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Abstract. Colorectal cancer (CRC) is one of the most common 
malignant diseases in the world. Although mechanistic 
studies have been conducted on the pathogenesis of CRC, 
the molecular mechanism of CRC tumorigenesis remains 
unclear. In the present study, the weighted gene co‑expression 
network analysis was performed for the Gene Expression 
Omnibus (GEO) dataset GSE87211, in order to analyze the 
key modules involved in the pathogenesis of CRC. Next, Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes 
enrichment analyses were performed on the key module genes 
to analyze the functional pathways involved. The hub genes 
were screened using the Cytoscape platform and verified by 
a second GEO dataset, GSE21510. Finally, 10 hub genes were 
identified in 2 key modules (the green and brown modules) as 
the genes most significantly associated with the tumorigenesis 
of CRC. The 5 hub genes from the green module included 
collagen type I α1 chain, collagen type XII α1 chain, collagen 
triple helix repeat containing 1, inhibin subunit βa (INHBA) 
and chromobox 2 (CBX2), while the 5 hub genes from the 
brown module included bestrophin  2  (BEST2), carbonic 
anhydrase 2, glucagon, solute carrier family 4 member 4 and 
gliomedin. The 2 key modules with the 10 hub genes identified 
may regulate the occurrence and development of CRC through 
the extracellular matrix pathway, PI3K‑Akt and chemokine 
signaling pathways, thus providing a reference for under-
standing the complex mechanism of tumorigenesis in CRC. Of 
note, few studies have reported the pathogenesis of CRC with 
the 3 identified hub genes, INHBA, CBX2 and BEST2. Further 

investigation of the molecular mechanism of these genes in 
CRC is recommended.

Introduction

Tumors that form in the colon or rectum are often referred to 
together as colorectal cancer (CRC). CRC is one of the most 
common types of digestive system tumors, with its mortality 
rate ranking 4th among all malignant tumors  (1). A total 
of >90% of CRC cases occur after the age of 50 years, and 
the average age at diagnosis is 68 (2). The 5‑year survival 
rate of CRC can reach 90% at early diagnosis, but is <10% 
when distant metastasis has developed (3). Unfortunately, CRC 
usually reveals no symptoms at early stages, so it is important 
to identify biomarkers for its earlier diagnosis to improve the 
outcome of this disease.

Various molecular pathways have been shown to be 
involved in CRC, such as the chromosomal instability (CIN), 
microsatellite instability and CpG island methylator pheno-
type pathways (4). These 3 CRC pathways overlap in complex 
ways (5). CIN is the most widespread in CRC, accounting 
for 65‑70% of sporadic cases (6). In CIN, the Wnt/β‑catenin 
signaling pathway, which includes adenomatous polyposis 
(APC), (pro) renin receptor [(P)RR] and axis inhibition 
protein 1 (Axin) (7), is the pathway most clinically associated 
with CRC. APC serves an anti‑carcinogenic role by regulating 
canonical Wnt signal transduction mediated by cytoplasmic 
and nuclear mechanisms; mutations in the APC gene have 
been identified in ~80% patients with CRC (8). By contrast, 
the (P)RR, which is a component of the Wnt receptor complex, 
is usually overexpressed in CRC (9). The Axin gene can down-
regulate β‑catenin and inhibit cell growth via its co‑expression 
with APC5, when compared with cells transfected with Axin 
alone (10). However, the clinical approach to the CRC treat-
ment of the CIN pathway is limited, suggesting that focusing 
on a single pathway is not sufficient to explain CRC pathobi-
ology; a comprehensive consideration of multiple biological 
pathways is being suggested by an increasing number of 
studies (6,11). While studies into the molecular mechanism 
of CRC have focused on individual molecules rather than 
functional networks involving multiple pathways, weighted 
gene co‑expression network analysis (WGCNA) may be used 
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to analyze potential gene modules critically involved in gene 
expression. In the present study, WGCNA was performed 
on the Gene Expression Omnibus (GEO) dataset GSE87211 
to further determine the molecular mechanisms of CRC. 
Key gene modules associated with CRC tumorigenesis were 
identified, and a series of biological functions and pathways 
were analyzed. A second GEO dataset, GSE21510, was used 
to validate the results, and The Cancer Genome Atlas (TCGA) 
database was used to further reveal the genetic information 
and clinical characteristics of CRC. The genes identified by 
WGCNA provided a more detailed insight into the molecular 
mechanism of CRC tumorigenesis, and could provide new 
targets for the diagnosis and treatment of the disease.

Materials and methods

Data extraction. A total of 1,014 series of human CRC were 
retrieved from the GEO database. Following careful screening 
of the content, discarding the datasets with incomplete infor-
mation and those lacking control patients, the two datasets 
with the largest sample size (GSE87211 and GSE21510) were 
obtained. The GSE87211 dataset contained 230 CRC and 
133 normal samples, and the platform used was GPL13497, 
Agilent‑026652 Whole Human Genome Microarray 4x44K v2. 
Clinical information obtained from the dataset included sex, 
age and disease status (12). The GSE21510 dataset consisted of 
123 CRC and 23 normal samples, and its platform was GPL570 
Affymetrix Human Genome U133 Plus 2.0 Array (13). R pack-
ages were used to annotate the raw data, generate the expression 
matrix and match the probes targeted gene symbols.

Construction of WGCNA. Affy package (version  3.5.2 in 
R environment) (14) was used to pre‑process and normalize 
(Robust Multiarray Averaging normalization) the original data 
of GEO database (.CEL file). Standard deviations (SDs) were 
arranged from large to small, and the expression of the top 
5,000 genes with the greatest differences in case and control 
samples were selected for WGCNA. Using the pickSoft-
Threshold function in R  language, the scale‑free topology 
fitting index for several power was calculated, and the param-
eters that provided appropriate soft‑threshold power for the 
construction of the network were obtained.

To measure the network connectivity of a gene defined as 
the sum of its adjacency with all other genes for the network 
generation, adjacency of the gene network was transformed 
into topological overlap. Hierarchical clustering was used to 
classify genes with similar expression profiles into the same 
modules, based on topical overlap matrix dissimilarity. As 
default, the minimum number of genes per gene module was 
set to 30 (14). The dynamicTreeCut algorithm of WGCNA was 
used to distinguish the gene co‑expression modules by calcu-
lating the dissimilarity of the eigengenes. The MEDissThres, 
which is a parameter in the dynamicTreeCut algorithm of the 
WGCNA package, was used to select cutting lines merging 
some of the modules. Subsequently, visualization of eigengene 
network was performed.

Identification of modules association with clinical features. 
Module eigengenes (ME) is the first principal component of 
a given module and can be considered as a representative of 

the gene expression profile in a module (14). The associa-
tion between ME and clinical features was calculated using 
linear regression, and modules significantly associated with 
clinical features were obtained. In addition, the logarithmic 
transformation of the P‑value [gene significance (GS)=lgP] in 
the linear regression between genes and clinical features was 
calculated. GS was used to measure the correlation between 
gene expression and clinical features of CRC. The average 
value of GS in each module was defined as module signifi-
cance (MS). The module with the highest absolute MS value 
was considered to be the module most significantly associated 
with the clinical information.

Functional enrichment analysis of key module genes. In order 
to investigate the function of genes in the selected module, 
genes of the most meaningful modules, the key modules, were 
uploaded to the online database DAVID (https://david.ncifcrf.
gov/) for annotation. Gene Ontology (GO) and biological 
process analyses were performed using Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment anal-
ysis (15‑17). False discovery ratio (FDR) <0.05 was considered 
to be statistically significant.

Identification of hub genes. The key module networks obtained 
from WGCNA analysis were imported into Cytoscape 
version 3.7.1 platform (18). Based on the degree of associa-
tion, the top 30 hub genes of the 2 key module networks were 
selected as candidate genes for further analysis, verification 
and visualization.

Validation of hub genes. The limma algorithm of the 
R package (version 3.5.2) was used to screen the differentially 
expressed genes (DEGs) between CRC and normal samples in 
the dataset GSE21510, and the heatmap of DEGs was gener-
ated using the ggplot2 function of the R package (19,20). The 
significant DEGs were identified with the critical value of 
logFC≥|1.0|, and the adjusted P<0.05. A Venn diagram was 
drawn (http://bioinformatics.psb.ugent.be/webtools/Venn/) to 
obtain the overlapping genes in key modules from GSE87211 
and DEGs from GSE21510. TCGA data of patients with CRC 
existing in the Gene Expression Profiling Interactive Analysis 
(GEPIA; http://gepia.cancer‑pku.cn) database were used to 
validate the expression of the hub genes  (21). P<0.05 was 
considered to indicate a statistically significant difference.

Results

Gene selection and hierarchical clustering analysis. The R 
software was used to pre‑process the original data for back-
ground correction and normalization. Probes used in the 
GEO datasets without corresponding annotation information, 
or probes matching multiple genes were removed; for genes 
matched by several probes, the median of that gene expres-
sion was selected. The expression profiles of 34,127 genes 
in 363 samples were obtained from the GSE87211 dataset. 
WGCNA was constructed by arranging the SDs from large 
to small, and the top 5,000 genes were selected. In order to 
further determine whether all samples obtained were suit-
able for WGCNA network analysis, samples with the clinical 
characteristics were analyzed. As a result, the 363 samples 
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were divided into 2 clusters in the dendrogram (Fig. 1A). The 
threshold power (β), a key parameter for WGCNA, affects the 
independence and average connectivity of the co‑expression 
module. The network topology of β from 1 to 30 was analyzed, 
and for further analysis, all samples with β=5 were selected, as 

the lowest power of the scale‑free topological fitted an index of 
R2=0.9 at this point (Fig. 1B).

Construction and analysis of WGCNA with selected genes 
in CRC. WGCNA was constructed based on computational 

Figure 1. Sample Clustering tree and soft threshold power analysis. (A) Sample dendrogram and trait heatmap were based on the GSE87211 dataset, which 
contained 163 CRC and 133 normal samples. The top 5,000 genes with the highest standard deviation values were used for WGCNA. Color intensity was 
proportional to disease status, sex and age. (B) Scale independence analysis of soft‑thresholding power for the scale‑free fit index of network topology. 
(C) Mean connectivity analysis for various soft‑threshold powers. Determination of soft‑thresholding power by analyzing network topology for thresholding 
powers from 1 to 30. WGCNA, weighted gene co‑expression network analysis.
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heterogeneous hierarchical clustering. A total of 15 co‑expression 
modules were generated in the GSE87211 dataset, and 9 merged 
co‑expression modules were obtained by merging similar 
modules when the MEDissThres was set at 0.25 (Fig. 2A). As the 
gray module here indicated an unclassifiable eigengene cluster, 
the remaining 8 modules were selected for further analysis. The 
network heatmap of the 8 modules was plotted, and the results 
showed that each module was independent of one another. The 
modules and gene expression in each module showed a high rela-
tive independence level (Fig. 2B); similar results were observed 
by a heatmap plotted according to adjacencies (Fig. 2C). In addi-
tion, eigengenes in the 8 modules were calculated and clustered 
according to their correlations with each other, and the modules 
were divided into two groups (Fig. 2D).

Identification of key modules. The correlation between 
modules and disease characteristics was examined, and the 
eigengene tree and thermogram demonstrated that the green 
and brown modules were highly correlated with disease status. 

The green module was identified to be significantly positively 
correlated with disease status (r=0.84, P=2e‑100), while the 
brown module was markedly negatively correlated with 
disease status (r=0.87, P=1e‑113; Fig. 3A). Therefore, the two 
key modules were identified as the modules most associated 
with CRC disease status. The correlations between module 
members and GS in the green and brown modules are demon-
strated by scatter plots in Fig. 3B and C, respectively.

GO enrichment and KEGG pathway analyses of key modules. 
Using the DAVID functional annotations tool, the GO 
function and KEGG pathway enrichment of genes in 2 key 
modules were analyzed, with detailed information listed 
in Tables Ⅰ and Ⅱ. The green module was mainly enriched 
in collagen catabolic process, cell adhesion, extracellular 
matrix (ECM) organization, chemotaxis and cell‑cell signaling 
of biological processes, primarily regulation of the ECM, and 
the PI3K‑Akt and Chemokine signaling pathways. These 
processes and pathways serve a key role in cancer progression, 

Figure 2. Analysis of co‑expressing genes modules. (A) Hierarchical clustering analysis. Each branch was assigned a different color, signifying that different 
genes belonged to different gene co‑expression modules. A total of 9 merged co‑expression modules were obtained by merging similar modules when the 
MEDissThres was set as 0.25. (B) Heatmap of interaction analysis of co‑expressing genes. Different colors represent different degrees of overlap. (C) Heatmap 
plot showing the adjacency in the eigengene. (D) Dendrogram showing the association among 8 co‑expression modules.
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suggesting that genes in the green module participated in 
the progression of CRC. The enrichment analysis results of 
the brown module indicated that it was mainly enriched in the 
chemokine‑mediated signaling pathway and negative regula-
tion of growth and steroid metabolism, which were negatively 
correlated with tumorigenesis.

Validation of hub genes. The gene network of 2 key modules 
was imported into Cytoscape and the scores of all genes were 
calculated by 11 different methods. Finally, the first 30 genes 
from each module were screened according to the degree of 
association among genes for further analysis. Survival analysis 
of patients with CRC in GEPIA, depending on the expression 
level of the selected genes, showed statistical significance; 
and the top 5 significant genes for survival analysis in each 
module were considered to be hub genes. Survival analysis of 

the hub genes was performed in GEPIA patients with CRC, 
the collagen type I α1 chain (COL1A1), collagen type XII α1 
chain (COL12A1), collagen triple helix repeat containing 1 
(CTHRC1), inhibin subunit βa (INHBA) and chromobox 2 
(CBX2) genes were obtained from the green module; and the 
bestrophin 2 (BEST2), carbonic anhydrase 2 (CA2), glucagon 
(GCG), solute carrier family 4 member  4  (SLC4A4) and 
gliomedin (GLDN) genes were obtained from the brown 
module (Fig. 4).

Next, the limma R package with a logFC≥|1.0| as the 
cutoff was used to screen for DEGs in another GEO dataset, 
GSE21510; the heatmap of the DEGs for this dataset is presented 
in Fig. 5A. The DEGs from GSE21510 and genes of the green 
modules or brown modules from GSE87211 were overlapped 
by Venn diagram. The results demonstrated that the 10 hub 
genes were validated in the Venn diagrams (Fig. 5B and C).

Figure 3. Correlation of key modules with clinical stage. (A) Heatmap of the correlation between module eigengenes and clinical features of colorectal cancer. 
Numbers denote correlation (numbers in brackets are P‑values). (B) Scatter plot of the correlation between MEgreen membership and gene significance. 
(C) Scatter plot of the correlation between MEbrown membership and gene significance.
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To further validate the hub genes, GEPIA analysis 
was conducted in TCGA data from patients with CRC. 
The results demonstrated that the expression levels of the 
5  hub genes in the green module were all increased in 
CRC tissues, while those in the brown module were all 
decreased (Fig. 6).

Discussion

With the exception of patients with a family history, the 
majority of cases of CRC are sporadic  (22). Although the 
mortality of this malignancy has been markedly decreased 
following the introduction of routine examinations, its 
incidence remains high  (23). The development of innova-
tive methods for the early diagnosis and treatment of CRC 

is essential (24). Multiple molecular studies have indicated 
that complex mechanisms are involved in CRC pathology; 
however, studies into the molecular mechanism commonly 
focus on individual signaling pathways in their attempt to 
determine the mechanism of CRC (25‑27). WGCNA can be 
used to determine the expression of multiple genes in large 
sample datasets; disease analysis using WGCNA can ensure 
the investigation examines multiple signaling pathways and 
decreases the likelihood of excluding factors within the 
complex pathological mechanism (28).

In the present study, WGCNA was conducted in the GEO 
dataset GSE87211, and 8 independent modules with classifiable 
eigengenes were revealed. Following analyses of the correla-
tions between modules and disease status, the green module 
was identified as the gene cluster most positively correlated 

Table I. GO enrichment analysis of green module and brown modules (only biological processes).

Term	D escription	C ount	 %	 FDR

Green module
  GO:0030574	C ollagen catabolic process	 25	 3.205128	 1.50x10‑14

  GO:0006954	 Inflammatory response	 55	 7.051282	 2.00x10‑13

  GO:0007155	C ell adhesion	 58	 7.435897	 1.81x10‑11

  GO:0030198	E xtracellular matrix organization	 35	 4.487179	 4.26x10‑10

  GO:0030593	N eutrophil chemotaxis	 20	 2.564103	 8.23x10‑9

  GO:0007267	C ell‑cell signaling	 38	 4.871795	 9.10x10‑9

  GO:0030199	 Collagen fibril organization	 16	 2.051282	 1.31x10‑9

  GO:0042060	 Wound healing	 21	 2.692308	 3.96x10‑8

  GO:0070098	C hemokine‑mediated signaling pathway	 19	 2.435897	 3.11x10‑7

  GO:0006935	C hemotaxis	 24	 3.076923	 5.95x10‑7

  GO:0060326	C ell chemotaxis	 17	 2.179487	 5.16x10‑6

  GO:0002548	 Monocyte chemotaxis	 13	 1.666667	 8.20x10‑5

  GO:0008284	 Positive regulation of cell proliferation	 45	 5.769231	 1.24x10‑4

  GO:0006955	I mmune response	 42	 5.384615	 1.51x10‑4

  GO:0001501	 Skeletal system development	 22	 2.820513	 1.56x10‑4

  GO:0071346	C ellular response to interferon‑γ	 14	 1.794872	 4.19x10‑4

  GO:0071347	C ellular response to interleukin‑1	 15	 1.923077	 9.83x10‑4

  GO:0050900	L eukocyte migration	 19	 2.435897	 2.31x10‑3

  GO:0022617	E xtracellular matrix disassembly	 15	 1.923077	 2.34x10‑3

  GO:0010628	 Positive regulation of gene expression	 29	 3.717949	 2.87x10‑3

Brown module				  
  GO:0007586	D igestion	 20	 1.380262	 3.25x10‑5

  GO:0034765	R egulation of ion transmembrane transport	 25	 1.725328	 5.43x10‑4

  GO:0071294	C ellular response to zinc ion	 10	 0.690131	 2.60x10‑3
  GO:0001764	N euron migration	 23	 1.587302	 2.94x10‑3

  GO:0006730	O ne‑carbon metabolic process	 12	 0.828157	 3.87x10‑3

  GO:1902476	C hloride transmembrane transport	 21	 1.449275	 5.68x10‑3

  GO:0015701	 Bicarbonate transport	 14	 0.966184	 7.57x10‑3

  GO:0007218	N europeptide signaling pathway	 21	 1.449275	 2.13x10‑2

  GO:0070098	C hemokine‑mediated signaling pathway	 17	 1.173223	 2.90x10‑2

  GO:0045926	N egative regulation of growth	 9	 0.621118	 3.00x10‑2

  GO:0008202	 Steroid metabolic process	 13	 0.89717	 3.38x10‑2

  GO:0007267	C ell‑cell signaling	 37	 2.553485	 3.52x10‑2

GO, Gene Ontology; FDR, false discovery ratio.
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Table II. KEGG pathway enrichment analysis of green module and brown modules.

Category	 Term	D escription	C ount	 %	 FDR

Green module
  KEGG 	 hsa04060	C ytokine‑cytokine receptor interaction	 40	 5.128205	 3.32x10‑10

  KEGG 	 hsa04974	 Protein digestion and absorption	 22	 2.820513	 7.29x10‑8

  KEGG 	 hsa04512	EC M‑receptor interaction	 18	 2.307692	 1.27x10‑4

  KEGG 	 hsa05146	A moebiasis	 19	 2.435897	 4.96x10‑4

  KEGG 	 hsa05323	R heumatoid arthritis	 16	 2.051282	 4.50x10‑3

  KEGG 	 hsa04151	 PI3K‑Akt signaling pathway	 33	 4.230769	 2.73x10‑2

  KEGG 	 hsa04062	C hemokine signaling pathway	 22	 2.820513	 4.61x10‑2

  KEGG	 hsa04668	 TNF signaling pathway	 14	 1.794872	 7.10x10‑1

  KEGG	 hsa04310	 Wnt signaling pathway	 16	 2.05128	 9.10x10‑1

Brown module
  KEGG	 hsa00830	R etinol metabolism	 24	 1.656315	 1.39x10‑8

  KEGG	 hsa05204	C hemical carcinogenesis	 23	 1.587302	 1.30x10‑5

  KEGG	 hsa00982	D rug metabolism‑cytochrome P450	 20	 1.380262	 1.02x10‑4

  KEGG	 hsa00910	N itrogen metabolism	 9	 0.621118	 8.46x10‑3

  KEGG	 hsa00980	 Metabolism of xenobiotics by cytochrome P450	 18	 1.242236	 9.57x10‑3

  KEGG	 hsa00140	 Steroid hormone biosynthesis	 15	 1.035197	 3.38x10‑2

  KEGG	 hsa04978	 Mineral absorption	 13	 0.89717	 3.44x10‑2

FDR, false discovery ratio; KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracellular matrix; TNF, tumor necrosis factor.
 

Figure 4. Survival analysis of 10 hub genes according to data from the TCGA database. P<0.05 was considered to indicate a statistically significant difference. 
COL1A1, collagen type I α1 chain; COL12A1, collagen type XII α1 chain; CTHRC1, collagen triple helix repeat containing 1; INHBA, inhibin subunit βa; 
CBX2, chromobox 2; BEST2, bestrophin 2; CA2, carbonic anhydrase 2; GCG, glucagon; SLC4A4, solute carrier family 4 member 4; GLDN, gliomedin.
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with CRC status, and the brown module as the most negatively 
correlated.

The green module genes were more enriched in collagen 
catabolic process, cell adhesion, ECM organization, chemo-
taxis and cell‑cell signaling, and participated primarily in the 
regulation of the ECM, and the PI3K‑Akt and Chemokine 
signaling pathways. By contrast, the brown module was nega-
tively correlated with CRC. Pathway analysis demonstrated that 
the brown module contained genes that were involved in the 
regulation of the chemokine‑mediated signaling pathway, and 

negative regulation of growth and steroid metabolic process, 
which oppose cancer tissue expansion. CRC is an inflamma-
tion‑associated type of cancer, and the chemokine expression 
pattern in CRC is similar to the cellular immune response 
involved in lymphocyte recirculation and the directed migra-
tion of leukocytes into mucosal tissues, which was consistent 
with the present results (29). A previous study has revealed that 
collective cell invasion of CRC tissue depends on cell‑intrinsic 
mechanisms, but recently more evidence has indicated 
that it also depends on extracellular mechanisms involving 

Figure 5. Hub genes of GSE87211 were validated in the GSE21510 dataset. (A) Heatmap hierarchical clustering exhibiting DEGs between colorectal cancer and 
control groups in the GSE21510 dataset. (B) Overlapping genes between DEGs from the GSE21510 dataset and the green module from the GSE87211 dataset. 
(C) Overlapping genes between the DEGs from the GSE21510 dataset and the brown module from the GSE87211 dataset. DEGs, differentially expressed genes. 
COL1A1, collagen type I α1 chain; COL12A1, collagen type XII α1 chain; CTHRC1, collagen triple helix repeat containing 1; INHBA, inhibin subunit βa; 
CBX2, chromobox 2; BEST2, bestrophin 2; CA2, carbonic anhydrase 2; GCG, glucagon; SLC4A4, solute carrier family 4 member 4; GLDN, gliomedin.
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bidirectional interplay between the tumor cell and the tumor 
environment, such as the ECM (30). The results of the present 
study emphasized the importance of the ECM in cancer. In 
addition, the Wnt signaling pathway has been widely studied 
as an important CRC pathway; however, its clinical applica-
tion has a limited effect, as the pathogenesis of CRC involves 
other signaling pathways as well (9). The FDR value of tumor 
necrosis factor and Wnt signaling pathways in KEGG analysis 
of green module was not statistically significant. This result 
indicated that the popular pathway in CRC, Wnt signaling 
pathway, was unable to explain the pathological mechanism on 
its own. According to screening genes of Cytoscape platform 
and survival analysis in GEPIA, a total of 5 hub genes were 
identified in the green module, including COL1A1, COL12A1, 
CTHRC1, INHBA and CBX2, and 5 hub genes in the brown 
module, including BEST2, CA2, GCG, SLC4A4 and GLDN. 
Survival analysis indicated that the expression of all 10 hub 

genes was significantly associated with the survival of patients 
with CRC. The increased expression level of hub genes from 
the green module and decreased expression level of hub genes 
from the brown module in CRC were both verified by TCGA 
CRC data.

In light of previous studies, the correlation among 
these 7/10  hub genes and CRC have been explored. The 
ECM, the PI3K‑Akt pathway and nitric oxide pathway 
served important roles in tumor initiation, invasion and 
progression (31,32). COL1A1 and CA2 genes contribute to 
ECM and the PI3K‑Akt pathways, and have been reported 
to be associated with CRC metastasis (33). The CA2 gene 
encodes a member of the carbonic anhydrase family, which 
is significantly downregulated in the majority of colorectal 
tumors and associated with patient survival (34). The CA2 
gene has been demonstrated to be involved in the nitrogen 
metabolism pathway and associated with lymph node 

Figure 6. Hub genes expression of The Cancer Genome Atlas CRC data in GEPIA. *P<0.005. GEPIA, Gene Expression Profiling Interactive Analysis; CRC, 
colorectal cancer; COL1A1, collagen type I α1 chain; COL12A1, collagen type XII α1 chain; CTHRC1, collagen triple helix repeat containing 1; INHBA, inhibin 
subunit βa; CBX2, chromobox 2; BEST2, bestrophin 2; CA2, carbonic anhydrase 2; GCG, glucagon; SLC4A4, solute carrier family 4 member 4; GLDN, gliomedin.
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metastasis in endometrial adenocarcinoma, and lymph node 
metastasis in gastric cancer and regulation of the pH regula-
tory system (35). Similarly, it has been reported that CA2 
is associated with metastasis in CRC (36). COL1A1 and its 
homologous gene COL12A1 were revealed to be involved 
in ECM organization, and were identified be significantly 
upregulated in patients with CRC, which was consistent 
with previous studies (37,38). The CTHRC1 gene encodes an 
ECM‑associated protein involved in extracellular space and 
proteinaceous ECM, which may contribute to tissue repair 
by limiting collagen matrix deposition and promoting cell 
migration (39). The SLC4A4 gene affects intracellular pH, 
which can regulate tumor progression in the hypoxic and 
acidic tumor environment (40). As for GLDN, also known 
as CRG‑L2, it may serve an important role in extracellular 
structure or intercellular signaling, and it has been associated 
with CRC prognosis (41). The GCG gene is hypothesized to 
be involve in the regulation of incretin synthesis, secretion, 
inactivation and RET signaling, while some studies have 
identified that GCG is downregulated in both adenomas and 
CRC tissues (42,43).

Of note, a total of 3 hub genes (INHBA and CBX2 from the 
green module, BEST2 from the brown module) were identified 
in the present study, which had not been previously reported to 
be involved in CRC pathology, to the best of our knowledge. 
The INHBA protein belongs to the transforming growth factor 
β superfamily, which is associated with several types of human 
cancer (44). It has also been reported that high expression of 
INHBA gene in CRC may lead to poor survival  (45). With 
regard to the CBX2 gene, to the best of our knowledge, there 
have been no studies on its association with CRC at present, 
although a growing body of evidence has suggested that 
CBX2 is overexpressed in breast cancer and advanced prostate 
cancer (46). The BEST2 gene, is a member of the bestrophin 
gene family of anion channels, which is mainly expressed in 
the retinal pigment epithelium and colon (47). To the best of our 
knowledge, there is no published research on the BEST2 gene 
in CRC at present.

The present study explored the potential pathogenic genes 
of CRC using data mining and data analysis, rather than 
focusing on a single signaling pathway. Multiple biological 
processes were identified to be involved with CRC progres-
sion, and the obtained hub genes provide a reference point 
for future studies. The present study reaffirmed the role of 
ECM, and the PI3K‑Akt and chemokine signaling pathways 
in the development of CRC. To the best of our knowledge, 
few studies have reported the role of the INHBA, CBX2 and 
BEST2 genes in CRC; the present study highlighted these 3 
genes as candidates for research of the molecular mechanism 
of CRC. To compensate for the limitations of a single dataset, 
another dataset was used for cross‑validation, and the results 
were also validated in another public database. To validate the 
present results, analysis based on enlarged sample size and 
molecular research is under preparation. Further investigation 
of the molecular mechanism of the identified hub genes in 
CRC is recommended.
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