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Abstract. Gout is a type of serious arthritis that is caused by 
hyperuricemia. Celery is an umbelliferous plant that was shown 
to exhibit anti‑inflammatory activity in rodent. The present 
study aimed to investigate the effects and potential preliminary 
mechanisms of celery seed aqueous extract (CSAE) and celery 
seed oil extract (CSOL) for gout treatment. The components 
of CSAE and CSOL were systematically analyzed. In mice 
with hyperuricemia induced by potassium oxonate and yeast 
extract, CSAE and CSOL treatment reduced the serum levels 
of uric acid and xanthine oxidase. In addition, CSAE and CSOL 
reduced the levels of reactive oxygen species and increased the 
serum levels of superoxide dismutase and glutathione peroxi-
dase in mouse serum. In rats with acute gouty arthritis induced 
by intra‑articular injection of monosodium urate crystals, 
CSAE and CSOL treatment alleviated the swelling of the ankle 
joints and reduced inflammatory cell infiltration around the 
ankle joints. In addition, CSAE and CSOL reduced the levels 
of interleukin (IL)‑1β and tumor necrosis factor α and increased 
the levels of IL‑10. The results of the present study suggested 
that celery seed extracts may have anti‑gout properties, partially 
through anti‑inflammatory and antioxidative effects.

Introduction

Gout is a common form of arthritis associated with pain, fatigue 
and high fever (1). According to epidemiological studies, the 

incidence of gout increased from 1.42% in 1997  to 2.49% 
in 2012 in Britain (2), which is partly influenced by dietary 
changes and age  (3). Hyperuricemia, defined as a level of 
serum uric acid (UA) >6.8 mg/dl, is caused by the overacti-
vation of xanthine oxidase (XO) following excessive purine 
intake (4,5). High levels of UA contribute to the deposition 
of monosodium urate (MSU) in joints and other tissues (6). 
The deposition of MSU in the joint cavity activates inflam-
matory cytokines, inducing the accumulation of macrophages 
and neutrophils, which leads to gouty arthritis (7,8). Oxidative 
stress serves an important role in the pathogenesis of gout (9) 
and is responsible for a series of inflammatory events (10), 
such as the production of interleukin (IL)‑1β (11).

Based on the pathogenesis of gout, inhibiting inflammation 
and lowering the serum UA level are considered to be effec-
tive treatment strategies. Colchicine (COL), corticosteroids 
and non‑steroidal anti‑inflammatory drugs are commonly 
used in the treatment of gouty arthritis (12,13). Allopurinol 
and febuxostat (FBX) are the main clinical agents for treating 
hyperuricemia (14,15). However, a number of adverse effects 
have been reported, including liver damage, nephrotoxicity, 
bone marrow suppression and hypersensitive bodily reac-
tions  (14‑16). It is therefore particularly important to find 
alternative treatment agents for hyperuricemia and gouty 
arthritis.

Natural products have received increasing attention in 
clinical applications owing to their diverse efficacies and low 
adverse effects (17). Celery is an annual or perennial umbel-
liferous plant widely distributed in subtropical and tropical 
regions of Europe, Africa and Asia (18). Celery has exhibited 
antifungal, anti‑inflammatory and anti‑gastric ulcer effects in 
rodents, and may lower blood pressure in patients with hyper-
tension (19‑23). n‑Butanol extracts from celery seeds have been 
reported to improve lipid peroxidation through antioxidation 
in diabetic rats (24). Methanol and petroleum extracts from 
celery seeds reduced blood UA levels in rats (25). However, the 
antioxidant and anti‑inflammatory activities of celery seeds, 
especially their aqueous extracts and volatile oil, have not been 
fully reported in gout.

Rats with acute gouty arthritis, which was induced by 
MSU to simulate acute gout in humans, have been used to 
investigate the effects of various agents on joint swelling 
and inflammation (26). Mice with hyperuricemia, which was 
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induced by yeast extract powder and potassium oxonate (OXO) 
to simulate hyperuricemia in humans, have been used to 
investigate compounds that lower UA level (27). Based on our 
previous study, the two animal models can be used together to 
investigate the anti‑gout activity of various compounds (28). 
The aim of the present study was to systematically analyze 
the main components of the aqueous extract and volatile oil of 
celery seeds and to determine their anti‑gout effects in mice 
with hyperuricemia and rats with acute gouty arthritis. The 
specific roles of the antioxidant and anti‑inflammatory activi-
ties of the aqueous extract and volatile oil of celery seeds were 
also investigated.

Materials and methods

Preparation of celery seed aqueous and oil extracts using 
supercritical carbon dioxide. To prepare celery seed aqueous 
extract (CSAE), 30  g celery seed powder (Changchun 
Yonglong Food Co., Ltd.) was added to 300 ml distilled water 
and heated at 80˚C for 2.5 h twice. The supernatants from 
different samples were collected by centrifugation at 7,100 x g, 
at 20˚C for 10 min and pooled together. CSAE powder was 
prepared using a R206 rotary evaporator spray drier (Shanghai 
Senco Technology Co., Ltd.). The extraction rate of CSAE was 
10.0±0.5% (w/w).

To prepare celery seed oil extract (CSOL), 300 g celery 
seed powder was placed in a HA221‑50‑06 supercritical 
carbon dioxide extraction system (Nantong Wenao Import 
And Export Co., Ltd.) under the following conditions: 35˚C 
and 25 MPa in the extraction tank; 40˚C and 8 MPa in the 
first separation; and 30˚C and 6 MPa in the second separa-
tion. The extraction period was 2 h, and the oil was collected 
every 15 min. The extraction rate of CSOL using supercritical 
carbon dioxide was 7.8±0.3% (w/w).

Composition analysis of CSAE and CSOL
Main components analysis. The main components of CSAE 
powder, including total sugar, mannitol, reducing sugar, 
protein, crude fat, total flavonoids and total triterpenes were 
determined, as previously described, by the phenol sulfuric acid 
method (29), high‑performance liquid chromatography (30), 
3,5‑dintrosalicylic acid reducing sugar assay (31), Kjeldahl 
method (32), Soxhlet extractor method (33), aluminum trichlo-
ride colorimetric method  (34) and vanillin‑glacial acetic 
acid‑perchloric acid colorimetric method (35), respectively.

Fatty acid analysis. A 5% KOH‑methanol solution was added 
to the CSAE powder or CSOL, incubated in a 60˚C water 
bath for 30 min and mixed with 14% BF3‑methanol solution 
at 60˚C for 3 min. The samples were mixed with hexane and 
the levels of fatty acids were analyzed using a QP2010 gas 
chromatography‑mass spectrometer (Shimadzu Corporation). 
GC was performed using high‑pressure‑55% phenyl methyl 
siloxane chromatographic column (30x0.32 mm2; diameter, 
0.25 µm). The sample inlet temperature was set at 270˚C, and 
the column temperature at 100˚C. The heating rate was set 
at 10˚C/min to 170˚C, and at 3˚C/min to 250˚C. The carrier gas 
used was helium, with a flow rate of 2.4 ml/min at 0.4 MPa. 
For mass spectrometry, electron positive ionization was used 
as ion source, and the transition was m/z 380.0→20.0, the 

temperature of ion source was 200˚C, the interface tempera-
ture was 250˚C, the solvent removal time was 1.5 min, and the 
detector voltage was 1.14 kV.

Amino acid analysis. The CSAE powder and CSOL were 
hydrolyzed with 6 mol/l HCl at 110±1˚C for 22 h. Following 
vacuum drying, the samples were dissolved in 1 ml pH 2.2 
buffer (19.6  g sodium citrate and 16.5  ml hydrochloric 
dissolved in 1 l of deionized water; pH 2.2). The amino acid 
content was quantified by an L‑8900 automatic amino acid 
analyzer (Hitachi High‑Technologies Corporation).

Mineral analysis. The CSAE powder was pretreated with 
hydrogen nitrate 110˚C and 3 MPa for 30 min. The levels of 
mercury, lead, selenium, arsenic, cadmium, zinc, iron, manga-
nese, chromium, calcium, copper, sodium and potassium were 
detected by inductively coupled plasma optical emission spec-
trometry as previously described (36‑38).

Flavonoid analysis. The flavonoid content of CSOL was 
analyzed using the Agilent 1260 LC system with a diode 
array detector‑fluorescence detector and a C‑18 column 
(150x4.6 mm; particle size, 5 µm) (Agilent Technologies, Inc.) 
with the injection volume of 10 µl and the flow rate of 1 ml/min 
by elution containing 98% methanol and 2% ultrapure water 
at 20˚C. The standards were obtained from Shanghai Yuanye 
Bio‑Technology Co. Ltd.

Animal experiments. The working concentrations of FBX 
and COL were selected according to previous studies (39,40). 
Celery seed treatment doses were selected following prelimi-
nary experiments (data not shown).

Establishment of mouse hyperuricemia model and drug 
treatment. A total of 120 male BALB/c mice (age, 8 weeks; 
weight, 18‑20  g) were provided by Liaoning Changsheng 
Biotechnology Co., Ltd. All mice were housed in plastic cages 
at 23±1˚C with 55% relative humidity, a 12‑h light/dark cycle 
(7:00‑19:00) and standard food and sterile mineral water 
ad libitum.

Mice were divided into two main groups: i) To investigate 
CSAE (AE); and ii) to investigate CSOL (OL). Mice used as 
control to examine CSAE were defined as ‘CTRL (AE)’ mice; 
mice used as control to examine CSOL were defined as ‘CTRL 
(OL)’ mice. A total of 60 mice were randomly divided into 5 
groups (n=12 mice/group): i) Control [CTRL (AE)] mice group, 
which received 10 ml/kg saline by gavage; ii) hyperuricemia 
model mice [MC (AE)] group, which received 10 ml/kg saline 
by gavage; iii) positive control [FBX (AE)] group, which were 
MC mice that received 0.6 mg/ml FBX (Jiangsu Wanbang 
Biochemical Pharmaceutical Group Co., Ltd.) at 10 ml/kg 
by gavage; iv)  low‑dose CSAE‑treated model (CSAE‑low) 
group, which received 75 mg/kg CSAE (equal to 0.75 g celery 
seed) dissolved in 10 ml saline by gavage; and v) high‑dose 
CSAE‑treated model (CSAE‑high) group, which received 
300 mg/kg (equal to 3 g celery seed) dissolved in 10 ml saline 
by gavage. CTRL (AE), MC (AE) and FBX (AE) were used as 
untreated control, model control and positive control groups, 
respectively, in the experiments analyzing the effects of CSAE 
in hyperuricemia model mice.
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The remaining 60 mice were randomly divided into 
5  groups (n=12 mice/group): i) C TRL (OL) group, which 
received 5 ml/kg of olive oil by gavage; ii) MC (OL) group, 
which received 5 ml/kg of olive oil by gavage; iii) FBX (OL) 
group, which comprised MC mice that received 6 mg/kg FBX 
dissolved in 5 ml olive oil by gavage; iv) low‑dose CSOL‑treated 
(CSOL‑low) model group, which received 0.058 ml/kg CSOL 
(equal to 0.75 g celery seed) in 5 ml olive oil by gavage; and 
v) high‑dose CSOL‑treated (CSOL‑high) model group, which 
received 0.233 ml/kg (equal to 3 g celery seed) in 5 ml olive oil 
by gavage. CTRL (OL), MC (OL) and FBX (OL) were used as 
untreated control, model control and positive control groups, 
respectively, in the experiments analyzing the effects of CSOL 
in hyperuricemia model mice.

With the exception of the CTRL mice, 12 h prior to the 
oral administration of the aforementioned agents (saline, olive 
oil, FBX, CSAE or CSOL), 20 g/kg yeast extract powder was 
administered by gavage to the mice once a day for 8 days. On 
day 6, 7 and 8, 1 h prior to the oral administration of the afore-
mentioned agents, mice were intraperitoneally injected with 
300 mg/kg OXO (Sigma‑Aldrich; Merck KGaA) to induce 
hyperuricemia (28); the CTRL mice were injected with 0.9% 
saline following the same schedule. During the 8 days, the 
aforementioned agents (saline, olive oil, FBX, CSAE, CSOL 

Table I. Composition of celery seed aqueous extract.

Component	C ompound	C ontent (%)

Main	 Total sugar	 90.3
component
	 Total triterpenes	 0.038
	 Mannitol	 0.515
	 Reducing sugar	 2.73
	 Crude fat	 0.7
	 Protein	 4.66
	 Total flavonoids	 0.014
Fatty acid 	C apric acid (C10:0)	       2.36x10‑4

	 Undecanoic acid (C11:0)	       0.01x10‑4

	 Lauric acid (C12:0)	       3.16x10‑4

	 Tridecanoic acid (C13:0)	ND
	 Myristic acid (C14:0)	     16.48x10‑4

	 Myristoleic acid (C14:1n5)	       0.41x10‑4

	 Pentadecanoic acid (C15:0)	       3.04x10‑4

	 Pentadecenoic acid (C15:1n5)	       0.11x10‑4

	 Hexadecanoic acid (C16:0)	 1761.24x10‑4

	 Palmitoleic acid (C16:1n7)	     17.08x10‑4

	 Heptadecanoic acid (C17:0)	       6.36x10‑4

	 Heptadecenoic acid (C17:1n7)	       3.43x10‑4

	 Stearic acid (C18:0)	   289.50x10‑4

	 Oleic acid (C18:1n9)	  1 85.10x10‑4

	 Elaidic acid (C18:1n9t)	ND
	 Linoleic acid (C18:2n6c)	 6087.74x10‑4

	 Trans‑linoleic acid (C18:2n6t)	ND
	 α‑linolenic acid (C18:3n3)	   568.85x10‑4

	 γ‑Linolenic acid (C18:3n6)	   103.81x10‑4

	 Arachidic acid (C20:0)	     54.82x10‑4

	 Paullinic acid (C20:1)	     61.99x10‑4

	 Eicosadienoic acid (C20:2)	ND
	 Eicosatrienoic acid (C20:3n3)	ND
	 Dihomo‑γ‑linolenic acid	     98.90x10‑4

	 (C20:3n6)
	 Arachidonic acid (C20:4n6)	   115.07x10‑4

	 Eicosapentaenoic acid	   120.20x10‑4

	 (C20:5n3)
	 Heneicosanoic acid (C21:0)	     71.64x10‑4

	 Docosanoic acid (C22:0)	     88.04x10‑4

	 Erucic acid (C22:1n9)	   107.84x10‑4

	 cis‑13,16‑Docosadienoic acid 	   119.11x10‑4

	 methyl ester (C22:2)
	 Docosahexaenoic acid	ND
	 (C22:6n3)
	 Tricosanoic acid (C23:0)	   106.60x10‑4

	 Tetracosanoic acid (C24:0)	ND
	 Nervonic acid (C24:1n9)	ND
	 Octanoic acid (C8:0)	       0.02x10‑4

Amino acid 	A spartic acid 	       2.38x10‑1

	 L‑Threonine 	       1.68x10‑1

	 Serine 	       0.22x10‑1

	 Glutamic acid 	       2.55x10‑1

	 Glycine 	       1.08x10‑1

Table I. Continued.

Component	C ompound	C ontent (%)

	 Alanine 	   1.32x10‑1

	 Cysteine	   3.52x10‑1

	 Valine 	   0.77x10‑1

	 Methionine 	   2.00x10‑1

	 Isoleucine 	   1.17x10‑1

	 Leucine 	   1.88x10‑1

	 Tyrosine 	   0.69x10‑1

	 Phenylalanine	 15.35x10‑1

	 Lysine	   0.89x10‑1

	 Histidine 	   4.77x10‑1

	 Arginine 	   0.77x10‑1

	 Proline 	   3.95x10‑1

Minerals 	 Mercury 	ND
	 Lead 	   0.18x10‑4

	 Selenium 	ND
	 Arsenic 	   0.19x10‑4

	 Cadmium 	ND
	 Zinc	 29.94x10‑4

	 Iron 	 36.16x10‑4

	 Manganese 	 21.50x10‑4

	 Chromium	   1.92x10‑4

	 Calcium	 2,426x10‑4

	 Copper 	   2.05x10‑4

	 Sodium 	 1,258x10‑4

	 Potassium 	 8,079x10‑4

ND, not detected.
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or COL) were administered every day. On day 8, after the 
last administration of the agents, over 150 µl of blood were 
collected from the caudal vein of all mice, and then the mice 
were sacrificed. Liver samples were collected from all mice 
post mortem. In summary, yeast extract powder was adminis-
tered by gavage once a day.

Establishment of rat acute gouty arthritis model and drug 
treatment. A total of 120 male Wistar rats (age, 8 weeks; 
weight, 180‑220 g) were obtained from Liaoning Changsheng 
Biotechnology Co., Ltd. All rats were housed in plastic cages 
at 23±1˚C with 55% relative humidity, a 12‑h light/dark cycle 
(7:00‑19:00) and ad  libitum access to standard food and 
mineral water.

A total of 60 rats were randomly divided into 5 groups 
(n=12 rats/group): i) CTRL (AE) group, which received 5 ml/kg 
saline by gavage for 8 days; ii) rat gouty arthritis MCr (AE), 
which receive 5 ml/kg saline by gavage for 8 days; iii) positive 
control [COL (AE)] model group, which received 0.4 mg/kg 
COL (Yunnan Phytopharmaceutical Co., Ltd.) dissolved in 
5 ml saline by gavage for 8 days; iv) SAE‑low group, which 
received 50 mg/kg CSAE (equal to 0.5 g celery seed) dissolved 
in 5 ml saline by gavage for 8 days; and v) CSAE‑high group, 
which received 200 mg/kg (equal to 2 g celery seed) dissolved 
in 5 ml saline by gavage for 8 days. CTRL (AE), MCr (AE) and 
COL (AE) were used as the untreated control, model control 
and positive control groups, respectively, in the experiments 
analyzing the effects of CSAE in gouty arthritis model rats.

The remaining 60 rats were randomly divided into 5 
groups (n=12 mice/group): i) C TRL (OL) group, which 
received 1 ml/kg olive oil by gavage for 8 days; ii) MCr (OL) 
group, which received 1 ml/kg olive oil by gavage for 8 days; 
iii) COL (OL) group, which was model rats that received 
0.4 mg COL dissolved in 1 ml/kg olive oil by gavage for 
8 days; iv) CSOL‑low group, which received 0.039 ml CSOL 
(0.5 g celery seed) dissolved in 0.961 ml/kg olive oil by gavage 

Table II. Composition of celery seed oil extract.

Component	C ompound	C ontent (%)

Fatty acid	C apric acid (C10:0)	        0.118x10‑2

	 Undecanoic acid (C11:0)	        0.029x10‑2

	 Lauric acid (C12:0)	        1.315x10‑2

	 Tridecanoic acid (C13:0)	        0.059x10‑2

	 Myristic acid (C14:0)	        9.120x10‑2

	 Myristoleic acid (C14:1n5)	        0.013x10‑2

	 Pentadecanoic acid (C15:0)	        1.033x10‑2

	 Pentadecenoic acid (C15:1n5)	        0.049x10‑2

	 Hexadecanoic acid (C16:0)	    983.766x10‑2

	 Palmitoleic acid (C16:1n7)	        8.086x10‑2

	 Heptadecanoic acid (C17:0)	        4.521x10‑2

	 Heptadecenoic acid (C17:1n7)	        3.506x10‑2

	 Stearic acid (C18:0)	    242.853x10‑2

	 Oleic acid (C18:1n9)	    115.324x10‑2

	 Elaidic acid (C18:1n9t)	ND
	 Linoleic acid (C18:2n6c)	 5,174.071x10‑2

	 Trans‑linoleic acid (C18:2n6t)	ND
	 α‑linolenic acid (C18:3n3)	    320.313x10‑2

	 γ‑Linolenic acid (C18:3n6)	        0.436x10‑2

	 Arachidic acid (C20:0)	      21.331x10‑2

	 Paullinic acid (C20:1)	        6.764x10‑2

	 Eicosadienoic acid (C20:2)	        1.579x10‑2

	 Eicosatrienoic acid (C20:3n3)	        0.435x10‑2

	 Dihomo‑γ‑linolenic acid	        0.114x10‑2

	 (C20:3n6)
	 Arachidonic acid (C20:4n6)	        1.543x10‑2

	 Eicosapentaenoic acid	        0.035x10‑2

	 (C20:5n3)
	 Heneicosanoic acid (C21:0)	        1.082x10‑2

	 Docosanoic acid (C22:0)	      21.793x10‑2

	 Erucic acid (C22:1n9)	        0.257x10‑2

	 cis‑13,16‑Docosadienoic acid	        0.211x10‑2

	 methyl ester (C22:2)
	 Docosahexaenoic acid	        0.084x10‑2

	 (C22:6n3)
	 Tricosanoic acid (C23:0)	        2.165x10‑2

	 Tetracosanoic acid (C24:0)	        9.214x10‑2

	 Nervonic acid (C24:1n9)	        0.053x10‑2

	 Octanoic acid (C8:0)	        0.251x10‑2

Amino acid	A spartic acid 	 0.007
	 L‑Threonine	ND
	 Serine 	 0.003
	 Glutamic acid 	ND
	 Glycine 	 0.001
	 Alanine 	ND
	 Cysteine	ND
	 Valine 	ND
	 Methionine 	 0.003
	 Isoleucine 	ND
	 Leucine 	ND
	 Tyrosine 	ND
	 Proline 	 0.112

Table II. Continued.

Component	C ompound	C ontent (%)

	 Lysine 	 0.003
	 Arginine 	 0.007
	 Histidine	 0.004
	 Phenylalanine	ND
Flavonoids	D ihydromyricetin	ND
	 Myricetin	ND
	 Naringenin	   0.18x10‑2

	 Apigenin	 0.012x10‑2

	 Taxifolin	   0.52x10‑2

	 Eriodictyol	 0.032x10‑2

	 Luteolin	 0.024x10‑2

	 Aromadendrin	 0.095x10‑2

	 Quercetin	     2.3x10‑2

	 Kaempferol	ND  

ND, not detected.
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for 8 days; and v) CSOL‑high group, which received 0.155 ml 
CSOL (2 g celery seed) dissolved in 0.845 ml/kg olive oil 
by gavage for 8 days. CTRL (OL), MCr (OL) and FBX (OL) 
were used as the untreated control, model control and positive 
control groups, respectively, in the experiments analyzing the 
effects of CSOL in gouty arthritis model rats.

MSU (Sigma‑Aldrich; Merck KGaA) suspension was 
prepared with sterile water in biological safety cabinets. The 
endotoxins in the MSU samples were detected by a commercial 
kit (Tachypleus Amebocyte Lysate for Endotoxin Detection 
Kit; cat. no. RG025006; Xiamen Bioendo Technology Co., 
Ltd.) to exclude a potential effect induced by Endotoxin. On 
day 6, the rats were intra‑articularly injected with 30 mg/ml 
MSU to the right ankle (0.1 ml) at 4:00 PM (28), with the 
exception of the CTRL rats, which were injected with 0.9% 
saline at the same time.

Following the 8‑day treatment, the right ankle circumferences 
of all rats were measured using Vernier calipers at 24 and 48 h, 
and the swelling ratio (%) was calculated as follows: Swelling 
ratio (%)=(Ct‑C0)/C0, where Ct is the circumference at time t, 
and C0 is the circumference at 0 h. Prior to euthanasia, blood 
samples were collected from the caudal vein of the rats.

Biochemical assay. In the hyperuricemia MC mouse 
model, the serum levels of UA, and XO, and the liver levels 

of XO were determined using an XO Activity Assay kit 
(cat. no. MAK078; Sigma‑Aldrich; Merck KGaA) and a UA 
Assay kit (cat. no. MAK077; Sigma‑Aldrich; Merck KGaA) 
according to the manufacturer's instructions. The serum levels 
of reactive oxygen species (ROS; cat. no. 43124), superoxide 
dismutase (SOD; cat. no. 43125) and glutathione peroxidase 
(GSH‑Px; cat. no. 43390) were determined using ELISA kits 
from Shanghai Yuanye Bio‑Technology Co., Ltd. according to 
the manufacturer's instructions.

In the acute gout rat model, the serum levels of IL‑1β 
(cat. no. 43360), IL‑6 (cat. no/41731), IL‑10 (cat. no. 41736), 
monocyte chemoattractant protein 1 (MCP‑1; cat. no. 41640) and 
tumor necrosis factor α (TNF‑α; cat. no. 41721) were determined 
by ELISA kits from Shanghai Yuanye Bio‑Technology Co. Ltd.

Pathological section of the ankle joint. The right ankle of each 
rat was collected, fixed in 4% paraformaldehyde and decalci-
fied with 10% ethylenediaminetetraacetic acid. Following 
decalcification and dehydration via increasing ethanol series, 
followed by incubation in 50% of ethanol + 50% dimethylben-
zene for 1 h at room temperature, samples were incubated twice 
with dimethylbenzene for 20 min at room temperature, the 
samples were embedded in paraffin, sliced into 5‑µm sections 
and stained with hematoxylin and eosin (H&E). The slides 
were stained with hematoxylin for 5 min at room temperature 

Figure 2. Effects of CSOL on mice with hyperuricemia. (A) CSOL treatment reduced the serum levels of UA in model mice. (B and C) CSOL suppressed 
XO activities in (B) serum and (C) liver in treated model mice. Data are expressed as the mean ± SD; n=12; #P<0.05 vs. CTRL (OL); *P<0.05, **P<0.01 and 
***P<0.001 vs. MC (OL). CSOL, celery seed oil extract; CTRL, control; FBX, MC mice treated with febuxostat; MC, model mice; OXO, potassium oxonate; 
UA, uric acid; XO, xanthine oxidase; YEP, yeast extract powder.

Figure 1. Effects of CSAE on mice with hyperuricemia. (A) CSAE reduced the serum levels of UA in model mice. (B and C) CSAE slightly affected XO 
activity in (B) serum and (C) liver of model mice. Data are expressed as the mean ± SD; n=12; #P<0.05 and ##P<0.01 vs. CTRL (AE); **P<0.01 and ***P<0.001 
vs. MC (AE). CSAE, celery seed aqueous extract; CTRL, control; FBX, MC mice treated with febuxostat; MC, hyperuricemia model mice; OXO, potassium 
oxonate; UA, uric acid; XO, xanthine oxidase; YEP, yeast extract powder.
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and eosin for 3 min at room temperature and observed under 
a light microscope (magnification, x200), and three fields of 
view were examined per section.

Statistical analysis. All data are expressed as mean ± SD. 
Statistical analysis was performed by one‑way analysis of 
variance followed by Dunn's multiple comparison post‑hoc 
test using SPSS software (version 16.0; SPSS, Inc.). P<0.05 
was considered to indicate a statistically significant difference.

Results

Composition of CSAE and CSOL. The CSAE contained 90.3% 
total sugar, 2.73% reducing sugar, 0.515% mannitol, 4.66% 
protein, 0.7% crude fat and 0.014% total flavonoids (Table I). 
Among the 35 types of the detected fatty acids, the contents of 
C16:0 (0.17%) and C18:2n6c (0.61%) were the highest (Table I). 
A total of 17 different amino acids were detected in CSAE 
(Table I). The overall mineral content was low, and the solution 
contained, among other salts, 0.24% calcium and 0.0022% 
manganese (Table I).

In the CSOL, among the 35 types of the detected fatty 
acids, the contents of C18:2n6c (51.74%), C16:0 (9.8%), 
C18:3n3 (3.2%), C18:0 (2.4%) and C18:1n9 (1.15%) were the 
highest. Of the 17 amino acids identified in CSAE, only nine 
were detected in CSOL. The total flavonoid content in CSOL 
was 0.03%, which included seven distinct flavonoids, including 
naringenin, quercetin and taxifolin (Table II).

Effects of CSAE and CSOL in hyperuricemia MC mice
Reductive effects of CSAE and CSOL on the levels of UA and 
XO. The accumulation of UA in the body induces sodium 
urate precipitation in the joint cavity, causing severe painful 
arthritis (41). In the two separate experiments, a significant 

Table III. Effects of CSAE on the oxidative stress‑related 
factors in mice with hyperuricemia.

	 SOD	 GSH‑Px	RO S
Group	 (U/ml)	 (U/ml)	 (U/ml)

CTRL (AE)	 41.2±3.6	 61.3±7.3	 59.5±6.5
MC (AE)	 36.8±3.8a	 53.6±6.1a	 64.0±3.9a

FBX (AE) (6 mg/kg)	 43.0±4.6b	 57.2±5.9	 54.5±59.0c

CSAE (75 mg/kg)	 45.1±4.7c	 61.2±4.2b	 55.3±6.1c

CSAE (300 mg/kg)	 47.8±3.5d	 50.2±1.9	 57.6±4.2b

aP<0.05 vs. CTRL (AE); bP<0.05, cP<0.01 and dP<0.001 vs. MC 
(AE). Results are presented as the mean ± SD, n=12. CSAE, celery 
seed aqueous extract; CTRL, control; FBX, MC mice treated with 
febuxostat; GSH‑Px, glutathione peroxidase; ROS, reactive oxygen 
species; SOD, superoxide dismutase; MC, model mice.

Table IV. Effects of CSOL on the oxidative stress‑related 
factors in mice with hyperuricemia.

	 SOD	 GSH‑Px	RO S
Group	 (U/ml)	 (U/ml)	 (U/ml)

CTRL (OL)	 24.8±2.1	 39.4±3.7	 21.1±0.7
MC (OL)	 21.4±2.1b	 35.2±2.0a	 22.6±1.3a

FBX (OL) (6 mg/kg)	 23.2±1.9c	 36.3±4.1	 20.0±1.3d

CSOL (0.058 ml/kg)	 23.0±1.6	 37.8±1.2c	 20.0±1.0d

CSOL (0.233 ml/kg)	 25.2±1.6d	 35.6±3.7	 22.3±2.0

aP<0.05 and bP<0.01 vs. CTRL (OL); cP<0.05 and dP<0.01 vs. MC 
(OL). Results are presented as the mean ± SD; n=12. CSOL, 
celery seed oil extract; CTRL, control; FBX, MC mice treated with 
febuxostat; GSH‑Px, glutathione peroxidase; MC, model mice; ROS, 
reactive oxygen species; SOD, superoxide dismutase.

Figure 4. CSOL decreases the ankle joint swelling rate of rats with acute 
gouty arthritis. Data are expressed as means ± SD; n=12; ###P<0.001 vs. 
CTRL (OL); **P<0.05 and ***P<0.01 vs. MCr (OL). COL, MCr rats treated 
with colchicine; CSOL, celery seed oil extract; CTRL, control; MCr, model 
rats; MSU, monosodium urate.

Figure 3. CSAE decreases the ankle joint swelling rate of rats with acute 
gouty arthritis. Data are expressed as the mean ± SD; n=12; ##P<0.01 and 
###P<0.001 vs. CTRL (AE); *P<0.05 vs. MCr (AE). COL, MCr rats treated 
with colchicine; CSAE, celery seed aqueous extract; CTRL, control; MCr, 
acute gouty arthritis model rats; MSU, monosodium urate.
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increase in serum UA levels was observed in mice with 
hyperuricemia compared with the respective untreated CTRL 
mice (P<0.05; Figs. 1A and 2A). FBX treatments resulted in a 
>60% reduction of the UA enhancement compared with the 
respective MC group (P<0.001; Figs. 1A and 2A). Low‑ and 
high‑dose CSAE and CSOL administration strongly reduced 
serum UA levels in mice with hyperuricemia compared with 
those in the respective MC group (P<0.05; Figs. 1A and 2A).

XO is a regulator of purine metabolism, which regulates 
the levels of the final product of purine metabolism, UA (42). 
Significantly higher levels of XO were observed in the serum 
(P<0.05, Figs. 1B and 2B) and liver (P<0.05, Figs. 1C and 2C) 
of MC mice compared with the CTRL group. Low‑ and 
high‑dose CSAE and CSOL slightly decreased the pathologi-
cally elevated XO levels; CSOL‑low treatment reduced the XO 
activity by 41.9% in the serum (P<0.001; Fig. 2B) and by 11.3% 
in the liver (P<0.05; Fig. 2C).

Regulatory effect of CSAE and CSOL on oxidative stress. 
The production of UA is accompanied by a large amount of 
ROS, and hyperuricemia is associated with the occurrence 
of oxidative stress (43,44). Low SOD and GSH‑Px levels and 
high ROS levels were observed in hyperuricemia MC mice 
compared with the CTRL group (P<0.05; Tables III and IV). 
Low‑dose CSAE treatment resulted in 14.2 and 22.6% increase 
of GSH‑Px (P<0.05) and SOD (P<0.05) levels, respectively, 
and a 13.6% reduction of ROS levels (P<0.01) in the serum 

compared with untreated MC mice. Similar regulatory effects 
on the anti‑ and pro‑oxidative factors were observed in the 
CSOL‑treated compared with untreated MC mice (P<0.05; 
Tables III and IV). However, FBX treatment only enhanced 
the levels of SOD and reduced the levels of ROS in the serum 
compared with untreated MC mice (P<0.05; Tables III and IV).

Effects of CSAE and CSOL on MSU‑induced acute gouty 
arthritis model rats
CSAE and CSOL regulate the swelling and pathological 
changes of ankle joints. Compared with the CRL rats of the 
two experiments, the swelling rates of the right ankle joint in 
the MCr rats with MSU‑induced gouty arthritis increased by 
>100% at 24 and 48 h (P<0.001; Figs. 3 and 4). This effect 
was suppressed by CSAE‑high and low‑ and high‑dose CSOL 
administration at 48 h (P<0.05; Figs. 3 and 4). Compared with 
MCr rats with MSU‑induced gouty arthritis, COL treatment 
did not reduce the swelling (P<0.05; Figs. 3 and 4).

In the MCr rats, there was a notable presence of foreign 
substances, such as cell debris, in the ankle joint cavity, a 
narrow joint space and enhanced numbers of inflammatory 
cells around the joint cavity were observed compared with the 
untreated CTRL rats of the two experiments (Fig. 5). These 
effects were detected in both ankle joints and joint capsules. 
These pathological changes of the ankle joints of rats with acute 
gouty arthritis appeared to be relieved by COL, CSAE‑low 
and CSOL‑low treatments (Fig. 5). However, CSAE‑high and 

Figure 5. CSAE and CSOL reduce the pathological alterations of ankle joints in rats with acute gouty arthritis. (A and B) H&E stained histopathological 
slices of (A) ankle joints and (B) joint capsules in CSAE‑treated model rats. (C and D) H&E stained histopathological slices of (C) ankle joints and (D) joint 
capsules of CSOL‑treated model rats. Magnification, x200; n=6. The arrows indicate inflammatory cells. ‘+’ indicates cell debris. COL, MCr rats treated with 
colchicine; CSAE, celery seed aqueous extract; CSOL, celery seed oil extract; CTRL, control; MCr, model rats; MSU, monosodium urate.
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CSOL‑high failed to relieve the inflammation of the joints 
(Fig. 5), possibly due to a negative feedback regulation.

Effects of CSAE and CSOL on inflammatory factors. A 
previous study has demonstrated that the pathogenesis of 
gout is associated with inflammation (45). Compared with 
the CTRL rats of the two experiments, enhanced levels of the 
pro‑inflammatory cytokines IL‑1β and IL‑6 and reduced levels 
of the anti‑inflammatory cytokine IL‑10 were observed in the 
respective hyperuricemia or gouty arthritis MCr rats (P<0.05; 
Tables V and VI). CSAE‑high reduced the levels of IL‑1β by 
22.4% (P<0.05), IL‑6 by 20.4% (P<0.05) and TNF‑α by 17.2% 
(P<0.05), and enhanced the IL‑10 levels by 8.8% (P<0.05) 
compared with untreated MCr rats; however, it did not affect 
the levels of MCP‑1 in the serum of rats with acute gouty 
arthritis (Table V). CSOL‑low resulted in 14.2 and 19.4% 
reductions in the serum levels of TNF‑α (P<0.05) and IL‑1β 
(P<0.05), respectively, and a >14.3% increase in the serum 
levels of IL‑10 (P<0.05) compared with untreated acute gouty 
arthritis MCr rats (Table VI). CSOL did not affect the levels 
of IL‑6 or MCP‑1 in rats with acute gouty arthritis (Table VI).

Discussion

The results of the present study suggested that CSAE and 
CSOL exerted slightly suppressive effects on the serum UA 
levels and XO activity in mice with hyperuricemia induced 
by OXO and yeast extract, and reduced the ankle joint 

swelling rates in rats with acute gouty arthritis induced by an 
intra‑articular injection of MSU.

The occurrence of hyperuricemia increases the produc-
tion of oxygen free radicals, promotes lipid peroxidation and 
upregulates pro‑inflammatory factor expression (6,46‑48). 
Celery juice and celery root can increase the antioxidant 
content in rats (49). One of the major functions of the flavonoids 
in plants is to scavenge free radicals and exert anti‑oxidant 
effects (50,51). In the present study, CSAE and CSOL, which 
contain various types of flavonoids, such as quercetin and 
taxifolin, inhibited XO activity, promoted oxidative stress 
factors SOD and GSH‑Px and reduced levels of ROS in mice 
with hyperuricemia mice. As an effective antioxidant enzyme, 
SOD catalyzes the rapid conversion of O2 and •O2

‑ to H2O2, 
following which H2O2 can be converted to H2O by GSH‑Px 
catalysis inside cells (52). A negative correlation between the 
levels of XO activity and SOD and GSH‑Px has been reported 
in patients with acute paraquat poisoning (53). Flaxseed oil 
has been demonstrated to inhibit the gene expression levels 
of XO by increasing the activity of SOD and GSH‑Px in the 
brains of female rats treated with g‑irradiation and carbon 
tetrachloride (54). XO is a key enzyme in the catalytic conver-
sion of xanthine and hypoxanthine to UA (55,56), which is 
responsible for the generation of ROS (43). As a feedback 
response, a large amount of ROS is generated alongside the 
production of UA (43). Therefore, the suppressive effects of 
CSEA and CSOL on UA in mice with hyperuricemia may be, 
at least partially, associated with oxidative stress inhibition.

Table VI. Effects of CSOL on the inflammatory factors in MSU‑induced acute gouty rats.

Group	IL‑ 1β (pg/ml)	IL‑ 6 (pg/ml)	IL‑ 10 (pg/ml)	 MCP‑1 (pg/ml)	 TNF‑α (pg/ml)

CTRL (OL)	 2.7±0.1	 17.7±2.9	 4.7±0.2	 73.1±3.1	 22.7±0.5
MCr (OL)	 3.1±0.5a	 20.4±2.1a	 4.2±0.5a	 76.5±1.1	 23.3±0.7
COL (OL) (0.3 mg/kg)	 2.6±0.5b	 17.1±0.9b	 4.4±0.3	 71.3±4.1	 22.2±0.8
CSOL (0.039 ml/kg)	 2.5±0.1b	 19.4±1.7	 5.2±0.8b	 74.0±10.2	 20.0±1.2b

CSOL (0.155 ml/kg)	 2.9±0.2	 18.8±1.1	 4.8±0.2b	 72.7±2.6	 21.5±1.0

aP<0.05 vs. CTRL (OL); bP<0.05 vs. MCr (OL). Results are presented as the mean ± SD; n=12. COL, MCr rats treated with colchicine; CSOL, 
celery seed oil extract; CTRL, control; IL, interleukin; MCr, model rats; MCP‑1, monocyte chemoattractant protein 1; TNF‑α, tumor necrosis 
factor α.

Table V. Effects of CSAE on inflammatory factors in MSU‑induced rats with acute gout.

Group	IL‑ 1β (pg/ml)	IL‑ 6 (pg/ml)	IL‑ 10 (pg/ml)	 MCP‑1 (pg/ml)	 TNF‑α (pg/ml)

CTRL (AE)	 5.3±0.6	 28.1±3.2	 16.0±3.2	 116.8±11.1	 44.0±2.8
MCr (AE)	 6.7±1.5a	 35.3±7.9a	 13.6±1.2a	 127.1±23.9	 51.3±9.6
COL (AE) (0.3 mg/kg)	 5.1±0.8b	 27.4±3.7b	 14.2±1.1	  92.0±12.2c	 37.1±4.9c

CSAE (50 mg/kg)	 5.2±0.4b	 31.1±1.9	 16.6±1.7c	 106.9±23.7	 40.8±4.4b

CSAE (200 mg/kg)	 5.2±0.4b	 28.1±2.7b	 14.8±0.7b	 107.6±7.9	 42.5±3.8b

aP<0.05 vs. CTRL (AE); bP<0.05 and cP<0.01 vs. MCr (AE). Results are presented as the mean ± SD; n=12. COL, MCr rats treated with 
colchicine; CSAE, celery seed aqueous extract; CTRL, control; IL, interleukin; MCr, model rats; MCP‑1, monocyte chemoattractant protein 1; 
TNF‑α, tumor necrosis factor α.
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During the development of gouty arthritis, MSU enters 
cells through endocytosis and induces inflammation  (57). 
MSU stimulates synovial cells, monocyte macrophages and 
neutrophils to produce IL‑1β, which promotes the release 
of a series of inflammatory cytokines, such as IL‑6, TNF‑α 
and MCP‑1 (41), leading to the spread of inflammation (58). 
In clinical trials, high levels of pro‑inflammatory factors, 
especially IL‑1β, have been detected in patients with gout (59). 
IL‑1β has been investigated for its important roles in gout, and 
piperine has been shown to exhibit anti‑gouty arthritis effect 
by inhibiting IL‑1β (60). IL‑1 inhibitors, such as anakinra and 
canakinumab, which are drugs approved by the U.S. Food and 
Drug Administration and the European Medicines Agency (61), 
are reportedly effective against gouty arthritis  (62,63). In 
addition, sustained oxidative stress can lead to chronic inflam-
mation  (64). The overproduction of ROS is a pathogenetic 
factor of acute gouty arthritis (65,66). Excessive ROS produc-
tion activates the inflammasome, specifically NACHT, LRR 
and PYD domains‑containing protein 3, and promotes the 
production of IL‑1β in gouty arthritis (67). In the present study, 
CSAE and CSOL reduced the pro‑inflammatory factors and 
enhanced the anti‑inflammatory factor in the serum, and miti-
gated the pathological changes of the ankle joints of rats with 
MSU‑induced acute gouty arthritis. The results of the present 
study suggested that the anti‑inflammatory properties of CSAE 
and CSOL, as well as their modulatory effect on inflammatory 
cytokines, especially IL‑1β, may be central to their anti‑gout 
effects, possibly through the modulation of oxidative stress.

There were certain limitations to the present study. 
Although the anti‑gout effects of two celery seed extracts, 
CSAE and CSOL, were demonstrated in two rodent models, 
the results did not clearly determine which extract exhibited 
stronger effects. The contents of CSAE and CSOL were 
systematically detected; however, which component exhibited 
the anti‑gouty arthritis and anti‑hyperuricemia properties 
remains to be determined. Based on the current data, it is 
difficult to establish quality standards for CSAE and CSOL. 
Additionally, although the anti‑gout effects of CSAE and 
CSOL were demonstrated to be related to antioxidation and 
anti‑inflammation, the detailed mechanisms require further 
systematic investigation.

In conclusion, the present study demonstrated that CSAE 
and CSOL exhibited the effect of suppressing serum UA levels 
in mice with hyperuricemia and the swelling rates of ankle 
joints in rats with gouty arthritis, which may be associated with 
the modulation of XO activity and inflammation response by 
oxidative stress regulation, providing experimental evidence 
to support the further evaluation of CSAE and CSOL as agents 
for gout treatment.
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