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Abstract. Osteosarcoma (OS) is one of the most malignant 
tumors in children and young adults. To better understand 
the underlying mechanism, five related datasets deposited 
in the Gene Expression Omnibus were included in the 
present study. The Bioconductor ‘limma’ package was used 
to identify differentially expressed genes (DEGs) and the 
‘Weighted Gene Co‑expression Network Analysis’ package 
was used to construct a weighted gene co‑expression 
network to identify key modules and hub genes, associated 
with OS. Gene Ontology and Kyoto Encyclopedia of Genes 
and Genomes overrepresentation analyses were used for 
functional annotation. The results indicated that 1,405 genes 
were dysregulated in OS, including 927 upregulated and 478 
downregulated genes, when the cut off value was set at a ≥2 
fold‑change and an adjusted P‑value of P<0.01 was used. 
Functional annotation of DEGs indicated that these genes 
were involved in the extracellular matrix (ECM) and that they 
function in several processes, including biological adhesion, 
ECM organization, cell migration and leukocyte migration. 

These findings suggested that dysregulation of the ECM shaped 
the tumor microenvironment and modulated the OS hallmark. 
Genes assigned to the yellow module were positively associated 
with OS and could contribute to the development of OS. In 
conclusion, the present study has identified several key genes 
that are potentially druggable genes or therapeutics targets in 
OS. Functional annotations revealed that the dysregulation of 
the ECM may contribute to OS development and, therefore, 
provided new insights to improve our understanding of the 
mechanisms underlying OS.

Introduction

Osteosarcoma (OS) is a primary malignant bone tumor 
arising from primitive transformed cells of a mesenchymal 
origin (1) and it is the 8th most common form of childhood 
cancer (2). Although OS is a rare malignancy overall, it is 
the most common malignant tumor found in the bone tissue 
of children and usually requires chemotherapy and surgical 
treatment (3,4). The management of OS has improved over 
the past few decades, with the 5‑year survival rate increasing 
from 20‑30 to 60‑70% (5). However, relapse and pulmonary 
metastasis remain big challenges in the management of OS (6). 
A greater understanding of the underlying mechanisms of OS 
will improve its management.

It has been reported that most cases of OS harbor chromo-
somal abnormalities and gene mutations (7,8). In total, ~70% 
of patients with OS showed loss‑of‑function mutations in the 
gene encoding the retinoblastoma‑associated protein (9,10). 
Somatic mutations that lead to the loss of tumor suppressor 
functions are a pivotal step in OS pathogenesis, and there 
are a variety of genetic events that lead to the development 
of OS (11). Systematic research from the genetic perspective 
may help to improve our understanding of the mechanism 
underlying OS.

Gene microarrays are a powerful tool to obtain gene 
expression profiles. Comparisons made between normal and 
tumor samples can lead to the identification of dysregulated 
genes; most diseases have specific gene expression profiles and 
abnormal regulation patterns (12). A common practice for the 
identification of differentially expressed genes (DEGs) is to 
filter results using fold change, P‑values and false discovery 
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rates (13,14). Weighted gene co‑expression network analysis 
(WGCNA) can be used to identify groups of genes with 
similar functions, known as gene modules (15). Genes in the 
same module tend to have similar expression patterns and, 
therefore, may have similar functions. Genes with the most 
connectivity in a module are called hub genes, these genes are 
more relevant to the functionality of the module (14). WGCNA 
has been widely accepted as an investigation tool to identify 
hub genes in cancer studies.

In the present study, microarray gene expression data 
derived from the same platform were extracted from the Gene 
Expression Omnibus (GEO) database to identify DEGs in 
OS. WGCNA was used to identify gene modules that were 
closely associated with OS. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses were used for functional annotations. PharmGKB (16), 
oncoKB (17), Clinical Interpretations of Variants in Cancer 
(CIViC)  (18) were used to check if potentially druggable 
targets could be found in closely related modules in OS. The 
results of the present study may increase the understanding of 
the molecular mechanisms underlying OS and contribute to 
the clinical management of OS.

Materials and methods

Search strategy. The GEO database (www.ncbi.nlm.nih.
gov/geo/) was used to retrieve relevant studies (19‑23) that 
used the Affymetrix Human Genome U133 Plus 2.0 platform 
(GPL570; Affymetrix; Thermo Fisher Scientific, Inc.) to 
explore the mRNA expression profiles in tumor tissues from 
patients with OS or bone marrow mesenchymal stromal cells 
(BM‑MSCs) from healthy controls. Search terms including 
‘osteosarcoma’, ‘cancer’ or ‘tumor’ or ‘neoplasm’ or ‘carci-
noma’ or ‘sarcoma’, ‘mesenchymal stromal cells’ and ‘GPL570’ 
were used. The species was limited to Homo sapiens.

Study selection. Inclusion criteria: i) Studies that used OS 
tissues from patients or BM‑BMCs from healthy controls to 
explore the RNA expression profiles; and ii) for studies that 
used mixed tissue types from patients with OS or healthy 
controls, only the data from OS tissues and normal BM‑BMCs 
were included. Exclusion criteria: i) Studies that used cell 
lines derived from OS or human mesenchymal stromal cells 
were excluded; ii) studies that used BM‑MSCs extracted from 
patients with osteoarthritis or osteoporosis were excluded; and 
iii) studies with only ‘chp’ type original files, other than ‘cel’ 
type files, were also excluded.

Data extraction and pre‑processing procedures. Raw data 
from eligible studies were retrieved from GEO. GEO acces-
sion number, author, country, submission year, platform and 
detailed patient information, as well as available information 
from healthy controls, were obtained from the metadata. Data 
were extracted by two researchers independently and conflicts 
were resolved by consulting a third senior researcher. Raw data 
were normalized using the R ‘affy’ package (version 1.62.0; 
http://bioconductor.org/packages/affy) with robust‑multi array 
average methods, as described previously  (24‑26). Mean 
expression values were calculated for genes measured by 
multiple detection probes. DEGs between patients with OS 

and control tissues were compared using the Bioconductor 
‘limma’ package (version  3.40.2; http://bioconductor.
org/packages/limma) (27). Genes with a fold change ≥2 and an 
adjusted P<0.01 were considered as DEGs.

Functional characterization of DEGs. Microarray probe IDs 
were converted to Ensemble IDs and gene symbols using 
‘hgu133plus2.db’ R package (version 3.2.3; http://bioconductor.
org/packages/hgu133plus2.db) (28). To interpret the biological 
significance of DEGs, GO enrichment of cellular compo-
nent, biological process and molecular function, as well as 
KEGG pathway enrichment analysis were conducted using 
Bioconductor ‘clusterProfiler’ R package (version  3.10.0; 
http://bioconductor.org/packages/clusterProfiler)  (29). The 
‘Disease Ontology semantic and enrichment analysis’ 
(DOSE) package (version 3.10.0; http://bioconductor.org/pack-
ages/DOSE) (30) was used to find genes closely associated 
with OS.

Principal component analysis (PCA) of DEGs in patients 
with OS and controls. PCA analyses were conducted using the 
ClustVis online tool (https://biit.cs.ut.ee/clustvis/) developed 
by Metsalu et al (31). Due to limitations on the file size that 
can be uploaded, only gene expression values of DEGs were 
included in the PCA analysis. Groups (OS or control) and 
gender were two of the clinical traits that were used in the 
PCA analysis.

WGCNA. To identify key gene modules in OS, WGCNA was 
conducted with the R ‘WGCNA’ package (version 1.46) (32). 
Normalized gene expression data were used in WGCNA. 
Soft‑connectivity was calculated using the default parameters. 
Topology networks and gene modules were constructed using 
one‑step network construction.

Hub genes are a group of genes that tend to have high 
connectivity with other genes and are expected to play pivotal 
biological roles. The connections between the top 30 hub 
genes were visualized using VisAnt software (version 5.51; 
http://visant.bu.edu). Functional annotations, including GO and 
KEGG enrichment analyses, were used to highlight the most 
overrepresented GO terms and KEGG pathways in modules 
that were closely associated with OS. To determine if any of 
the hub genes in the modules were abnormally expressed, log2 

fold change (log2FC) was used to characterize the expression 
pattern and enrichment scores were used for characterizing the 
connectivity of genes in the yellow module.

Gene mutations may prevent the proper function of the 
corresponding protein by affecting protein structure or 
expression. PharmGKB (16), oncoKB (17), and CIViC (18) 
are three databases that provide information about the treat-
ment implications of specific cancer gene alterations, and how 
these mutations affect response to treatment. In the present 
study, these databases were used to identify any potentially 
druggable targets in the modules that were found to be closely 
related with OS.

Tumor infiltrating immune cell profiling using CIBERSORT. 
Tumor microenvironments are critical to tumor cell survival and 
proliferation. Tumor infiltrating leukocytes are usually present 
in the microenvironment of solid tumors. The CIBERSORT 
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webtool (version 1.06; https://cibersort.stanford.edu) (33) was 
used to estimate the abundancy of tumor‑infiltrating immune 
cells in the OS microenvironment. LM22, which consisted of 
gene expression data from 22 distinct immune cell types, was 
used as reference in the present study (34).

Results

Characteristics of the included studies. In total, five eligible 
studies were included in the present study  (19‑23). RNA 
expression data were extracted from 48 patients with OS and 
12 BM‑MSCs from these previous studies (Table SI). Details 
of the included studies are shown in Table I. For GSE18043 
and GSE36474, only data from three eligible individuals were 
included from each dataset (19,22). There were two biological 
replicates in GSE35331 (21), the results from the first set were 
included in the present study. More detailed information of 
the included individuals from each study can be found in 
Table SI. The original gene expression files from the included 
individuals were downloaded from the GEO website.

Identification and functional annotation of DEGs in OS. The 
Bioconductor ‘affy’ package was used to pre‑process raw data 
for background correction and normalization. In total, expres-
sion values from 54,613 probes representing 20,188 known 
genes with symbols were analyzed in the present study. The 
mean expression values of multiple probes corresponding to 
each gene were calculated as the final expression value. The 
Bioconductor ‘limma’ package was used to identify DEGs. 
When the cutoff values were set as |log2FC|>1 (adjusted 
P<0.01), 1,405 genes were found to be dysregulated (including 
927 up‑ and 478 downregulated genes) in OS compared with 
controls (Table SII). When cutoff values were set as |log2FC|>2 
(adjusted P<0.01), there were 354 genes dysregulated (including 
224 up‑ and 130 downregulated genes) in OS compared with 
controls. The top 10 most up‑ and downregulated genes are 
shown in Tables II and III. PCA analysis revealed that these 
DEGs could distinguish OS from normal controls and that 
there was no disparity between males and females (Fig. S1).

GO overrepresentation analysis showed that DEGs were 
enriched in terms including ‘extracellular matrix’, ‘protein-
aceous extracellular matrix’, ‘extracellular matrix component’, 
‘collagen trimer’, ‘cell‑cell junction’, ‘membrane raft’, ‘membrane 
microdomain’, ‘endoplasmic reticulum lumen’ and ‘basement 

membrane’. Their functions included ‘integrin binding’, ‘growth 
factor binding’, ‘glycosaminoglycan binding’, ‘heparin binding’, 
‘cell adhesion molecule binding’, ‘growth factor activity’, ‘fibro-
nectin binding’, ‘sulfur compound binding’ and ‘Wnt‑protein 

Table I. Characteristics of the included studies.

Author, year	C ountry	 GEO accession	 Platform	O S cases	C ontrols	 Samples type	 (Refs.)

Vella et al, 2016	 The Netherlands	 GSE87437	 GPL570	 21	NA	  High‑grade	 (23)
						      osteosarcoma
Kobayashi et al, 2009	 Japan	 GSE14827	 GPL570	 27	NA	  Fresh frozen	 (20)
						      tumor specimens
Hamidouche et al, 2009	 Germany	 GSE18043	 GPL570	NA	  3	 BM‑MSCs	 (19)
André et al, 2013	 Belgium	 GSE36474	 GPL570	NA	  3	 BM‑MSCs	 (22)
Guilloton et al, 2012	 France	 GSE35331	 GPL570	NA	  6	 BM‑MSCs	 (21)

OS, osteosarcoma; NA, not available; BM‑MSCs, bone marrow mesenchymal stromal cells.

Table II. Top 10 upregulated genes in osteosarcoma.

Gene symbol	L og2FC	A veExp	 t‑score	 P‑value	 Padj

CPE	 6.01	 9.77	 13.95	 <0.001	 <0.001
MMP9	 5.96	 10.45	 9.99	 <0.001	 <0.001
SPARCL1	 5.93	 8.60	 13.18	 <0.001	 <0.001
S100A4	 5.92	 10.98	 23.45	 <0.001	 <0.001
CA2	 5.60	 8.08	 9.62	 <0.001	 <0.001
COL15A1	 5.29	 8.75	 12.64	 <0.001	 <0.001
ACP5	 5.19	 9.01	 7.89	 <0.001	 <0.001
C1QC	 5.18	 8.93	 16.32	 <0.001	 <0.001
MMP13	 5.17	 8.91	 6.80	 <0.001	 <0.001
MRC1	 5.00	 7.55	 15.24	 <0.001	 <0.001

AveExp, average expression across all samples; Log2FC, Log2(fold 
change); Padj, adjusted P‑value; t‑score, statistic value for t‑test.

Table III. Top 10 downregulated genes in osteosarcoma.

Gene symbol	L og2FC	A veExp	 t‑score	 P‑value	 Padj

KRTAP1‑5	‑ 5.36	 5.76	‑ 17.48	 <0.001	 <0.001
DKK1	‑ 4.68	 7.14	‑ 7.45	 <0.001	 <0.001
STC2	‑ 4.25	 6.78	‑ 16.57	 <0.001	 <0.001
TFPI2	‑ 4.23	 5.06	‑ 11.62	 <0.001	 <0.001
PTX3	‑ 4.19	 8.95	‑ 7.46	 <0.001	 <0.001
RGS4	‑ 4.08	 6.30	‑ 12.49	 <0.001	 <0.001
NPR3	‑ 4.07	 5.77	‑ 16.82	 <0.001	 <0.001
DSP	‑ 4.00	 6.85	‑ 8.51	 <0.001	 <0.001
LTBP2	‑ 3.99	 7.91	‑ 12.64	 <0.001	 <0.001
VGLL3	‑ 3.91	 5.93	‑ 8.69	 <0.001	 <0.001

AveExp, average expression across all samples; Log2FC, Log2(fold 
change); Padj, adjusted P‑value; t‑score, statistic value for t‑test.
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binding’. These DEGs participated in biological processes 
including ‘angiogenesis’, ‘extracellular structure organization’, 
‘leukocyte migration’, ‘extracellular matrix organization’, ‘cell 
chemotaxis’, ‘positive regulation of cell migration’, ‘positive 
regulation of cell motility’, ‘ossification’ and ‘positive regula-
tion of locomotion’. More detailed information can be found in 
Fig. 1. Dysregulation of the extracellular matrix (ECM) could 
shape the tumor microenvironment and further modulate cancer 
hallmarks (35). These results also suggest that dysregulation 
of the ECM may contribute to OS development and metas-
tasis (Fig. 2).

KEGG overrepresentation analysis demonstrated that 
DEGs were enriched in ‘PI3K‑Akt signaling pathway’, ‘proteo-
glycans in cancer’, ‘focal adhesion’, ‘cell adhesion molecules 
(CAMs)’, ‘phagosome’, ‘breast cancer’, ‘rheumatoid arthritis’, 
‘leishmaniasis’, ‘complement and coagulation cascades’ and 
‘staphylococcus aureus infection’. KEGG enrichment analysis 
showed that DEGs were enriched in ‘ribosome’, ‘spliceosome’, 
‘oxidative phosphorylation’, ‘transcriptional dysregulation in 
cancer’, ‘influenza A’, ‘Epstein‑Barr virus infection’, ‘herpes 
simplex infection’, ‘cell adhesion molecules (CAMs)’, ‘tuber-
culosis’ and ‘phagosome’.

Identification of key modules and genes closely associated 
with OS. Gene expression values from all genes and samples 
were included in WGCNA. Soft‑thresholding was selected 
with a power of  12, a minimum module size of 30 and a 
medium sensitivity to cluster splitting (Fig. S2). A module‑trait 
association heatmap was plotted to identify modules that were 
significantly associated with clinical traits (Fig. 3). As shown 
in Fig. 3, the yellow, red and pink modules are positively related 
with OS status, osteoblastic tumor type and chemotherapy 
response; these three modules are negatively associated with 
age. The blue module is negatively associated with OS and 
positively associated with age. Modules with a height of <0.25 
were merged. In total, 15 gene modules were identified and the 
dendrogram displayed together with the color assignment is 
shown in Fig. 4.

Genes in these modules may play a pivotal role in OS. 
The results showed that 383 out of 749 genes in the yellow 
module were dysregulated, including 358 upregulated genes 
and 25 downregulated genes when the cutoff value was set as 
|log2FC|>1 and adjusted P<0.01. The top 30 hub genes from the 
yellow module were extracted to visualize their connections 
using VisAnt software (Fig. 5). As shown in Fig. 5, C1QC and 
MRC1 are two hub genes that were upregulated in OS, which 
indicated that these two genes may play important roles in OS.

DEGs from the yellow module were investigated using 
the PharmGKB, oncoKB and CIViC databases to identify 
potentially druggable targets (16‑18). The results showed that 
MERTK and SYK were druggable according to the CIViC 
database (18,36,37). Gene variations in CXCR4, FCGR2A, 
MGAT4A, NCOA1, PIK3R1, RGS5, RRAS2 and SOD2 may be 
predictive markers or have targetable variations according to 
the PharmGKB database (16,38‑47). A total of 10 oncogenes 
(CXCR4, ERG, FLT1, IGF1, KDR, LYN, MITF, PIK3CG, 
REL and SYK), six tumor suppressor genes (MITF, MAP3K1, 
MOB3B, NFKBIA, PRDM1 and SAMHD1) and one gene 
(CSF1R), belonging to neither oncogene or tumor suppressor 
gene categories, were identified, according to the oncoKB 
database. Some mutations in MITF are oncogenic while others 
can repress the development of cancer (17). Therefore, MITF 
was classified as both a tumor suppressor and an oncogenic 
gene. However, no further evidence could support these find-
ings in OS as the present study only included gene expression 
results from microarray analysis where no gene variation data 
were available. These findings were predominantly reported in 
breast cancer, colorectal cancer and prostatic neoplasms, with 
only a few studies in OS.

Tumor infiltrating immune cell profiles in OS. The results of 
the present study showed that M0 and M2 macrophages were 
two major types of immune cells found in OS tissues. Some 
memory resting CD4+ T cells were present in OS tissues. In 
BM‑MSCs, memory resting CD4+ T cells and naïve B cells 
were the two major types of immune cells identified (Fig. S3).

Figure 1. Top 12 terms of GO overrepresentation analysis (adjusted P<0.01). Overrepresented GO (A) cellular components, (B) molecular function and 
(C) biological process terms. The x‑axis shows the number of differentially expressed genes in an overrepresented GO term. GO, Gene Ontology.
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Figure 2. Top 10 terms of KEGG enrichment analysis (adjusted P<0.01). (A) Overrepresented and (B) enriched KEGG pathways. (C) Enriched KEGG modules. 
The x‑axis shows the ratio of genes enriched in a KEGG pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 3. Module‑trait relationship heatmap for different traits and gene modules. The yellow, red and pink gene modules are positively related to OS, 
osteoblastic status and CT response; these modules are negatively associated with age. The brown and greenyellow modules are positively related to age and 
negatively related to OS, osteoblastic status and CT response. Values in the figure indicate the correlation coefficient between modules and clinical traits. 
Values in brackets are the P‑values for the association test. OS, osteosarcoma; CT, chemotherapy; ME, module.
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Discussion

Bioinformatic approaches are widely used for the clinical 
prediction of cancer diagnosis and gene research. By using 
DEG analysis in combination with WGCNA, biologically 
meaningful genes and gene modules can be identified as 

candidate biomarkers (32,48). The present study identified 
five previous studies related to OS from GEO; 1,405 genes 
were found dysregulated in OS compared with BM‑MSCs. 
These genes were found to be involved in the ECM, according 
to the results from functional annotations. WGCNA analysis 
showed that the yellow module was positively associated 
with OS. A total of 30 hub genes were selected to visualize 
their connections. Several DEGs in the yellow module were 
found to be potentially druggable genes, according to the 
CIViC, PharmGKB and oncoKB databases. CXCR4 belongs 
to the chemokine receptor family and is an oncogene that 
can mediate metastasis in cancers (49). It is overexpressed 
in breast cancer (50), ovarian cancer (51), melanoma (52), 
and prostate cancer (53,54). A previous study investigating 
gastric cancer showed that CXCR4 mRNA expression was 
positively correlated with docetaxel sensitivity (55), indi-
cating that docetaxel may be effective in patients with OS 
who have a high level of CXCR4 mRNA expression. These 
findings may be helpful for guiding the clinical management 
of OS.

Yang et al (56) conducted a meta‑analysis of OS micro-
array data in 2014 to better understand the underlying 
mechanism of OS. In this previous study, data was included 
from different microarray platforms, and results from OS 
tissue samples and cell lines were also included. The study 
revealed that ‘ECM‑receptor interaction’ and the ‘cell cycle’ 
were highly enriched KEGG pathways, and several hub genes 
were identified, including PTBP2, RGS4 and FXYD6 (56). 
The present study provided some improvements in the 
inclusion criteria and the analytic methods used. Evidence 

Figure 4. Sample dendrogram and trait heatmap for the different traits. Control and OS samples can be classified. The average age in the control group was 
higher than in the OS group. For gender, histology type (osteoblastic and other types) and CT response, no significant patterns were found. Group: White, 
BM‑MSCs; orange: OS. Gender: White, male; orange, female; grey, not reported. Age: Color scale from white (young) to orange (older). Osteoblastic type: 
White, no; orange, yes. Other types: White, osteoblastic type; orange, other types (except osteoblastic type). CT response: White, not applicable; dark orange, 
poor; light orange, good. OS, osteosarcoma; CT, chemotherapy.

Figure 5. Gene‑gene interaction network of the top 30 genes in the yellow 
module visualized using VisAnt software. Red circle indicate that the gene is 
overexpressed in OS while green circles indicate that the expression of this 
gene is unchanged. The small red circles around MS4A6A indicate that there 
are more connections to this gene. OS, osteosarcoma.
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suggests that cell lines from different laboratories are hetero-
geneous in various ways  (57), therefore, gene expression 
profiles generated from OS cell lines were excluded from 
the present study. BM‑MSCs from individuals with no signs 
of malignancies were selected as controls as OS has been 
reported to originate from BM‑MSCs (1). Furthermore, as 
different microarray platforms may have different probes to 
represent the same gene, results from different platforms are 
not usually directly comparable. In the present study, only 
RNA expression data generated from Human Genome U133 
Plus 2.0 array (GPL570) using tissue samples were included 
to reduce bias. Public databases were used to investigate 
key genes in order to identify potentially druggable genes or 
therapeutic targets.

Results from GO and KEGG enrichment analysis suggested 
that the DEGs identified participated in the ECM; this may 
contribute to OS development, which was consistent with a 
previous study by Yang et al (56). Many ECM proteins are 
significantly dysregulated during the progression of cancer, 
causing both biochemical and biomechanical changes (58). It 
has been reported that cancer cells can degrade the ECM, and 
promote metastasis by facilitating tumor associated angiogen-
esis and inflammation (59,60). Accumulation of ECM proteins 
can provide a suitable microenvironment to promote cancer 
cell proliferation and metastasis  (61‑63). Miyata et al  (64) 
reported that MMP2 and MMP9 could promote the mobility 
of vascular epithelial cells by remodeling the ECM. In the 
present study, both MMP9 and MMP13 were found to be 
overexpressed in OS.

The yellow gene module was positively related to OS 
and thus, may play an important role in the development 
of OS. The top 30 hub genes were selected to visualize the 
gene‑gene interactions. Each of these genes were upregulated 
>2‑fold. In total, 17 out of the 30 hub genes identified were 
from the innate immune system, including C1QA, C1QB, 
C1QC, CD14, CTSS, HCK, HLA‑DMB, IL10RA, LCP2, 
MRC1, PECAM1, PIK3AP1, PTPRC, RNASE6, TNFSF13B, 
TYROBP and VAMP8. C1QA, C1QB and C1QC encode the A‑, 
B‑ and C‑chain of the serum complement subcomponent C1q, 
respectively. The protein encoded by CD14 is a component of 
the innate immune system and CD163 functions as an innate 
immune sensor in bacteria (65,66). CTSS acts as a pivotal role 
in antigen presentation and can promote cell growth during 
tumorigenesis (67). GGTA1P can produce an immunogenic 
carbohydrate structure in Homo sapiens and the aberrant 
expression of this gene is associated with autoimmune disor-
ders. GIMAP6 and GIMAP8 are members of the GTPase of 
immunity‑associated protein family, regulating lymphocyte 
survival and homeostasis  (68). The protein encoded by 
HCK may play a role in neutrophil migration and neutrophil 
degranulation (66). Expression of HCLS1 is not restricted to 
hematopoietic cell lineages (69). HLA‑DMA and HLA‑DMB 
are both required for the normal assembly of peptides onto 
major histocompatibility complex class II molecules (70,71). 
HLA‑DMB is upregulated in the tumor tissues of patients of a 
Caucasian decent, but not of African‑American descent, and 
is positively correlated with an increase in T cell infiltration 
and an improved prognosis (72). In mouse models, PECAM1 
is associated with dysregulated osteoclastogenesis and hema-
topoiesis (73). PTPRC is also known as the CD45 antigen, 

which belongs to the protein tyrosine phosphatase (PTP) 
family (74). PTPs can regulate a variety of cellular processes, 
including cell growth, differentiation, the mitotic cell cycle 
and oncogenic transformation (74). CENTA2, encoded by 
ADAP2, can bind β‑tubulin and increase its stability (75). 
AIF1 expression is induced by cytokines and interferon, 
and may promote the activation of macrophages and the 
growth of vascular smooth muscle cells  (76). It has been 
reported that tumor‑associated macrophages can suppress 
the T cell‑mediated anti‑tumor immune response (77). OS 
is a type of cold tumor, largely due to the anti‑inflammatory 
M2 macrophages enriched in the tumor microenvironment, 
which can repress tumor‑infiltrating T cells (78,79). Results 
from CIBERSORT revealed that M0 and M2 macrophages 
were two major types of immune cell found in OS compared 
with BM‑BMCs. This is consistent with the results of previous 
studies that have been reviewed by Kelleher  et  al  (78), 
indicating that AIF1 may play an important role in the OS 
microenvironment. Programmed cell death protein 1 (PD‑1) 
and cytotoxic T‑lymphocyte antigen 4 can downregulate the 
immune system by suppressing T cell‑mediated inflamma-
tory activity in order to prevent the immune system from 
killing cancer cell (80). However, a previous study showed 
that a PD‑1 inhibitor is only effective in metastatic OS, as 
only metastatic OS expressed PD‑1 (81). In the present study, 
PD‑1 and PD‑L1 were downregulated in OS compared with 
BM‑MSCs.

The protein encoded by MGAT4A can regulate the 
availability of serum glycoproteins, and may participate in 
oncogenesis and differentiation  (82). As OS is frequently 
infiltrated by immune cells, including M2 macrophages and 
T cells (83,84), these findings may be instrumental in devel-
oping a better understanding of the mechanisms underlying 
OS. Further studies are warranted to explore whether and 
how personalized chemotherapy along with targeted therapy, 
including PD1 inhibitors, can benefit patients with primary 
OS.

Several advantages of the present study should be 
mentioned. Firstly, the inclusion criteria for relevant studies 
has been improved, only RNA expression data from the same 
platform and from tissues were included in the present study. 
Additionally, DEG analysis was combined with WGCNA 
analysis, which reduced the number of genes closely related to 
OS. Key genes from the yellow module were further compared 
using the CIViC, PharmGKB and oncoKB databases, and 
several promising druggable targets were identified. However, 
there were also several limitations to the present study. The 
five studies included were from The Netherlands, Japan, 
Germany, Belgium and France; stratified analysis was not 
performed on these data due to the relatively small samples 
in each study, and the heterogeneity of the tissues used in the 
different studies were unmodifiable, which should be improved 
in further studies.

In conclusion, the present study identified a group of DEGs 
in OS using meta‑analysis and bioinformatics analysis, and 
several key genes that may contribute to OS were identified. 
Functional annotations of these hub genes indicated that the 
ECM is involved in the development of OS. The present study 
improved our understanding of the mechanisms underlying 
the development of OS.
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