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Abstract. Granulocyte‑colony‑stimulating factor  (G‑CSF) 
is a member of the hematopoietic growth factor family that 
primarily affects the neutrophil lineage. G‑CSF serves as 
a powerful mobilizer of peripheral blood stem cells and 
recombinant human G‑CSF  (rhG‑CSF) has been used to 
treat granulocytopenia and neutropenia after chemotherapy 
for cancer patients. However, recent studies have found that 
G‑CSF plays an important role in cancer progression. G‑CSF 
expression is increased in different types of cancer cells, such 
as lung cancer, gastric cancer, colorectal cancer, invasive 
bladder carcinoma, glioma and breast cancer. However, it is 
unclear whether treatment with G‑CSF has an adverse effect. 
The current review provides an overview of G‑CSF in malig-
nant breast cancer development and the data presented in this 
review are expected to provide new ideas for cancer therapy. 
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1. Introduction

In the 1960s, two independent groups discovered several 
soluble factors when measuring mouse lymphoid leukemia 
cell growth  (1,2) and these soluble factors were named 
‘colony‑stimulating factors’ (CSFs). After isolation and purifi-
cation, four CSFs were identified, including macrophage CSF 
(M‑CSF, CSF1) (3), granulocyte‑macrophage CSF (GM‑CSF, 
CSF2) (4), granulocyte CSF (G‑CSF, CSF3) (5) and multipo-
tential CSF (also known as interleukin‑3) (6). All these factors 
are essential stimulators of blood cell development and play 
a crucial role in hematopoietic stem cell proliferation and 
differentiation at different stages (7).

The biological effects of G‑CSF are mediated by the 
specific G‑CSF receptor (G‑CSFR) (8). G‑CSF is a critical 
regulator of neutrophil production and activity. It promotes 
proliferation and differentiation of the neutrophil lineage, 
and enhances the transition of immature metamyelocytes into 
mature neutrophils. G‑CSF not only prolongs the survival of 
neutrophils and their precursors, but also promotes the func-
tions of mature neutrophils, such as superoxide production, 
phagocytosis and pathogen killing (9).

G‑CSF can act as a mobilizer of hematopoietic progenitor 
stem cells in blood donors or cancer patients (10). Therefore, 
recombinant human G‑CSF (rhG‑CSF) is commonly used 
to prevent and treat febrile neutropenia and mucositis after 
chemotherapy and radiotherapy for cancer patients  (11). 
However, recent studies have found that G‑CSF plays a 
crucial role in tumorigenesis. G‑CSF promotes tumor growth, 
metastasis and chemotherapy resistance (12), inhibits tumor 
cell apoptosis, induces angiogenesis (13,14), participates in 
cancer‑associated thrombosis (15,16), and is associated with a 
poor clinical prognosis (17).

2. Structure of the G‑CSF gene

The human G‑CSF gene is localized on chromosome 
17q21‑17q22 and spans ~2.5 kb (18). As shown in Fig. 1, the 
G‑CSF gene consists of five exons and four introns. The 
promoter has 80% sequence similarity and the coding region 
shows 69% similarity between the human and murine G‑CSF 
gene (19,20). The TATA box is located ‑29 bp upstream of 
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the transcription start site (21) and four specific regulatory 
elements have been identified within the promoter of the 
human G‑CSF gene. Serving as the binding site of nuclear 
factor NF‑GMa (20) and nuclear factor (NF)‑κB (22,23), the 
CK‑1 element (GAGATTCCA/CC) located ~200 bp upstream 
of the transcription start site  (24) is a highly conserved 
sequence that is found not only in the G‑CSF gene but also in 
the GM‑CSF and interleukin (IL)‑3 genes (25). The NF‑IL6 
consensus element (ATTNNGNAAT) at a position ranging 
from ‑178 to ‑170 is the binding site of the transcription factor 
NF‑IL6, which is involved in regulating the genes activated by 
lipopolysaccharide (LPS) (26).The octamer (OCT) sequence 
(ATTTGCAT) at ‑115 to ‑108 upstream of the transcrip-
tion start site is the typical OCT transcription factor (OTF) 
binding site (27). Shannon et al (28), found that the above 
three elements in the G‑CSF promoter are essential for tumor 
necrosis factor (TNF)‑α and IL‑1β responses. The cyclic 
AMP‑responsive element at 11 bp upstream of CK‑1 is the 
response element of cAMP‑induced G‑CSF gene transcrip-
tion  (29). A total of three regulatory regions within the murine 
G‑CSF gene promoter known as G‑CSF promoter elements 
(GPEs) 1‑3 are required for G‑CSF gene expression (30); of 
these three elements, CK‑1 and NF‑IL6 are both in GPE1. 
GPE3 is a G‑CSF‑specific sequence and mutations in its 
corresponding region cause a 6‑ to 50‑fold reduction in its 
activity (31). In addition, there are two destabilizing elements 
in the 3' untranslated region of G‑CSF mRNA, including 

adenylate uridylate‑rich element and stem‑loop destabilizing 
element (32).

It has been acknowledged that there are two different G‑CSF 
mRNA isoforms in humans: G‑CSFa and G‑CSFb. Compared 
with G‑CSFa, G‑CSFb lacks 9 base pairs (GTGAGTGAG) 
in the second exon  (21). G‑CSFa and G‑CSFb mRNAs 
encode polypeptides that consist of 207 and 204 amino acids, 
respectively. After cleavage of the 30‑amino acid signal 
peptide, mature proteins containing 177 and 174 amino acids 
are secreted. Arakawa et al  (33), found that the activity of 
the 174‑amino acid form is 50‑fold higher than that of the 
177‑amino acid form. The secreted form of the protein was 
found to be O‑glycosylated and to have a molecular weight 
of 19,600 Da (34). One O‑linked glycosyl group at Thr 133 in 
G‑CSF isolated from human blood protects the molecule from 
aggregation (35).

The G‑CSF protein contains five cysteines and two pairs 
of disulfide bonds are formed between residues Cys36 and 
Cys42 and residues Cys74 and Cys64. The disulfide bonds 
play an important role in maintaining the biological functions 
of G‑CSF. Within the G‑CSF protein, 104 of the 175 residues 
form a total of four α‑helix bundles that are designated helix A 
(residues 11‑39), B (71‑91), C (100‑123) and D (143‑172) (36). 
A study of the three‑dimensional crystal structure of recom-
binant interferon (IFN)‑β suggested that the receptor binding 
region of G‑CSF is located on the loop connecting helix A 
and B and on the outer surface of helix D (37).

Figure 1. Structure of the G‑CSF gene. The rectangular box below shows a detailed enlargement of the upstream transcriptional regulatory elements in the 
human and murine G‑CSF gene promoter. The lengths of exons and introns are expressed in base pairs. G‑CSF, granulocyte‑colony stimulating factor; IL, 
interleukin; GPE, G‑CSF promoter elements.
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3. Regulation of G‑CSF gene expression

Under physiological conditions, the G‑CSF concentration in 
plasma is almost undetectable, but when an infection occurs, 
the G‑CSF concentration is significantly increased. The 
number of neutrophils is dependent on the G‑CSF concentra-
tion, especially during the infection process or chemotherapy 
use (38). G‑CSF can be secreted by numerous cells, including 
monocytes, macrophages, endothelial cells, epithelial cells 
and fibroblasts, when they are stimulated by inflammatory 
mediators such as LPS (39), IL‑17 (40), TNF‑α and IFN‑β (41). 
Moreover, some malignant cells, such as triple‑negative breast 
cancer (17), lung carcinoma (42,43), bladder cancer (44) and 
squamous cell carcinoma (45), can constitutively express and 
secrete G‑CSF.

G‑CSF expression in breast cancer is under the control 
of various signaling pathways. It has been reported that 
carbonic anhydrase IX (CAIX) stimulates G‑CSF production 
by activating NF‑κB signaling in hypoxic conditions  (46). 
Extracellular signal‑regulated kinase (ERK) 2 is respon-
sible for the transcriptional regulation of G‑CSF and ERK2 
knockdown by short hairpin RNA significantly inhibits the 
expression of tumor‑derived G‑CSF (47). H‑Ras upregulates 
G‑CSF expression and promotes breast epithelial MCF10A 
cell invasiveness (48). Protease‑activated receptor (PAR) 2 
stimulates G‑CSF expression in breast cancer and PAR2 gene 
knockdown or PAR2 antagonist use can reduce G‑CSF secre-
tion  (49). Carcinoembryonic antigen‑related cell adhesion 
molecule (CEACAM) 1 expression in breast cancer MCF‑7 
cells inhibits G‑CSF secretion by M1 macrophages (50). In 
addition, G‑CSF is the main downstream mediator of the 
mammalian target of rapamycin (mTOR) pathway during the 
induction of myeloid‑derived suppressor cell (MDSC) forma-
tion in breast cancer and Welte et al (51), suggested that the 
regulation of G‑CSF by mTOR may occur at the transcrip-
tional level. In other diseases, some factors have been shown to 
regulate G‑CSF expression, all of which are shown in Table I.

4. The G‑CSF receptor

The G‑CSFR gene located on chromosome 1p35‑34.3 is a 
member of the class I cytokine receptor superfamily  (52). 
G‑CSFR is a single transmembrane protein consisting of 813 
amino acid residues, which is composed of extracellular, trans-
membrane and intracellular regions. Its extracellular region 
includes immunoglobulin‑like (Ig‑like) domains and cytokine 
receptor homology (CRH) domains, as well as three fibronectin 
type III domains. The intracellular region of G‑CSFR protein 
includes two motifs called box 1 and box 2, and cytoplasmic 
region of G‑CSFR contains four conserved tyrosine residues 
which function as docking sites for the phosphorylation of 
multiple SH2‑containing signaling proteins (53). G‑CSF binds 
to the extracellular Ig‑like and CRH domains of G‑CSFR, 
which triggers receptor homodimerization (54) and activates 
Janus tyrosine kinases (JAKs), leading to a cross‑phosphor-
ylation. Activated JAKs proteins can phosphorylate G‑CSFR 
by binding to its Box 1 and 2 domains and generate potential 
docking sites of signal transducer and activator of transcrip-
tion (STAT) protein in cytoplasm. The inactive STAT protein 
binds to the phosphorylated G‑CSFR through its SH2 domain 

and phosphorylates it under the cooperation with JAKs (55). 
Activated STATs then form a homodimer/heterodimer and 
translocate into the nucleus to activate the transcription of 
target genes, which promote the proliferation and metastasis of 
cancer cells (56). Although the G‑CSF‑induced JAK2/STAT3 
pathway has been well‑established (57), previous studies also 
show that G‑CSF can activate other downstream signaling 
pathways, including mitogen‑activated protein kinase 
(MAPK)/ERK and phosphatidylinositol 3 kinase/protein 
kinase B (AKT) (54,58).

5. G‑CSF expression in breast cancer

Some studies have reported that serum G‑CSF levels are 
significantly higher in breast cancer patients compared with 
healthy controls (48,59‑63). Lawicki et al (60), demonstrated 
that the plasma levels of G‑CSF and M‑CSF were significantly 
increased in 54 breast cancer patients compared with in control 
group patients. The authors of the present review were surprised 
to learn that, after surgical resection, the level of G‑CSF 
decreased significantly, but the level of M‑CSF increased, 
suggesting that measuring G‑CSF may be useful in the diag-
nosis of breast cancer. Compared with 20 healthy controls, the 
mean level of serum G‑CSF in 20 breast cancer patients was 
significantly increased (48). In a total of 190 samples, plasma 
G‑CSF levels were significantly increased in samples from 
110 patients with ductal breast cancer and 40 patients with 
benign breast cancer compared with samples from untreated 
healthy patients. Moreover, the serum levels of G‑CSF were 
significantly increased in patients with clinical stage III and 
IV tumors compared with in healthy controls or patients with 
benign breast cancer (61). In addition, in a total of 196 samples, 
serum G‑CSF levels were increased in patients with advanced 
breast cancer compared with in patients with early‑stage cancer 
and the highest G‑CSF levels were observed in patients with 
N3 tumors (62). By analyzing the wound healing fluid of breast 
cancer surgery patients, it was found that G‑CSF, together with 
IL‑6 and monocyte chemotactic protein (MCP)‑1/CCL2, was 
more abundant in invasive and high‑grade breast cancer than 
in situ breast cancer (63).

Wojtukiewicz  et  al  (64), also reported that G‑CSFR 
was expressed in only breast cancer tissues, not in normal 
breast tissues and its expression level was as high as 71% in 
the collected clinical specimens. Notably, high G‑CSFR 
expression was observed in 21% of cases, especially in cases 
involving small focal invasive breast cancer. In addition, 
other studies have confirmed the expression of G‑CSF in 
breast cancer tissues and its association with breast cancer 
invasion (17,46,65,66). Within a larger group of human breast 
cancer samples (n=548), triple‑negative breast cancer was 
shown to exhibit higher G‑CSF expression, which was related 
to cluster of differentiation (CD)163+ macrophages and associ-
ated with a poorer overall survival rate, than other types of 
breast cancer (17). Compared with noninvasive breast cancer 
T47D and MCF‑7 cells, invasive MDA‑MB‑231 cells exhibit 
higher G‑CSF expression (47), which suggests that the associa-
tion between G‑CSF expression and malignant disease should 
be explored. 

Through The Cancer Genome Atlas data analysis, 
Guo et al (67) discovered a high‑risk luminal A dominant breast 
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Table I. Regulation of G‑CSF gene expression.

Author, year	C ell type	 Producer cell and contexts	I nducer (+) / inhibitor (‑)	 (Refs.)

Park et al, 2011	 Tumor cells	 Human MCF10A cells	 + H‑Ras	 (48)
Lee et al, 2013		  Human MDA‑MB‑231 breast cancer cells	 + ERK2	 (47)
Chafe  et al, 2015		  Hypoxic breast cancer cells	 + CAIX	 (46)
		  and tumors in an orthotopic model
Carvalho et al, 2018		  Mouse 4T1 and human MDA‑MB‑231 cells	 + PAR2	 (49)
Welte et al, 2016		  Mouse P53N‑A and 4T1 breast cancer cells 	 + mTOR	 (51)
Cao et al, 2014		  Mouse mammary tumors	‑  BMP4	 (65)
Uemura et al, 2005		  Human lung cancer OKa‑C‑1 and MI‑4 cells 	 + PKC inhibitor	 (43)
Nakata et al, 2003		  Human lung cancer cells	‑  NS‑398	 (100)
Cui et al, 2015		  Human non‑small‑cell lung cancer cells	 + Radiation, β‑catenin	 (101)
Pickup et al, 2017		  Human pancreatic ductal adenocarcinomas 	‑  TGF‑β signaling	 (81)
Ramakrishna et al, 2018 	I mmune cells	 Human CD11b+ macrophages and neutrophils	‑  IFN‑γ	 (102)
Chang et al, 2016		  Human macrophages	 + SB203580	 (103)
Samineni et al, 2013		  Human breast tumor‑associated macrophages	‑  CEACAM1	 (50)
Fujimoto et al, 2011; 		  Human macrophage RAW 264 cells	‑  SOCS1	 (104)
Kamio et al, 2008;			   + Adiponectin	 (105)
Zhang et al, 2011			‑    HSF1	 (106)
He et al, 2009; 		  Human monocytes and macrophages	 + SAA	 (22)
Hareng et al, 2003			   + cAMP	 (29)
Aoki et al, 1998; 		  Mouse macrophage cell line	 + Fibronectin, vitronectin 	 (107)
Chou et al, 2011			   + LTA, ‑ rapamycin	 (108)
Sallerfors et al, 1992; 		  Human monocytes	 + LPS, +IL‑1, +GM‑CSF, 	 (109)
Vellenga et al, 1988;			   +TNF	 (39)
Motz et al, 2013;			   + LPS	 (77)
Almand et al, 2001			   + CSF‑HU, 	 (78)
			   + IL‑4
Tajuddin et al, 2010		  Human peripheral blood mononuclear cells 	 + TLR7/8 agonist (CL097), ‑ IFN‑α	 (110)
Ichinose et al, 1990		  Human neutrophils	 + LPS	 (111)
Lindemann et al, 1989		  Human polymorphonuclear leukocytes	 + GM‑CSF	 (112)
Lu et al, 1988		  Human T lymphocytes	 + IFN‑γ, IL‑1β	 (113)
Meixner et al, 2008; 	E pithelial cells	 Human epidermal cells	‑  JunB	 (91)
Lennard et al, 2016;			   + Fli‑1	 (114)
Rajavashisth et al, 1990;			   + Modified low‑density lipids	 (115)
Seelentag et al, 1987			   + IL‑1 and TNF‑α	 (116)
Saba et al, 2002; 		  Human airway epithelial cells	 + Bacterial (P. aeruginosa and S. aureus)	 (117)
Jones et al, 2002;			   + IL‑17, TNF‑α	 (40)
Suzukawa et al, 2015			   + Leptin	 (118)
Numasaki et al, 2004		  Human lung microvascular endothelial cells 	 + IL‑17, TNF‑α, IL‑1β 	 (119)
			   – IL‑17F	
Witowski et al, 2007	 Mesothelial cells	 Human peritoneal mesothelial cells	 + IL‑17, TNF‑α	 (120)
Demetri et al, 1989		  Human mesothelial cells	 + EGF, LPS	 (121)
Carr et al, 2017;	 Fibroblasts	 Human dermal fibroblasts	 + IL‑1	 (122)
Ramachandran et al, 2006		  Human bronchial fibroblasts	 + PAR2 agonists	 (123)
Himes et al, 1993; 		  Human fibroblasts	 + Tax	 (23)
Koeffler et al, 1987;			   + TNF‑α	 (124)
Seelentag et al, 1989			   + IL‑1β	 (125)
Zgheib et al, 2013	 Stem cells	 Human mesenchymal stromal cells	 + ConA, MT1‑MMP inducer	 (126)
Fibbe et al, 1988		  Human marrow stromal cells	 + IL1	 (127)
Tesio et al, 2013	 Bone marrow ‑	 Human myeloid cells	‑  PTEN	 (128)
Grace et al, 2012	 derived cells	 Human hematopoietic progenitor cells	 + 5‑AED	 (129)
Kimura et al, 2004		  Mouse bone marrow	‑  SOCS3/CIS3	 (130)
Smith et al, 2017	 Others	 Human first‑trimester trophoblast cells (Sw.71)	 ‑ Cortisol	 (131)
Ordelheide et al, 2016		  Human myoblasts 	 + Palmitate, stearate	 (132) 
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cancer subtype with increased motility (C3) that exhibited high 
G‑CSF expression with neutrophil aggregation. Cancer cells 
that produced high G‑CSF levels could stimulate neutrophils 
to form neutrophilic extracellular traps (NETs) and thereby 
promote cancer cell migration. G‑CSF secreted by 4T1 cells 
can stimulate neutrophils to form NETs and the anti‑G‑CSF 
antibody reduces cancer cell‑induced NET formation (68). In 
addition, anti‑G‑CSF treatment results in the hypercitrullina-
tion of histone H3 in neutrophils from cancer‑free mice, which 
increases the susceptibility to NETosis and thrombolysis (69). 

Cancer‑related thrombosis is the second leading cause of 
death and is usually associated with poor prognosis in cancer 
patients. NET formation is crucial for thrombosis formation in 
tumor‑bearing mice. 4T1 cell‑derived exosomes induce NET 
formation in neutrophils from G‑CSF‑treated mice, which 
can promote thrombus formation in tumor‑free neutrophilic 
mice. The results suggested that tumor‑derived exosomes 
and neutrophils play a synergistic role in the formation of 
cancer‑associated thrombosis (70). Demers et al (15), discovered 
that cancer‑associated G‑CSF exacerbates the innate immune 
response of the host which leads to thrombosis. NET formation 
induces a pro‑thrombotic state which may result in the 
consumption of platelets, clotting factors and microthrombosis 
in rhG‑CSF‑treated 4T1 mice. IL‑1β modulates the expression 
of G‑CSF and the levels of G‑CSF and IL‑1β are elevated in 
4T1 mice which exhibit a NET‑dependent prothrombotic state. 
Blocking IL‑1R reduces the G‑CSF level, NET formation 
and abolishes the pre‑thrombotic state in 4T1 tumor‑bearing 
mice (16).

6. Direct effects of G‑CSF on breast cancer

rhG‑CSF was shown to promote the proliferation of MCF‑7 
and SKBR‑3 breast cancer cells, but it had little effect on 
normal breast epithelial cells. Chronic exposure to low doses 
of rhG‑CSF (0.125 µg) promotes tumorigenesis in estrogen 
receptor‑positive breast cancer by promoting the proliferation 
of normal and precancerous tissues in MMTV‑erbB2 
mice (71). Waight et al (72), showed that tumor‑derived G‑CSF 
can directly promote tumor growth and G‑CSF knockdown 
slows tumor growth in mouse breast tumor models. G‑CSF, 
in combination with other proinflammatory cytokines such 

as GM‑CSF, IL‑8 and MCP‑1 that are secreted by highly 
aggressive tumor cells, induces an epithelial mesenchymal 
transition/stemness‑like invasive phenotype in nonaggressive 
breast cancer cells (73). Higher G‑CSF expression increases 
the invasiveness of breast and lung cancer cells, and 
ERK2 inhibition is necessary to reduce the expression of 
TNF‑α‑induced G‑CSF in aggressive cancer cells (47). These 
results indicate that G‑CSF is a critical factor that promotes 
breast tumorigenesis and specific ERK2 inhibitors may be 
used to treat G‑CSF‑producing tumors.

G‑CSF‑induced invasiveness in breast epithelial MCF10A 
cells is closely related to H‑Ras oncogene upregulation. Stable 
expression of G‑CSF induced by H‑Ras upregulates matrix 
metalloproteinase (MMP)‑2 expression by activating Rac 1 and 
promotes MCF10A cell migration/invasion. MMP‑2‑mediated 
degradation of extracellular matrix components is a key step 
in the development of invasiveness. Overexpression of G‑CSF 
in MCF10A cells also activates other signaling pathways, 
including MKK3/6, p38 MAPK, ERK1/2 and AKT  (48). 
The results of a serological in vivo analysis of breast cancer 
patients were also consistent with observations made in vitro, 
suggesting that G‑CSF may be used as a serum indicator in the 
treatment of breast cancer (48).

G‑CSF induces ErbB2 expression in breast cancer cell 
lines. The present review was surprised that the binding of 
both trastuzumab and G‑CSF inhibits tumor colony forma-
tion and simultaneously induces apoptosis in these cells. This 
inhibition is more pronounced after pretreatment with G‑CSF. 
A total of five of the nine breast cancer patients showed an 
increase in their Herceptest scores, which were used to detect 
ErbB2 expression after G‑CSF administration  (74). The 
ErbB2  (HER2) proto‑oncogene encodes a tyrosine kinase 
receptor that is overexpressed in 15‑20% of human breast 
cancer cases with aggressive clinical behavior (75).

7. Role of tumor microenvironment in the effect of G‑CSF 
on breast cancer

Breast cancer is the most common form of cancer in women 
worldwide (76). The interaction between breast cancer cells 
and the tumor microenvironment is crucial for the dynamic 
development of tumors. The malignant progression of tumors 
depends mainly on evading and inhibiting host immune 

Table I. Continued.

Author, year	C ell type	 Producer cell and contexts	I nducer (+) / inhibitor (‑)	 (Refs.)

Hudock et al, 2012; 		  Mouse intraplantar tissue	 + LPS, IL‑1, IL‑17A	 (133)
Soria‑Castro et al, 2010			   + Cot/tpl2	 (134)
Janelle et al, 2006		  Mouse lung tissue	 + Pre‑elafin	 (135)
Bohannon et al, 2016		‑	   + Monophosphoryl lipid A	 (136)
Ellis et al, 2005		‑	   + FRH	 (137)

TNF‑α, tumor necrosis factor‑α; CAIX, carbonic anhydrase IX; ConA, concanavalin A; SOCS1/CIS3, suppressor of cytokine signaling‑1; 
HSF1, heat shock factor 1; IFN‑α, interferon‑α; SAA, serum amyloid A; FRH, febrile‑range hyperthermia; SOCS3/CIS3, cytokine signaling‑3; 
5‑AED, 5‑Androstenediol; PAR2, protease‑activated receptor 2; Fli‑1, friend leukemia insertion site 1; Tax, transactivator protein; LTA, lipo-
teichoic acid; CSF‑HU, human urinary colony‑stimulating factor; EGF, epidermal growth factor; LPS, lipopolysaccharide; IL, interleukin.
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responses, which can be achieved through stimulation of the 
immunosuppressive activity of MDSCs (77,78). MDSCs are a 
heterogeneous population defined as CD11b+Gr1+ cells, which 
are divided into monocytic and granulocytic subsets using the 
markers Ly6G and Ly6C, respectively. MDSCs can mobilize 
and infiltrate into tumors during tumorigenesis, where they 
promote tumor angiogenesis and induce premetastatic niche 
formation. They also interrupt mechanisms of immune surveil-
lance, including antigenic presentation by dendritic cells (DCs), 
T cell activation, M1 macrophage polarization and NK cell 
cytotoxicity inhibition (79), in multiple tumor types, such as 
glioma (80) and pancreatic ductal adenocarcinoma (81). It has 
been reported that MDSCs accumulate around tumors and 
the level of circulating MDSCs is correlated with the clinical 
grade, metastasis and therapy response in solid tumors (82,83).

MDSCs can be induced by G‑CSF treatment or by G‑CSF 
secretion from tumors (65). Tumor‑derived G‑CSF facilitates 
the generation of granulocytic MDSCs in breast cancer, 
which effectively inhibit T cell activation and proliferation, 
leading to metastatic enhancement  (72). BMP4, a member 
of the transforming growth factor (TGF)‑β growth factor 
family, suppresses G‑CSF secretion by inhibiting the activity 
of NF‑κB in tumor lines, resulting in decreases in MDSCs in 
human and mouse breast cancer (65).

Studies have found that G‑CSF promotes MDSC accu-
mulation in breast cancer via the mTOR signaling pathway. 
Reverse‑phase protein array analysis in mammary tumor 
models revealed that MDSC accumulation is accompanied by 
increased AKT‑mTOR signaling pathway activity and induces 
G‑CSF expression in cancer cells. Surprisingly, the expression 
of G‑CSF in tumor‑initiating cells (TICs) is high and MDSCs 
facilitate the expression of stemness‑related genes in cancer 
cells, including Nanog, LGR5 and MSI‑1. Moreover, MDSCs 
stimulate improved TIC performance via the Notch signaling 
pathway and TICs promote G‑CSF enhancement and thus 
increase MDSC accumulation, which therefore establishes 
a feed‑forward loop between TICs and MDSCs. In addition, 
mice treated with the mTOR inhibitor rapamycin showed 
significant tumor growth delay. These data demonstrate that the 
mTOR/G‑CSF/MDSC signaling pathway regulates the malig-
nant progression of breast tumors (51). Tumor‑secreted G‑CSF 
can increase the number of Ly6G+Ly6C+ granulocytes, which 
are a subset of CD11b+Gr1+ cells, in organ‑specific transfer 
sites and further promote the production of the proangio-
genic factor Bv8 protein to enhance breast tumor metastasis. 
Anti‑G‑CSF treatment can significantly reduce lung metastasis 
in mammary carcinoma models (66).

The hypoxic tumor microenvironment is conducive to 
driving metastatic niche development  (84). Breast tumor 
cell exposure to a hypoxic microenvironment results in the 
activation of hypoxia‑inducible factor (HIF)‑1/2‑mediated 
transcriptional programs that mediate adaptive responses in 
cells. Chafe et al (46), first revealed the relationship between 
the CAIX‑NF‑κB‑G‑CSF cell signaling axis and breast cancer 
lung metastasis. In the absence of oxygen, the expression of 
CAIX in breast cancer is significantly upregulated due to 
HIF‑1 activation. NF‑κB activation in the microenvironment 
is critical for the expression of CAIX, which is required for 
the G‑CSF‑driven mobilization of granulocytic MDSCs to 
the breast cancer‑derived lung metastatic niche. Constitutive 

NF‑κB activation can normalize the secretion of G‑CSF, even if 
CAIX is completely consumed. Mobilized G‑CSF‑dependent 
granulocytic MDSCs can enhance the growth and prolifera-
tion of disseminated tumor cells to promote the formation of 
lung metastasis via immunosuppression (46).

Tumor‑associated macrophages (TAMs) play an extremely 
important role in the tumor microenvironment. Macrophages 
in the peripheral circulation are recruited to the tumor area 
as a result of the action of chemokines and cytokines, such 
as MCP‑1, M‑CSF, CCL8 and vascular epithelial growth 
factor (VEGF), which are secreted by tumor cells or the 
tumor stroma. M‑CSF (CSF‑1) is a major contributor to TAM 
infiltration and promotes tumor growth (85). Blockade of the 
M‑CSF/CSF‑1R signaling pathway suppresses tumor growth 
in mammary carcinoma models (86) and targeting TAMs with 
a CSF‑1R antibody is a viable strategy for cancer therapy (87).

According to Hollmén et al (17), high G‑CSF expression in 
heterogeneous triple‑negative breast cancer is closely associ-
ated with seeding metastasis and low overall survival. G‑CSF, 
similar to M‑CSF, regulates the differentiation of monocytes 
into TAMs that resemble alternatively activated (M2) macro-
phages. M2‑polarized macrophages are characterized by 
a tolerant phenotype that promotes tissue repair and vascu-
logenesis and supports tumor growth (88). By acting on the 
G‑CSFR on the surface of TAMs, G‑CSF increases TGF‑α 
secretion to promote breast tumor cell migration. Interestingly, 
in the 4T1 mammary tumor model, which is known to secrete 
high levels of G‑CSF, an anti‑G‑CSF antibody significantly 
reduced tumor growth and lung metastasis incidence and 
burden. However, anti‑CSF‑1R promoted tumor growth and 
enhanced lymph node and lung metastasis. Blockade of both 
G‑CSF and CSF‑1R partly reduced lung metastasis but signifi-
cantly increased lymph node metastasis, which suggests that 
different mechanisms may underlie lung metastasis seeding 
and lymph node metastasis. A possible explanation for this is 
that CD169+ macrophages are important gatekeeper cells in 
the subcapsular sinus, where they prevent the systemic dissem-
ination of pathogens. Depletion of CD169+ macrophages in 
the subcapsular sinus via treatment with anti‑CSF‑1R or a 
combination of anti G‑CSF and anti‑CSF‑1R increased lymph 
node metastasis, mainly because CSF‑1R is the major growth 
factor for CD169+ macrophages in the subcapsular sinus. This 
important discovery suggests that M‑CSF/CSF‑1R‑targeted 
inhibitors should be used with caution in the presence of high 
G‑CSF levels (17). Similarly, the inhibition of M‑CSF/CSF‑1R 
signaling increases spontaneous lung and bone metastasis 
without altering tumor growth in mouse 4T1 mammary 
tumors, which is associated with increased serum G‑CSF 
levels and increased neutrophil numbers at multiple sites. 
However, targeting G‑CSF receptors with neutralizing anti-
bodies reversed this effect, indicating that the facilitation of 
metastasis is driven by G‑CSF in the 4T1 mammary tumor 
model (89).

CEACAM1 is a cell adhesion molecule that is down-
regulated in numerous cancers that originate from the 
epithelium (90). CEACAM1 plays a role in inhibiting inflam-
mation, partly by inhibiting G‑CSF production by myeloid 
cells. The lack of CEACAM1 expression in breast tumors 
promoted the secretion of high levels of G‑CSF by TAMs, 
which in turn promoted tumor angiogenesis and initial tumor 
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establishment. It has been suggested that G‑CSF plays an 
important role in tumor promotion induced by CEACAM1 
downregulation (50). Generally, as shown in Fig. 2, G‑CSF 
plays a crucial role in breast cancer malignant progression.

8. Conclusions

G‑CSF stimulates the proliferation and survival of hema-
topoietic stem progenitor cells and their differentiation into 
neutrophils by acting on their specific receptor G‑CSFR. 
Under physiological conditions, G‑CSF affects the mobiliza-
tion of hematopoietic stem cells, progenitor cells and mature 
cells, especially neutrophils, to the blood circulation. When 
the body is infected, the serum G‑CSF level is significantly 
increased to promote neutrophil mobilization to the periph-
eral circulation. Therefore, rhG‑CSF can be used to treat 
neutropenia induced by chemotherapy and radiation therapy. 

As an adjunct to cancer therapy, G‑CSF induces ErbB2 
proto‑oncogene expression in breast cancer patients, making it 
an effective drug for improving the sensitivity of breast cancer 
patients to trastuzumab (91). Currently, an increasing number 
of studies have found that tumors with high G‑CSF expression 
show significant proliferative and metastatic properties and 
lead to poor prognosis (17,47,48,67). Therefore, the safety of 
G‑CSF as an adjunct to cancer treatment should be addressed.

Some basic studies have shown that G‑CSF is a promoter 
of tumor growth, which plays a role in immunosuppres-
sion by increasing tumor angiogenesis and mobilizing 
MDSCs (13,14,46,51,72). Kim et al (92), confirmed that G‑CSF 
treatment in mice with precise focused radiation promoted 
tumor growth by stimulating angiogenesis in tumor‑bearing 
mice and reduced the antitumor effect of radiotherapy. 
Coincidentally, in cervical cancer patients treated with plat-
inum‑based chemotherapy drugs, G‑CSF expression in tumors 

Figure 2. Signaling pathway of G‑CSF in breast cancer. In the breast cancer microenvironment: 1) CEACAM1 downregulation promotes G‑CSF secretion 
by TAMs, thereby promoting tumor angiogenesis and initial tumor establishment. 2) By acting on G‑CSFR on TAMs, G‑CSF increases transforming growth 
factor‑α secretion to promote tumor cell migration. 3) G‑CSF increases Ly6G+Ly6C+ granulocytes, which are a type of MDSC and further promotes the 
production of the proangiogenic factor Bv8 to enhance breast tumor metastasis. 4) BMP4 inhibits the expression and secretion of G‑CSF by inhibiting NF‑κB, 
resulting in decreases in the number and activity of MDSCs. 5) In a hypoxic environment, HIF1/2 upregulates CAIX and increases G‑CSF expression by 
activating the NF‑κB signaling pathway, which then promotes the mobilization of MDSCs and eventually leads to the lung metastasis of breast cancer. 6) 
Activation of the AKT‑mTOR signaling pathway increases G‑CSF expression in tumor cells, thereby promoting the accumulation of MDSCs. MDSCs promote 
the expression of stem‑associated genes, including Nanog, LGR5 and MSI‑1, in cancer cells via Notch signaling to promote tumor progression. Direct effect of 
G‑CSF on breast cancer: 7) Stable expression of G‑CSF induced by H‑Ras upregulates the expression of MMP‑2 by activating Rac 1 and promotes the migra-
tion/invasion of breast epithelial cells. In addition, overexpression of G‑CSF activates other signaling pathways, including MKK3/6, p38 MAPK, ERK1/2 and 
AKT, thus promoting an invasive phenotype in breast epithelial cells. 8) TNF‑α promotes the expression of G‑CSF by activating the ERK2 signaling pathway 
to promote tumor invasion. TNF, tumor necrosis factor; AKT, protein kinase B; G‑CSF, granulocyte‑colony stimulating factor; HIF, hypoxia inducible factor; 
MAPK, mitogen associated protein kinase; NF, nuclear factor; mTOR, mammalian target of rapamycin; MDSC, myeloid‑derived suppressor cell; CAIX, 
carbonic anhydrase IX; MMP, matrix metalloproteinase; ERK, extracellular signal regulated kinase; TAM, tumor‑associated macrophages; CEACAM1, 
carcinoembryonic antigen‑related cell adhesion molecule 1.
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is an indicator of poor prognosis in patients. Secreted G‑CSF 
not only has an antiapoptotic effect but also promotes the 
formation of tumors by mobilizing MDSCs to inhibit T cell 
activity and Bv8 secretion (12). In some clinical case reports, 
the use of safe therapeutic doses of G‑CSF may cause unpre-
dictable side effects such as bone pain, local skin reactions at 
the injection site and even spleen rupture or infarction (93‑96). 
This evidence also raised concerns for clinical work. Effective 
methods are needed to evaluate the G‑CSF usage window.

The JAK/STAT signal transduction pathway has been 
shown to be an important downstream pathway for G‑CSF 
regulation in cancer models such as colorectal cancer and is 
inseparable from cancer proliferation and migration (57,97‑99). 
Studying the relationship between the G‑CSF‑JAK/STAT 
signaling pathway and breast cancer can provide new insights 
for targeted breast cancer therapy and its prognostic strategies.
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