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Abstract. The aryl hydrocarbon receptor (AhR) is a ligand‑acti-
vated transcription factor originally isolated and characterized 
as the dioxin or xenobiotic receptor. With the discovery of 
endogenous ligands and studies of AhR knockout mice, AhR 
has been found to serve an important role in several biological 
processes, including immune responses and developmental and 
pathological regulation. In particular, it has been considered as 
a new major player in cardiovascular diseases. Recent studies 
have revealed that the development of atherosclerosis is closely 
associated with AhR function. However, the roles of the AhR in 
the pathological development of atherosclerosis and atheroscle-
rosis‑associated diseases remain unclear. The current review 
presents the molecular mechanisms involved in the regulation of 
AhR expression during inflammation, oxidative stress and lipid 

deposition. Additionally, the role of the AhR in atherosclerosis 
and atherosclerosis‑associated diseases is reviewed.
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1. Introduction

The aryl hydrocarbon receptor (AhR) is ligand‑dependent 
and mediates nuclear receptors that react with heterologous 
substances of phases I and II (Fig. 1). The theory of poly-
cyclic aromatic compound (PAC) metabolic reactions was 
postulated in the late 1950s (1). The carcinogenic dye 3‑meth-
ylcholanthrene induces the synthesis of a specific enzyme that 
detoxifies 3‑methylcholanthrene by promoting the synthesis 
of the liver microsomal enzyme P450, which is an aryl hydro-
carbon hydroxylase (AHH) (1). Other carcinogens, including 
insecticides and phenobarbital, have a similar effect. This 
increase in synthesis meets the criteria of an adaptive response, 
as the upregulated enzyme oxidizes the PAH inducer when it 
is re‑exposed within a short timeframe (2‑4). Genetic studies 
have revealed that AHH is regulated by multiple alleles. These 
alleles were originally called Ah and used to describe the 
reaction of aromatic hydrocarbons (5).

The AhR belongs to the basic helix‑loop‑helix (bHLH) 
family and has a Per‑Arnt‑Sim (PAS) domain that binds to 
a variety of endogenous and exogenous chemicals. It binds 
specific auxiliary proteins, including heat shock protein 90 
and hepatitis B virus X‑associated protein, in the cytoplasm 
of resting state cells (6,7). When the AhR is transferred to 
the nucleus, it combines with the aryl hydrocarbon receptor 
nuclear translocator and triggers the transcription of several 
downstream genes, including cytochrome P450 family 1 
subfamily A member 1 (CYP1A1) and cytochrome P450 
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family 1 subfamily B member 1 (CYP1B1), resulting in a 
variety of physiological and toxicological effects (8) (Fig. 2). 
Aryl hydrocarbon receptors are polymorphic. Known alleles 
include AhRb‑1‑3 and AhRd (9). The receptors have different 
affinities, however; all four proteins are alkaline and contain a 
bHLH as well as PAS and transactivation domains (10).

The sensitivity of AhR to 2,3,7,8‑tetrachlorod-
ibenzo‑p‑dioxin (TCDD) is species‑specific, and its persistence 
in different organs in vivo varies according to the expression 
pattern of AhR in the specific organ (11). The AhR is most 
highly expressed in the human placenta, followed by the lungs, 
heart, pancreas and liver. Its lowest expression levels are in the 
kidney, brain and skeletal muscle (9). The AhR is transcribed 
from highly conserved sequences and plays a regulatory 
role in system development and physiological processes of 
different organs. Therefore, its expression is of great impor-
tance. The AhR is activated by the high‑affinity exogenous 
ligands HAH and PAH as well as low‑affinity endogenous 
ligands such as arachidonic acid, pyrene, and tryptophan and 
flavonoid derivatives (12‑14). The endogenous ligands activate 
the AhR to participate in the regulation of cardiac functions, 
vascular development and blood pressure (15‑19). In addition, 
the AhR signaling pathway senses changes in the circadian 
rhythm, oxygen tension and redox potential to regulate neural 
development and vacularization (20). For example, exposure 
to polycyclic aromatic hydrocarbons in cigarette smoke results 
in oxidative stress and the production of oxidized low‑density 
lipoprotein (ox‑LDL). ox‑LDL accumulation in macrophages 
and smooth muscle‑derived pro‑inflammatory foam cells is a 
hallmark of atherosclerosis (21).

Studies using AhR‑/‑ mice have revealed that the AhR is a 
vital regulator of growth, development and material metabo-
lism (22,23). Recent reports revealed that the AhR may exert 
harmful effects relating to endothelial dysfunction and immune 
disorders (24,25). AhR ligands activate the inflammatory axis 
in vascular endothelial cells to promote cell apoptosis and the 
inflammatory response (26).

The aim of the present review was to discuss the nature 
of the AhR, mediation of exogenous drugs, and potential 
targets for modification of cardiovascular genes. The role of 
the AhR receptor in the cardiovascular system, particularly the 
mechanism of action of AhR in atherosclerosis, is discussed 
in the present review. The role of the AhR in the development 
of novel therapeutic agents for the treatment of cardiovascular 
diseases is also presented.

2. AhR regulation in atherosclerosis pathogenesis

Atherosclerosis is a chronic inflammatory disease (27,28). The 
pathology of atherosclerosis can be summarized as follows. 
Foreign or endogenous substances, such as PAHs, PCBs and 
indoleamine 2,3‑dioxygenase,cause oxidative stress, inflam-
mation and the release of interleukin (IL) 1 and tumor necrosis 
factor (TNF) which stimulate chemokines, vascular endo-
thelial cells, vascular endothelial cells, or neutrophils in the 
vascular interstitium (29,30). Inflammatory factors induce the 
oxidation of low‑density lipoproteins which are phagocytized 
by macrophages which subsequently become lipid lines (31). 
The inflammatory factors induce the chemotaxis of monocytes 
in blood vessels into the stromal cells, where they differentiate 

into macrophages (32,33). This is the early development of 
atherosclerosis (34). Lipids (mainly cholesterol) are deposited 
in the intima of large and medium blood vessels  (35,36). 
Smooth muscle cells and collagen fibers increase in number, 
and, secondary to necrosis, atheromatous plaques form. The 
plaques often cause different degrees of stenosis of the vascular 
lumen (37). Diseases with hardening of the blood vessel wall 
may present with ischemic changes in the end organs.

AhR signaling pathway in inflammation and atheroscle-
rosis. Atherosclerosis is an inflammatory immune disease; 
it's inflammatory etiology was first proposed by Ross (28). 
Nuclear factor κ‑B (NF‑κB) is a key signal transduction factor 
and plays a central role in inflammatory cytokine‑mediated 
inflammatory responses. When cells are stimulated by various 
internal factors including SRC‑1 and p300, the NF‑κB signaling 
pathway is activated, and nuclear factors combine with the 
corresponding genes, thereby regulating the expression of 
target genes that magnify the inflammatory response, such as 
chemokines, inflammatory cytokines (including TNF‑α, IL‑1 
and IL‑6) and adhesion molecules [including intercellular cell 
adhesion molecule‑1 and vascular cell adhesion molecule‑1 
(VCAM‑1)]  (29,38). In the cytoplasm, AhR competitively 
binds to the RELA proto‑oncogene, NF‑κB subunit (RELA) 
in NF‑κB in a ‘tethered’ manner, preventing the AhR from 
combining with a required synergistic activator  (39). By 
binding to the promoter of AhR‑NF‑κB1, RELA regulates the 
promoter sequence, affecting the expression of the AhR (40). In 
the coronary endothelium, whether the AhR signaling pathway 
exerts adverse effects on physiological functions through the 
NF‑κB signaling pathway remains unreported (41).

There are three hypotheses underlying the AhR signaling 
pathways that mediate inflammation and promote athero-
sclerosis. The first hypothesis involves the signaling of 
downstream inflammatory factors such as VCAM‑1 via the 
AhR/NF‑κB signaling pathway, which leads to monocyte 
chemotaxis (42). Macrophages and monocytes are targeted 
by polycyclic aromatic hydrocarbons involved in the physi-
ological and pathological processes of atherosclerosis (43). 
The second hypothesis postulates that the AhR promotes 
macrophages absorption of ox‑LDL to form foam cells 
by mediating endogenous and exogenous ligands such as 
ox‑LDL, lipopolysaccharides and TCDD. In vitro studies have 
revealed that cholesterol accumulation in foam cells caused 
by particulate matter‑induced inflammation is an early sign of 
cardiovascular disease (30,44). However, the inhibitory effect 
of AhR inhibitors on foam cells and inflammation have not 
been investigated. It is believed that these mechanisms will be 
elucidated by extensive research of the AhR. The third hypoth-
esis involves the increased proliferation of vascular smooth 
muscle cells (VSMCs), which is a critical factor in the occur-
rence of vascular complications. Yisireyili et al (45) exposed 
VSMCs to indoxyl sulfate, an agonist of AhR. Indoxyl sulfate 
induces VSMC proliferation via the activation of the AhR, the 
NF‑κB signaling pathway and reactive oxygen species (ROS) 
production (Fig. 3).

AhR signaling pathway in oxidative stress and atheroscle-
rosis. AhR mediates exogenous chemicals, such as TCDD 
and dioxin‑like planar polychlorinated biphenyls (PCBs), and 
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endogenous substances, including indoxyl sulfate and arachi-
donic acid, by activating NADPH oxidase to produce ROS 
that directly damages vascular endothelial cells. This may 
result in a cellular oxidative stress/antioxidant imbalance that 
leads to cell damage and reduces the integrity of the vascular 
endothelium (46,47). Previous studies have revealed that ROS 
mediate the transcription of specific genes, such as NF‑κB, 
which mediate the transcription of inflammatory inducible 
nitric oxide synthase (44,48).

AhR signaling pathway in lipid deposition and atheroscle-
rosis. Lipid deposition is an essential external condition for 
foam cell formation  (49). The current clinical treatment 
mainly relies on lipid‑lowering drugs such as atorvastatin and 
fenofibrate (50). Lipid metabolism mainly occurs in the liver. 
It has been validated by recent studies that the AhR not only 
detoxifies, but also regulates lipid metabolism in the liver (51). 
Environmental pollutants such as TCDD and benzo(a)pyrene 

(BP) inhibit the expression of NPC intracellular cholesterol 
transporter 1 in an AhR‑dependent manner, promoting lipid 
deposition (52).

Lipid deposition can be induced by several AhR ligands. 
TCDD is a classical AhR ligand. A previous study revealed 
that α‑endosulfan and 2,3,7,8‑TCDD jointly downregulate the 
expression of glucose‑ and lipid‑associated genes in the liver, 
such as nuclear receptor subfamily 1 group H member 4 and 
nuclear receptor binding factor 2 (53). Lipoxin A4 (LXA4), 
an endogenous ligand of AhR, is induced by homocysteine 
in patients with hyperhomocysteinemia. LXA4 promotes the 
binding of the AhR to the promoter of CD36 in hepatocytes 
and promotes CD36 expression, which increases the uptake 
of fatty acids and lipid accumulation by hepatocytes  (54). 
Previous studies revealed that AhR activation affects the 
systemic metabolic functions of mice, including suppressed 
tricarboxylic acid cycle, disrupted lipid metabolism, amino 
acids metabolism, glycogenolysis, gluconeogenesis, thereby 

Figure 1. Structure of the AhR. The AhR consists of a bHLH/PAS domain and a TAD. AhR, aryl hydrocarbon receptor; bHLH, basic helix‑loop‑helix; PAS, 
PER‑ARNT‑SIM; TAD, transactivation domain; Hsp90, heat shock protein 90; NLS, nuclear localization sequence.

Figure 2. Model of the AhR signaling pathway. Upon binding to a ligand, the AhR is activated and enters the nucleus, where it binds to ARNT on AhRE and 
promotes transcription of downstream genes including CYP1A1 and IL‑1. AhR, aryl hydrocarbon receptor; ARNT, aryl hydrocarbon receptor nuclear trans-
locator; AhRE, aryl hydrocarbon response element; CYP1A1, cytochrome P450 family 1 subfamily A member 1; IL‑1, interleukin 1; XAP2, aryl hydrocarbon 
receptor interacting protein; AHRR, aryl‑hydrocarbon receptor repressor; IL‑11, interleukin 17; Hsp90, heat shock protein 90; p23, prostaglandin E synthase 3.
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increased hepatic lipogenesis, and promotedinflammatory 
signaling pathways (23,55,56).

AhR knockout mice are widely used to study the role of the 
AhR in physiological functions. Activation of AhR protects 
against fatty liver induced by insulin resistance by activating 
fibroblast growth factor 21 (FGF21) to regulate lipid and 
energy metabolism in such mice (57). AhR knockout mice 
have increased levels of energy metabolism compared with 
normal mice, which protects against insulin resistance, hepatic 
steatosis, obesity and inflammation caused by a high‑fat diet 
(HFD) (23). By contrast, the AhR protects against hepatic 
steatosis induced by a HFD and subsequent lipotoxicity. The 
AhR protects against fatty liver induced by insulin resistance 
by activating FGF21. The endocrine signaling pathway of 
AhR and FGF21 suggests that AhR is a crucial environmental 
modifier that combines signals from chemical exposure to 

regulate lipid and energy metabolism (57). In vivo experi-
ments have revealed that locked nucleic acid 29, an inhibitor 
of microRNA (miR)‑29, inhibits lipid deposition in the liver, 
and whole‑genome analysis demonstrated increased AhR 
and sirtuin1 expression (58). AhR is a direct target gene of 
miR‑29. Therefore, it may be an alternative therapeutic target 
for treating metabolic disorders such as dyslipidemia (58). 
PCB 153, mediated by AhR, can be considered as a ‘secondary 
strike’ mechanism for obesity/non‑alcoholic fatty liver disease 
in the context of a HFD (59).

3. Clinical research about AhR and atherosclerosis‑ 
associated diseases

Studies investigating the association of the AhR signaling 
pathway and its downstream genes, glutathione S‑transferase μ1 

Figure 3. Role of AhR in the pathology of atherosclerosis. Hypothesis 1: Signaling of downstream inflammatory factors such as vascular cell adhesion 
molecule 1 via the AhR/nuclear factor‑κB signaling pathway leads to monocyte chemotaxis. Hypothesis 2: AhR promotes macrophage absorption of ox‑LDL 
and the formation of foam cells by mediating endogenous and exogenous ligands such as ox‑LDL, lipopolysaccharide and 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin. 
Hypothesis 3: Increased proliferation of vascular smooth muscle cells is implicated in the occurrence of vascular complications. AhR, aryl hydrocarbon 
receptor; attack, pathological response induced by ligands; ox‑LDL, oxidized low‑density lipoprotein; p50, Rho guanine nucleotide exchange factor 7; RELA, 
RELA proto‑oncogene NF‑κB subunit; Ikbα, NF‑κB inhibitor α; XAP2, aryl hydrocarbon receptor interacting protein; ARNT, aryl hydrocarbon receptor 
nuclear translocator; Hsp90, heat shock protein 90; p23, prostaglandin E synthase 3; CXCL1, C‑X‑C motif chemokine ligand 1; XRE, xenobiotic response 
element; SRA, scavenger receptor A.
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(GSTM1) and glutathione S‑transferase θ1 (GSTT1), with 
the risk and complications of atherosclerosis‑associated 
diseases have yielded inconclusive results  (60,61). Recent 
studies revealed that AhR may be associated with atheroscle-
rosis‑associated diseases, including coronary artery disease 
(CAD), ischemic stroke and type 2 diabetes mellitus (T2DM) 
(62‑64) (Table I). The current review presents clinical research 
to reveal their association.

Role of the AhR in the occurrence and development of CAD. 
CAD may result in mortality and is associated with athero-
sclerosis and thrombosis (65). There is no clinically relevant 
research on AhR gene polymorphisms and atherosclerosis, to 
the best of our knowledge, and few studies on AhR gene poly-
morphism and CAD (66‑68). Receiver operating characteristic 
analysis of 939 patients with confirmed CAD and 868 normal 
subjects indicated that the AhR is a potential marker for objec-
tive measurement and evaluation of CAD in addition to other 
cardiac markers, such as creatine kinase‑MB (69). Genotype 
frequencies of AhR rs2066853 reveal significant differences 
between CAD and control subjects, and hyperlipidemia and 
smoking significantly increased the risk of CAD associated 
with AhR polymorphism (69). Furthermore, the four subtypes 
of CAD with varying severity show significant differences in the 
distribution of AhR variants (70). Previous studies have investi-
gated the association of CAD and the downstream mediators of 
the AhR signaling pathway, CYP1A1, GSTT1 and GSTM1, that 

mediate the metabolism of allogenic toxic substances (Table I). 
Previous studies in China have demonstrated significant associa-
tions of CYP1A1, GSTM1, GSTT1 and peroxisome proliferator 
activated receptor γ with CAD, particularly in smokers (70‑72).

A cross‑sectional study in Croatia included 252 adult 
subjects with suspected exposure to PAHs; it was revealed that 
CYP1A1, GSTM1 and GSTT1 gene polymorphisms had no 
association with the risk of CAD (73).

Previous studies in India have demonstrated an asso-
ciation between GSTM1/GSTT1/glutathione S‑transferase 
π1 (GSTP1) polymorphism, coronary heart disease and 
blood lipid parameters (74‑76). These findings suggest that 
blood lipid parameters in patients with coronary angiography 
are significantly associated with GSTM1/T1/P1 genotype 
distribution and GSTT1 deletion polymorphisms. However, 
a case‑control study in the Republic of Korea revealed that 
GSTM1/T1 had no effect on the degree of lumen stenosis in 
CAD (77). Smokers carrying a GSTM1/T1 mutation have a 
higher risk of CAD (77).

Regarding the association between genetic polymorphisms 
of GSTM1 and smoking‑related CAD, smokers with the 
GSTM1 null genotype have a greater risk of CAD compared 
with non‑smokers with the GSTM1‑positive genotype [odds 
ratio (OR), 2.07; 95% confidence interval (CI), 1.06‑4.07]. 
The association between genetic polymorphisms of GSTT1 
and smoking related‑CAD smoking shares the same tendency 
as that for GSTM1 (OR, 2.00; 95% CI, 1.05‑3.84). The 

Figure 4. Relationship between AhR and cardiovascular disease.
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association between GSTM1 and GSTT1 null genotypes in 
smoking‑related CAD was also augmented when genetic 
polymorphisms of GSTM1 and GSTT1 were considered 
simultaneously (OR, 2.76; 95% CI, 1.17‑6.52) (77). On the 
basis of several epidemiological studies, AhR downstream 
genes are significantly associated with CAD, particularly in 
smokers with the GSTT1/M1 knockout gene (78‑80).

AhR mRNA and the mRNA level of its allele are higher 
in the peripheral blood of patients with CAD compared 
with controls  (69). Smoking increases the risk of CAD in 
patients with AhR gene polymorphisms. This may be due 
to the aromatic hydrocarbons present in smoke which cause 
lipid metabolism through the AhR signaling pathway (81). 
Furthermore, nicotine exposure induces VCAM‑1, matrix 
metalloprotein (MMP)‑2 and MMP‑9 production in VSMCs 
and macrophages (82) and promotes vascular oxidative stress, 
leading to vascular damage (83).

AhR expression and polymorphisms are associated with the 
risk of ischemic stroke. Ischemic stroke is regarded as a poten-
tially fatal disease (84) that occurs when there is a sudden 
decrease of blood supply to brain tissue, resulting in ischemia 
and hypoxia. Although cerebral and myocardial infarctions 
have different sites, the pathological mechanism is atheroscle-
rosis (85). Therefore, cerebral infarction may be associated 
with vascular inflammation and oxidative stress; AhR down-
stream genes, such as CYP1A1, GSTT1 and GSTM1, may 
serve important roles in the pathogenesis (86) (Table I).

A case‑control study in Turkey, which included 226 patients 
with ischemic stroke and 113 controls, showed significant differ-
ences between 6235C allele and the risk of ischemic stroke, 
particularly in smokers and patients with hypertension (87).

Moon et al  (86) investigated 353 patients with cerebral 
infarction and 376 controls. A significantly larger number 
of patients with cerebral infarction had the CYP1A1 gene 
3'‑flanking region (T6235C) compared with the controls 
(P=0.017; OR, 1.44; 95% CI, 1.07‑1.94). Analysis of gene‑gene 
interactions showed that the GSTM1 null genotype increased 
the cerebral infarction risk in carriers of the CYP1A1 C allele 
(P=0.015; OR, 1.47; 95% CI, 1.08‑2.00) (86).

To investigate the association between stroke and polymor-
phism of the CYP1A1 gene, Sultana et al (88) selected 215 patients 
with ischemic stroke and 162 age‑matched controls. The results 
indicated that ischemic stroke had a significant association 
with the CYP1A1 genotype ‘CC’ (P=0.01; OR, 5.14; 95% CI, 
1.14‑23.14) in south Indian population, whereas Zhang et al (89) 
showed that CYP1A1 decreased the risk of disease in the eastern 
Han of China, and this contradiction showed CYP1A1 gene 
to display distinct alleles distribution among populations. In 
conclusion, CYP1A1 was shown to be significantly associated 
with ischemic stroke in certain clinical studies; however, further 
investigation is required to verify this association.

Association of AhR and its downstream genes with T2DM. 
T2DM, a metabolic disease, is associated with oxidative stress 
and chronic inflammation in adipose tissue (90). Previous 
epidemiological studies have revealed associations between 
oxidative stress‑associated enzymes, such as GSTT1 and 
GSTM1, and diabetes (Table I). GSTT1 and GSTM1 are AhR 
downstream genes.

A case‑control study in India revealed that GSTM1 and 
GSTT1 are associated with gene polymorphism‑associated fat 
mass and obesity. GSTM1‑positive and GSTM1 null genotypes 
had significant associations with T2DM, but there was no 
significant association with FTO α‑ketoglutarate‑dependent 
dioxygenase polymorphism  (91). Other epidemiological 
studies revealed that GSTM1 and GSTT1 did not have 
significant effects on T2DM (92,93). Hori et al (94) did not 
reveal a significant association between T2DM and GSTT1/
M1 gene alleles, but the incidence rate of T2DM in GSTT1 
and GSTM1 null genotypes was 1.5‑fold higher than that in 
GSTM1 and GSTT1 positive genotypes. The aforementioned 
clinical studies demonstrated that GSTT1/M1 and diabetes are 
not highly associated and that further investigation is required 
to determine their associations.

4. Conclusion

The current review presented the association between the 
AhR and inflammation, oxidative stress, lipid infiltration 
and atherosclerosis. The AhR is closely associated with 
cardiovascular disease in terms of cardiac function, vascular 
development and blood pressure regulation (Fig. 4). In certain 
atherosclerosis‑associated diseases, the AhR may serve a 
role as an oxidative stress signal transmitter. The AhR may 
be a potential target for the clinical treatment of cardiovas-
cular disease. However, some important questions remain 
unanswered. The regulation of the AhR at the gene level has 
not been elucidated in humans. There are currently no drugs 
targeting the AhR in the clinic. The AhR is associated with 
other signaling pathways, including the Wnt and E2 factor 
signaling pathways, and further basic experiments are required 
to elucidate the roles of the AhR. The identification of novel 
endogenous ligands and the application of AhR knockout mice 
may clarify the role, regulation and intervention of the AhR in 
the treatment of atherosclerosis.
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