qPcr was performed for the purpose of exam-
ining gene expression profiles of Bax, Bcl‑2, survivin, NF‑κB 
ligand (ranKl), osteoprotegerin (oPG), osterix, nuclear 
factor erythroid 2-related factor (nrf2), heme oxygenase-1 
(Ho-1) and nad(P)H quinone dehydrogenase 1 (nQo1). 
Total rna was extracted using Trizol® regent (invitrogen; 
Thermo Fisher Scientific, Inc.) following the manufacturer's 
instructions. rna was reverse transcribed into cdna using 
GoScript™ rT kit (Promega corporation, Madison, Wi, 
USA). The RT temperature protocol consisted of 37˚C for 
15 min and at 85˚C for 5 sec. RT‑qPCR was conducted using 
SYBR Fast qPCR Mix (Invitrogen; Thermo Fisher Scientific, 
Inc.) The thermocycling conditions were: 94˚C for 3 min for an 
initial denaturation, followed by 30 denaturation cycles at 94˚C 
for 5 sec, annealing and elongation at 60˚C for 30 sec; and 
final extension at 72˚C for 10 min. The primer sequences are 
summarized in Table i. The quantity of rna was calculated 
using the 2-ΔΔcq method (40), and the level of expression of an 
rna was normalized to GaPdH (denoted ‘relative expres-
sion’).

Western blot analysis. Mc-3T3-e1 cells were washed three 
times with PBS, and detached from the dishes by scraping. 
Cells were centrifuged at 12,000 x g for 5 min at 4˚C and 
re‑suspended in RIPA lysis buffer (Thermo Fisher Scientific, 
Inc.) with phenylmethanesulfonyl fluoride (PMSF) at 1:200 
dilution. The homogenate was centrifuged at 12,000 x g 
for 10 min at 4˚C. Protein concentrations were quantified 
using a bicinchoninic acid protein assay kit (Beyotime 
institute of Biotechnology). equivalent amounts of total 
protein (20 µg/lane) were loaded on a 10% Tris-glycine, 10% 
SdS-PaGe (Beyotime institute of Biotechnology) for sepa-
ration. Proteins were then transferred onto a polyvinylidene 
difluoride membrane, which were blocked with 5% milk in 
TBS containing 0.2% Tween-20 (TBST) at room temperature 
for 2 h, and incubated with primary antibodies as follows: 
rabbit anti-Bcl-2 (cat. no. ab32124, 1:1,000) anti-Bax (cat. 
no. ab32503, 1:1,000), anti-survivin (cat. no. ab76424, 1:1,000); 
rabbit anti-ranKl (cat. no. ab9957, 1:1,000), anti-oPG (cat. 
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no. ab73400, 1:1,000), anti-osterix (cat. no. ab94744, 1:1,000); 
mouse anti- Ho-1 antibody (ab13248, 1:1,000), nQo1 anti-
body (ab34173, 1:1,000), nrf2 antibody (ab137550, 1:1,000) 
and anti‑GAPDH (ab9485, 1:1,000) overnight at 4˚C, all 
purchased from abcam (cambridge, uK). The membranes 
were washed with TBST, and then incubated with horseradish 
peroxidase-conjugated secondary antibodies goat anti-rabbit 
(cat. no. ab205718; 1:2,000; abcam) and goat anti-mouse (cat. 
no. ab205719; 1:5,000; Abcam) at 4˚C for 1 h. The blots were 
visualized using enhanced chemiluminescence (ecl; Thermo 
Fisher Scientific, inc.). an ecl system (amersham; Ge 
Healthcare, chicago, il, uSa) was used to detect the bands. 
Quantity one software version 4.6.2 (Bio-rad laboratories, 
inc., Hercules, ca, uSa) was used for densitometry analysis.

Statistical analysis. GraphPad Prism version 6.0 software 
(GraphPad Software, inc., la Jolla, ca, uSa) was used 
for conducting statistical analysis. data are presented as 
the mean ± standard deviation. Statistical significance was 
analyzed using one-way analysis of variance, followed by 
Turkey's multiple comparison test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Morphological observation of MC‑3T3‑E1 osteoblasts. after 
Mc-3T3-e1 cells were inoculated and cultured for 24 h, the 
growth of adherent cells was observed using an inverted 
microscope (Fig. 1a). The cells showed a fibroblast-like 
appearance. To be more specific, the cells appeared to be 
irregular fusi-formed, triangular, or polygonal, and no fusion 
between cells was identified. As the duration of the culture time 

prolonged, cell bodies grew larger and the cell morphology 
was stretched. It appeared fiber bundles, triangles and polygons 
with more protuberances. Some elongated protuberances were 
often found to link cells with distant protuberant cells and to 
increase cell-to-cell contact. Meanwhile, the number of cells 
was found to increase, and cells were mostly spindle-shaped 
or cubic.

Protective effect of geniposide on CdCl2‑injured MC‑3T3‑E1 
cells. The cytotoxic effects of different cdcl2 concentra-
tions (0-20 µM) at different time points (3, 6, 12 and 24 h) in 
Mc-3T3-e1 cells were determined using ccK-8 assay. The 
results showed that cdcl2 decreased Mc-3T3-e1 cell viability 
in time- and dose-dependent manners (20 µM, 3 h, P<0.05; 
20 µM, 24 h, P<0.01; Fig. 1B). Based on this findings, 20 µM of 
cdcl2 was employed in all subsequent experiments. Moreover, 
the cytotoxic effects of geniposide were also detected, and 
that geniposide had no cytotoxic effects at a concentration of 
100-400 µg/ml (Fig. 1c). as showed in Fig. 1d, geniposide was 
able to ameliorate the cdcl2 injury in cells and increase viability 
in a dose-dependent manner, and treatment using 400 µg/ml 
geniposide significantly increased cell viability (P<0.05).

Geniposide decreases the apoptosis induced by CdCl2 in 
MC‑3T3‑E1. as showed in Fig. 2a, the effect of geniposide 
on cdcl2‑induced apoptosis was investigated using flow cyto-
metric analysis. We found that the apoptosis induced by cdcl2 
was significantly decreased in a concentration-dependent 
manner after being pretreated with geniposide (100 and 
200 µg/ml: P<0.05, 400 µg/ml: P<0.01).

Geniposide decreases the ROS level in CdCl2‑injured 
MC‑3T3‑E1 cells. as showed in Fig. 2B, cdcl2 exposure 
increased the roS generation in Mc-3T3-e1 cells (P<0.01). 
However, pretreatment of Mc-3T3-e1 cells with genipo-
side significantly decreased the generation of roS in a 
dose-dependent manner (P<0.01).

Geniposide affects MDA, LDH and antioxidant enzyme SOD 
activities in CdCl2‑injured MC‑3T3‑E1 cells. as shown in 
Fig. 3, the effects of geniposide on cdcl2-induced oxidative 
stress-related factors were assessed using eliSa assay. We 
found that the level of MDA was not significantly increased 
by exposure of the cells to cdcl2, and that pretreatments at 
different concentrations of geniposide also showed no signifi-
cant effect on the level of Mda (P>0.05, Fig. 3a). However, 
LDH was significantly increased following exposure of the 
cells with cdcl2. By contrast, a medium concentration of geni-
poside pretreatment significantly decreased the level of LDH, 
compared to the cells incubated with cdcl2 (P<0.05, Fig. 3B). 
our results also showed that antioxidant key enzyme Sod was 
decreased following cdcl2 exposure, but SOD was signifi-
cantly higher following pretreatment with a high concentration 
of geniposide (P<0.05, Fig. 3c).

Geniposide regulates the expression of Bax, Bcl‑2 and 
survivin at the mRNA and protein levels of CdCl2‑injured 
MC‑3T3‑E1 cells. We determined the expression levels 
of Bax, Bcl-2 and survivin in Mc-3T3-e1 cells using 
both western blotting and qPcr analyses. as shown in 

Table i. Primer sequences.

Gene Primer sequence (5'-3')

Bax Forward: TTcaTccaGGaTcGaGcaGaG
 reverse: TGaGGacTccaGccacaaaGaT
Bcl‑2 Forward: cTGGTGGacaacaTcGcTcTG
 reverse GGTcTGcTGaccTcacTTGTG
Survivin Forward: cccTGccTGGcaGcccTTTc
 reverse: cTGGcTcccaGccTTcca
RANKL Forward: TcGGGTTcccaTaaaGTc
 reverse: GaaGcaaaTGTTGGcGTa
OPG Forward: GcaGcaTcGcTcTGTTccTGTa
 reverse: aTGGTGGTGaaGacGccaGTa
Osterix Forward: GccTacTTacccGTcTGacTTT
  reverse: GcccacTaTTGccaacTGc
Nrf2 Forward: GccaGcTGaacTaaTTaGac
 reverse: GaTTcGTGcacaGcaGca
HO‑1 Forward: TTGTcTcTcTGGaaTGGaaGG
 reverse: cTcTaccGaccaTTcTG
NQO1 Forward: caTTcTGaaaGGcTGGTTTGa
 reverse: cTaGcTTTGaTcTGGTTGTcaG
GAPDH Forward: GGcacaGTcaaGGcTGaGaaTG
 reverse: aTGGTGGTGaaGacGccaGTa
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Fig. 3d-G, compared with levels in cells exposed to cdcl2, 
pretreatment with geniposide increased the expression 
of Bcl-2 and survivin both at mrna and protein levels in 
a concentration-dependent manner (survivin, 200 µg/ml 
P<0.05; 400 µg/ml P<0.01) and reduced the expression of 
Bax at the mrna and protein levels (400 µg/ml, P<0.01). 
Both western blot and qPcr analysis showed that medium 
and high concentrations of geniposide could inhibit Bax, 
and increase Bcl-2 and survivin. These results showed that 
geniposide strongly antagonized the apoptotic process of 
cdcl2-induced Mc-3T3-e1 cells.

Geniposide regulates the expression of RANKL, OPG and 
osterix at both the mRNA and protein levels in CdCl2‑injured 

MC‑3T3‑E1 cells. in order to investigate whether geniposide 
could reverse the inhibition of cdcl2 on osteoblast forma-
tion, we assessed the expression of osteoblast-related factors, 
ranKl, oPG and osterix, by carrying out western blot and 
qPcr analyses in Mc-3T3-e1 cells. The results showed that 
exposure to cdcl2 significantly inhibited osteoblast forma-
tion by increasing the expression of oPG and by decreasing 
the expression of ranKl and osterix both at the mrna 
and protein levels. Medium concentration of geniposide 
significantly reversed of the inhibition mediated by CdCl2 on 
osteoblast formation through upregulating the expression of 
ranKl and osterix (P<0.01) and downregulating the expres-
sion of oPG (P<0.05). The protein levels (Fig. 4a-c) were 
consistent with the expression of mrna (Fig. 4d).

Figure 1. effects of different concentrations of geniposide on cdcl2 (cd)-induced toxic injury of Mc-3T3-e1 cells. cell viability was assessed by the ccK-8 
assay. (A) The morphology of primary cultured MC‑3T3‑E1 cells was observed at 24, 48 and 72 h using an inverted microscope (x40 magnification). (B) The 
cytotoxic effects of different concentrations and different exposure times of cdcl2 on Mc-3T3-e1 cells. (c) The cytotoxic effects of different concentrations 
and different treatment times of geniposide in Mc-3T3-e1 cells. (d) Geniposide protects Mc-3T3-e1 cells from cdcl2-induced toxic injury. cells were 
pretreated with geniposide [100 (low), 200 (medium) and 400 µg/ml (high)] for 24 h before being exposed to 20 µM cdcl2, after a continued culture for 3 h. 
data were expressed as the mean ± standard deviation from three independent experiments. ▲P<0.05 and ▲▲P<0.01, compared with the control; *P<0.05, 
compared with cdcl2 alone.



Molecular Medicine rePorTS  20:  1499-1508,  2019 1503

Figure 2. effects of different concentrations of geniposide on cdcl2 (cd)-induced apoptosis and reactive oxygen species (roS) level in Mc-3T3-e1 cells 
analyzed by flow cytometry. Cells were pretreated with geniposide [100 (low), 200 (medium) and 400 µg/ml (high)] for 24 h, followed by exposure to CdCl2 

(20 µM) for 3 h. (A) The apoptotic rate by flow cytometry. (B) ROS levels were analyzed using flow cytometry. Each point represents the mean ± standard 
deviation from three independent experiments. ▲P<0.05 and ▲▲P<0.01, compared with the control; *P<0.05 and **P<0.01, compared with cdcl2 alone.
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Geniposide regulates the downstream target genes of Nrf2 at 
both the mRNA and protein levels in CdCl2‑injured MC‑3T3‑E1 
cells. in order to understand the mechanism of geniposide in 
cd-induced osteoblast injury, the nrf2 signaling pathway was 
evaluated in Mc-3T3-e1 cells. as shown in Fig. 5, both qPcr 
and western blot analysis identified an increase in Nrf2, HO‑1 
and nQo1 expression in a dose-dependent manner following 
pretreatment with geniposide in the cdcl2-injured Mc-3T3-e1 
cells. We found that a low concentration of geniposide signifi-
cantly increased the mrna expression of nrf2 in comparison 
to that in cells exposed to cdcl2 (P<0.05, Fig. 5a). However, 
both the increase of Ho-1 and nQo1 mrna expression 
required treatment with a medium concentration of geniposide 

(P<0.05, Fig. 5B and c). Western blot analyses also showed 
that a low concentration of geniposide increased the protein 
expression of nrf2, Ho-1 and nQo1 compared to that in cells 
exposed only to cdcl2 (P<0.01, Fig. 5d).

Discussion

in the present study, osteoblast Mc-3T3-e1 cells were 
pretreated with three different concentrations (100, 200 and 
400 µg/ml) of geniposide for 24 h, and exposed to 20 µM 
cdcl2 for additional 3 h. Furthermore, qPcr and western blot 
analysis showed that geniposide at a high concentration was 
able to significantly enhance the cell viability, while a low 

Figure 3. effects of different concentrations of geniposide on cdcl2 (cd)-induced expression of Mda, ldH and Sod and the mrna and protein levels of 
Bax, Bcl-2 and survivin. cells were pretreated with geniposide [100 (low), 200 (medium), 400 µg/ml (high)] for 24 h, followed by exposure to cdcl2 (20 µM) 
for 3 h. (a-c) oxidative stress-related factors (Mda, ldH, Sod) were assessed by eliSa assay. (d-F) reverse transcription-quantitative Pcr was used to 
determine the mrna expression of Bax, Bcl-2 and survivin. (G) Western blotting results and relative units of protein levels. expression of each protein in 
the control or geniposide-pretreated Mc-3T3-e1 cells following normalization with a loading control GaPdH. data are expressed as the mean ± standard 
deviation from three independent experiments. ▲P<0.05 and ▲▲P<0.01, compared with the control; *P<0.05 and **P<0.01, compared with cdcl2 alone. Mda, 
malondialdehyde; ldH, lactate dehydrogenase; Sod, superoxidase dismutase.
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Figure 4. effects of different concentrations of geniposide on cdcl2 (cd)-induced mrna and protein levels of osteoblast-related factors ranKl, oPG 
and osterix. cells were pretreated with geniposide [100 (low), 200 (medium), 400 µg/ml (high)] for 24 h, followed by exposure to cdcl2 (20 µM) for 3 h. 
(a-c) qPcr was used to determine the mrna expression of ranKl, oPG and osterix. (d) Western blotting results and relative units of protein levels. 
expression of each protein in control or geniposide-pretreated Mc-3T3-e1 cells following normalization with a loading control GaPdH. data are shown as 
the mean ± standard deviation from three independent experiments. ▲▲P<0.01, compared with the control; *P<0.05 and **P<0.01, compared with cdcl2 alone. 
ranKl, receptor activator of nF-κB ligand.

Figure 5. effects of different concentrations of geniposide on cdcl2 (cd)-induced mrna and protein levels of nrf2, Ho-1 and nQo1. cells were pretreated 
with geniposide [100 (low), 200 (medium), 400 µg/ml (high)] for 24 h, followed by exposure to cdcl2 (20 µM) for 3 h. (a-c) qPcr was used to determine 
the mrna expression of nrf2, Ho-1 and nQo1. (d) Western blotting results and relative units of protein levels. expression of each protein in control or 
geniposide pretreated Mc-3T3-e1 cells following normalization with a loading control GaPdH. data are expressed as the mean ± standard deviation from 
three independent experiments. ▲P<0.05 and ▲▲P<0.01, compared with the control; *P<0.05 and **P<0.01, compared with cdcl2 alone. nrf2, nuclear factor 
erythroid 2-related factor; Ho-1, heme oxygenase-1; nQo1, nad(P)H quinone dehydrogenase 1.
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concentration of geniposide could antagonize apoptosis by 
downregulating Bax and upregulating both Bcl-2 and survivin.

Furthermore, we found that geniposide could reverse 
the injury of cdcl2 on osteoblast formation, which is 
consistent with another study in which geniposide promoted 
osteoblast formation (33). as previously reported, the 
ranKl/ranK/oPG system is an important signal trans-
duction pathway in the process of bone metabolism. The 
receptor activator of ranKl with its cognate receptor 
(ranK) promotes differentiation and bone resorption 
activity of osteoclasts. oPG can also combine ranK, 
disrupting the balance of bone metabolism (17,41,42). it has 
been suggested that cadmium can accumulate in human 
osteoblast-like MG-63 cells and affect their viability, and 
that high concentrations of cadmium could inhibit bone 
formation via the oPG/ranKl pathway (17,43). However, 
a limited number of studies have focused on geniposide 
in relation to ranKl and oPG in osteoblast cells. in the 
present study, we demonstrated that low-dose geniposide 
obviously increased expression of ranKl, and that a 
medium-dose could decrease expression of oPG. osterix is a 
novel transcription factor in the differentiation of osteoblasts, 
and it is specifically expressed in all developing bones (44). 
Geniposide promotes osteogenic activity of osteoblasts by 
increasing the expression of osterix in a dose-dependent 
manner. it was indicated that geniposide promoted the 
balance of bone metabolism.

occupational cadmium exposure and domestic cadmium 
pollution seriously affect the health of individuals worldwide, 
causing neuronal damage, cardiovascular effects, reproductive 
toxicity and osteoblast injury (4,7,45,46). a large amount of 
evidence has confirmed that reducing internal oxidative stress 
and increasing endogenous antioxidant proteins are vital in 
avoiding cell injury (26,34,39,47). Pan et al (48) highlighted the 
importance of oxidative stress in cadmium exposure disorder, 
and many compounds produce protective effects against 
cadmium-induced oxidative injury, for example, quercetin, 
catechin and nobiletin (49-51). Geniposide had been reported 
to protect against cadmium-induced toxic oxidative stress in 
rat kidney tissue (25). Thus, we concluded that geniposide may 
prevented cadmium-induced injury.

reactive oxygen species (roS) are generally produced in 
the mitochondria. excessive exogenous oxidants and certain 
extreme environments including heavy metal, chemothera-
peutic drugs, sodium fluoride lead to the overproduction of 
roS (52-54). over-generated roS damage proteins, lipids 
and dna, ultimately causing cell death or apoptosis. cdcl2 
exposure was found to significantly increase roS genera-
tion (55,56). Geniposide was found to noticeably decrease 
roS levels, to downregulate ldH and to upregulate antioxi-
dase Sod. in order to understand the protective mechanism 
of geniposide against oxidative stress injury, we detected the 
downstream target genes of nrf2, Ho-1 and nQo1. nrf2, a 
basic leucine-zipper transcription factor, plays an important 
role in preventing the development of oxidative stress and 
is also one of the essential regulators of antioxidative stress 
genes. The role of nrf2 has been confirmed using nrf2 
knock-out mice in vivo, and it binds to antioxidant response 
element (are) sites in the promoter of cytoprotective phase ii 
genes to regulate their expression (57-61). our study showed 

that geniposide not only completely increased the mrna and 
protein expression of nrf2, but also increased antioxidant 
protein Ho-1 and phase ii detoxifying enzyme nQo1. Thus, 
we inferred that the induction of nrf2 could promote the 
downstream genes Ho-1 and nQo1 so as to attenuate the 
oxidative stress reaction. Taken together, our study indicated 
that geniposide could induce nrf2, suggesting that the nrf2 
pathway may take part in the progressive effects of geniposide 
on antioxidative stress.

In conclusion, our finding suggests that geniposide could 
antagonize oxidative stress caused by cdcl2. activation of nrf2, 
Ho-1 and nQo1 may be associated with the effect of genipo-
side on MC‑3T3‑E1 cells. Our study identifies a potential agent 
for the treatment of cadmium-induced osteoblast injury.
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